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Abstract— We investigate stability of a class of singularly
perturbed systems whose slow system is a set-valued average
defined via an appropriate averaging procedure of the solutions
of the continuous-time boundary layer system. An approximate
hybrid system consisting of this average, the projection of the
jump map in the direction of the slow states and flow and jump
sets from the original dynamics is shown to approximate the
actual singularly perturbed hybrid system. In particular, using
forward pre-completeness of the average system we show that
solutions of the actual and approximate systems are close in an
appropriate sense on compact time intervals. It is also shown
that global asymptotic stability of the average system implies
semi-global practical asymptotic stability of the actual system.
Several examples are presented to illustrate our results and
relate them to previously published results in the literature.

I. INTRODUCTION

Dynamical systems that exhibit two time scale behavior
can be analyzed via singular perturbation techniques in which
the actual dynamics are approximated with two auxiliary
systems: a fast (or boundary layer) system and a slow (or
reduced) system. The classical singular perturbation results
assume that the solutions of the boundary layer system
converge to an asymptotically stable manifold and that the
vector fields are Lipschitz continuous [12], [16].

The classical results on singular perturbations of
continuous-time systems can be used to conclude closeness
of solutions between the actual system and reduced and
boundary layer systems on compact time domains under the
assumption that the reduced system is forward complete and
the boundary layer system is exponentially stable, see [11].
Asymptotic or exponential stability of the actual system can
be guaranteed if both reduced and boundary layer systems
are asymptotically or exponentially stable [4], [16].

In some situations the boundary layer solutions do not
converge to an equilibrium manifold but instead to a time-
varying integral manifold on which the derivatives of the
slow state variables can be averaged, see [4]; in those cases it
is necessary to combine averaging and singular perturbation
techniques. Moreover, combining averaging and singular
perturbations may also be necessary when trajectories of
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the boundary layer system converge to a set instead of the
equilibrium manifold, see [1]–[3], [7]–[9], [15].

Singular perturbation theory based on averaging leads to a
reduced order system, where fast motions appear implicitly
and only their average influence on slow motions is consid-
ered. In general, this approach requires the assumption that
large time scale behavior of trajectories of the fast dynamics
is in some sense independent of its initial values [10], or
properties guaranteed by a unique invariant measure [1]–[3],
[9] or some stability properties [6], [15], [17], [20].

In this paper we consider singular perturbations via aver-
aging for a class of hybrid systems. Prior results on singular
perturbations for hybrid systems can be found in [13], [14],
[19]. In particular, results in [14] assume that the solutions
of the boundary layer system converge to a quasi-steady
state equilibrium manifold. Singular perturbations for hybrid
control systems with fast actuators were considered in [13]
where a set-valued mapping was used to approximate the
limiting behavior of the boundary layer system. Continuous
averages for the slow dynamics that are generated by solu-
tions of the boundary layer system are considered in [19].

The main purpose of this paper is to extend the results in
[19] (also presented in [18]) to cover a more general class
of hybrid systems. Our results can be used as an analysis
tool to design hybrid feedbacks for continuous-time plants
implemented by fast but continuous actuators, see more
details in [19, Example 5].

Assuming forward pre-completeness of the average sys-
tem, we show that each solution of the slow dynamics of the
singularly perturbed hybrid system can be made arbitrarily
close on compact time domains to some solution of its
average system by increasing the separation of time scales.
We also show that a compact set is semi-globally practically
asymptotically stable for the actual hybrid system if it is
globally asymptotically stable for the average system. An
example is used to illustrate that a continuous average defined
in [19] for the slow dynamics may not exist and a set-
valued average proposed in this paper may exist. Hence, our
results can be applied to a larger class of systems than those
considered in [19]. Moreover, using the same example, we
show that our results give sharper conclusions in some cases
than the results presented in [13].

The paper is organized as follows. We introduce a class of
singularly perturbed hybrid systems in Section II. The main
results and an example used to relate the main results to
previously published results are given in Sections III and IV
respectively. Section V contains conclusions. All proofs are
omitted due to the space limitations.
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II. SINGULARLY PERTURBED HYBRID SYSTEMS

The singularly perturbed hybrid systems that we consider
are based on two time scales, (τ, j) and (t, j) with τ = εt
for a small parameter ε > 0, with the notations x′ = dx

dτ ,
ẋ = dx

dt . Z≥0 = {0, 1, 2, · · · }. B is the closed unit ball in
an Euclidean space, the dimension of which should be clear
from the context. A set-valued mapping M : Rn ⇒ Rn is
outer semi-continuous at x ∈ Rn if for all sequences xi → x
and yi ∈M(xi) such that yi → y we have y ∈M(x), and M
is outer semi-continuous (OSC) if it is outer semi-continuous
at each x ∈ Rn. A set-valued mapping M : Rn ⇒ Rn is
locally bounded if for any compact set A ⊂ Rn there exists
r > 0 such that M(A) :=

∪
x∈AM(x) ⊂ rB; if M is OSC

and locally bounded, then M(A) is compact for any compact
set A. A function x : R≥0 → Rn is locally absolutely
continuous if its derivative is defined almost everywhere and
we have x(t) − x(t0) =

∫ t

t0
ẋ(s)ds for all t ≥ t0 ≥ 0.

Given a set S, conS denotes the closed convex hull of a set
S. Given a compact set A ⊂ Rn and a vector x ∈ Rn,
define |x|A := miny∈A |x − y|. A continuous function
σ : R≥0 → R≥0 is of class-L if it is non-increasing and
converging to zero as its argument grows unbounded. A
continuous function γ : R≥0 → R≥0 is of class-G if it
is zero at zero and non-decreasing. It is of class-K if it
is of class G and strictly increasing. A continuous function
β : R≥0 × R≥0 → R≥0 is of class-KL if it is of class K
in its first argument and class L in its second argument. A
set S ⊂ R≥0 ×Z≥0 is called a compact hybrid time domain
if S =

∪J−1
j=0 ([tj , tj+1], j) for some finite sequence of times

0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ . The set S is a hybrid time
domain if for all (T, J) ∈ S, S ∩ ([0, T ]× {0, 1, · · · , J}) is
a compact hybrid time domain.

Consider a class of singularly perturbed hybrid systems
with the time variables (τ, j):

Hε
x′ = f(x, z, ε)
z′ = 1

εψ(x, z, ε)

}
(x, z) ∈ C ×Ψ (1)

(x, z)+ ∈ G(x, z) (x, z) ∈ D ×Ψ ,

where x ∈ Rn, z ∈ Rm, C,D ⊂ Rn, Ψ ⊂ Rm, f : C ×Ψ×
R≥0 → Rn, ψ : C × Ψ × R≥0 → Rm, G : Rn × Rm ⇒
Rn ×Rm, and ε > 0 is a small parameter reflecting that the
flow dynamics of z are much faster than x. Let f0(x, z) :=
f(x, z, 0) and ψ0(x, z) := ψ(x, z, 0). We assume that system
Hε satisfies the following conditions.

Assumption 1: The sets C and D are closed and the set Ψ
is compact. G is outer semi-continuous and locally bounded,
and for each (x, z) ∈ D×Ψ, G(x, z) is nonempty. f0 : C×
Ψ → Rn and ψ0 : C×Ψ → Rm are continuous, and for each
δ > 0 and compact K ⊂ Rn there exists ε∗ := ε∗(K, δ) > 0
such that

|f(x, z, ε)− f0(x, z)| ≤ δ
|ψ(x, z, ε)− ψ0(x, z)| ≤ δ

}
(2)

∀ ((x, z), ε) ∈ ((C ∩K)×Ψ)× (0, ε∗] . �

Note that in Assumption 1, the set Ψ is required to be
compact as we wish to deal with compact attractors for the
fast state z and without any assumption on the set-valued
map G; if (1) admits solutions with a purely discrete-time
domain then a jump rule like z+ = z will not allow z
to converge to a compact set unless it is constrained to a
compact set a priori.

We also express the system Hε in (1) with the time
variables (t, j) with t := τ/ε:

Hε
ẋ = εf(x, z, ε)
ż = ψ(x, z, ε)

}
(x, z) ∈ C ×Ψ (3)

(x, z)+ ∈ G(x, z) (x, z) ∈ D ×Ψ ,

and define the boundary layer system of the system Hε as

Hbl
ẋbl = 0
żbl = ψ0(xbl, zbl)

}
(xbl, zbl) ∈ C ×Ψ , (4)

which is obtained by ignoring the jump mapping and setting
ε = 0 in (3).

We next define the average of the function f0 : C ×Ψ →
Rn with respect to ψ0 : C × Ψ → Rm, with which the
flow dynamics of the system Hε can be approximated by a
differential inclusion.

Definition 1: For functions f0 : C × Ψ → Rn and ψ0 :
C × Ψ → Rm, the set-valued mapping Fav : Rn ⇒ Rn is
said to be an average of f0 with respect to ψ0 on C ×Ψ if
for each compact set K ⊂ Rn there exists a class-L function
σK such that, for each L > 0, x ∈ C ∩K and each function
zbl : [0, L] 7→ Ψ satisfying żbl = ψ0(x, zbl) there exists a
measurable function fzbl : [0, L] → Rn such that fzbl(s) ∈
Fav(x) for all s ∈ [0, L] and the following holds:∣∣∣∣∣ 1L

∫ L

0

f0[(x, zbl(s))− fzbl(s)]ds

∣∣∣∣∣ ≤ σK(L). (5)

For the singularly perturbed system Hε modeled in (1) or
(3), its average system Hav := {Fav, Gav, C,D} is defined
as:

Hav
ξ′ ∈ Fav(ξ) ξ ∈ C
ξ+ ∈ Gav(ξ) ξ ∈ D ,

(6)

where ξ ∈ Rn, Fav comes from Def. 1 and Gav is the
projection of G(x, z) in the x direction:

Gav(x) := {v1 ∈ Rn : (v1, v2) ∈ G(x, z), (z, v2) ∈ Ψ× Rm}.
(7)

To illustrate how to get the jump mapping Gav of the
averaged system from G of the actual hybrid system, a simple
example is given.

Example 1: Consider the hybrid system Hε with the data
(f, ψ,G,C,D,Ψ) formed as (3). Let Fav be the average of
f0 with respect to ψ0 on the set C×Ψ. For some γ > 0, let
G,D be defined as

G(x, z) := [−γx+ z21 , g(x, z)]
T (8)

D := {x : x ≤ 0} ,
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where g(x, z) is an arbitrary function. Noting the definition
of Gav in (7), we get the average of the hybrid system Hε

is

ξ′ ∈ Fav(ξ) ξ ∈ C

ξ+ ∈ −γξ + [c3, c4] ξ ∈ D , (9)

where the positive real numbers c3 := minz∈Ψ{z21} and
c4 := maxz∈Ψ{z21}. �

To analyze the singularly perturbed system Hε through its
average system Hav, we need the assumption that a well-
defined average is admitted by Hε.

Assumption 2: The function f0 : C ×Ψ → Rn admits an
outer semi-continuous, locally bounded and convex-valued
average mapping Fav : Rn ⇒ Rn with respect to ψ0 : C ×
Ψ → Rm on the set C ×Ψ. �

We provide a lemma on existence of averages for systems
Hε in (1) and the idea is implicit in the results of [15].

Assumption 3: For a given compact set Ω ⊂ C×Ψ, there
exist an outer semi-continuous, locally bounded and convex-
valued mapping Fav : Rn ⇒ Rn and a class-L function σΩ
such that, for each L > 0 and function zbl : [0, L] 7→ Ψ
satisfying (x, zbl(0)) ∈ Ω and żbl = ψ0(x, zbl) there exists a
measurable function fzbl : [0, L] → Rn such that fzbl(s) ∈
Fav(x) for all s ∈ [0, L] and the following holds:∣∣∣∣∣ 1L

∫ L

0

[f0(x, zbl(s))− fzbl(s)]ds

∣∣∣∣∣ ≤ σΩ(L).

Lemma 1: Suppose that the singularly perturbed system
Hε in (1) satisfies Assumptions 1. Assumption 2 holds if
for each compact set K ⊂ Rn there exists a compact set
Ω ⊂ (C ∩K) × Ψ such that Assumption 3 holds and Ω is
globally asymptotically stable for the boundary layer system
in (4) with C replaced with C ∩K. �

Lemma 1 is helpful to show where Assumption 2 holds.
For instance, it is showed that Assumption 2 holds in the case
when the boundary layer system Hbl has a globally asymptot-
ically stable quasi-steady state equilibrium manifold, see [19,
Example 1], which is the essential assumption for classical
singular perturbation theory. It also holds when solutions of
the boundary layer system Hbl converge to a stable limit
cycle [19, Example 2] and even when system Hbl contains
equilibria that are neither stable nor attractive [19, Example
3].

Note that in [19], considering the same class of hybrid
systems Hε in (1), the average of the function f0 with respect
to ψ0 is a continuous function, which can be taken as a
special case comparing the set-valued mapping average in
Def. 1 of the present paper. Through an example in Section
IV, we show that Def. 1 pertains to a more general class of
hybrid systems. This generalization is the main contribution
of this paper.

III. MAIN RESULTS

Closeness of solutions between the singularly perturbed
system and the solutions of its average system on compact
time domains is considered as one of the main results under

the assumption that the average hybrid system is forward pre-
complete. Based on the hybrid time domain, the definitions of
solutions and forward completeness for hybrid system Hav

in (6) and closeness of hybrid signals are first reviewed, see
more details in [5].

A hybrid signal is a function defined on a hybrid time
domain. A hybrid signal ξ : dom ξ 7→ Rn is called a hybrid
arc if ξ(·, j) is locally absolutely continuous for each j. A
hybrid arc ξ : dom ξ 7→ Rn is a solution to the hybrid
system Hav in (6) if ξ(0, 0) ∈ C ∪D and:

1) for all j ∈ N and almost all τ such that (τ, j) ∈ dom ξ,
ξ(τ, j) ∈ C and ξ′(τ, j) ∈ Fav(ξ(τ, j));

2) for all (τ, j) ∈ dom ξ such that (τ, j + 1) ∈ dom ξ,
ξ(τ, j) ∈ D and ξ(τ, j + 1) ∈ Gav(ξ(τ, j)).

A solution is maximal if it cannot be extended.
Definition 2: (Forward completeness) A hybrid solution

is said to be forward complete if its domain is unbounded.
A hybrid solution is said to be forward pre-complete if its
domain is compact or unbounded. System Hav is said to
be forward pre-complete from a compact set K0 ⊂ Rn if
all maximal solutions ξ with ξ(0, 0) ∈ K0 are forward pre-
complete. �

Definition 3: (Closeness of hybrid signals) Two hybrid
signals ξ1 : dom ξ1 7→ Rn and ξ2 : dom ξ2 7→ Rn are said
to be (T, J, ρ)-close if:

1) for each (t, j) ∈ dom ξ1 with t ≤ T and j ≤ J there
exists s such that (s, j) ∈ dom ξ2, with |t − s| ≤ ρ
and |ξ1(t, j)− ξ2(s, j)| ≤ ρ,

2) for each (t, j) ∈ dom ξ2 with t ≤ T and j ≤ J there
exists s such that (s, j) ∈ dom ξ1, with |t − s| ≤ ρ
and |ξ2(t, j)− ξ1(s, j)| ≤ ρ. �

Now, we are ready to give results on closeness of the
slow solutions x of the singularly perturbed system Hε to
the solutions of its average system Hav on compact time
domains in Theorem 1.

Theorem 1: Suppose that the singularly perturbed system
Hε in (1) satisfies Assumptions 1 and 2 and that its average
system Hav (6) is forward pre-complete from a compact set
K0 ⊂ Rn. Then, for each ρ > 0 and any strictly positive real
numbers T, J , there exists ε∗ > 0 such that, for each ε ∈
(0, ε∗] and each solution x to system Hε with x(0, 0) ∈ K0,
there exists some solution ξ to system Hav with ξ(0, 0) ∈ K0

such that x and ξ are (T, J, ρ)-close. �
We also consider the stability properties of the perturbed

system under the assumption that the average system has a
global asymptotic stability property. Global asymptotic sta-
bility for the system Hav in (6) and semi-global asymptotic
stability for the system Hε in (1) are defined as the follows.

Definition 4: For the hybrid system Hav in (6), the com-
pact set A is said to be globally asymptotically stable with
respect to β ∈ KL if

|ξ(τ, j)|A ≤ β(|ξ(0, 0)|A, τ + j), ∀ (τ, j) ∈ dom ξ. �
Definition 5: For the hybrid system Hε in (1), the com-

pact set A is said to be semi-globally practically asymptot-
ically stable (SGP-AS) with respect to β ∈ KL if, for each
compact set K0 and positive real number ν > 0, there exists
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ε∗ > 0 such that, for each ε ∈ (0, ε∗], each solution x with
x(0, 0) ∈ K0 + εB satisfies

|x(τ, j)|A ≤ β(|x(0, 0)|A, τ + j) + ν, ∀ (τ, j) ∈ dom x.

�
Then, the stability properties of system Hε are considered

in Theorem 2 under a global asymptotic stability assumption
on the average system Hav.

Theorem 2: Suppose that the singularly perturbed system
Hε in (1) satisfies Assumptions 1 and 2 and the compact set
A is globally asymptotically stable for its average system
Hav (6) with respect to β ∈ KL. Then, the compact set
A×Ψ is SGP-AS for system Hε with respect to β. �

Now we recall a comparison on our main results with
classical singular perturbation theory from [19] and present
them here for completeness. In classical singular perturbation
theory, say [4], [11], [16], the boundary layer system Hbl is
assumed to have a globally asymptotically stable equilibrium
manifold. Such an assumption is formulated as follows.

Assumption 4: For the boundary layer system Hbl in (4),
the function h : C → Ψ is continuous and for each compact
set K ⊂ Rn, the compact set MK := {(x, zbl) : x ∈ C ∩
K, zbl = h(x)} is globally asymptotically stable with respect
to β ∈ KL.

As shown in [19, Example 1] Assumption 4 is sufficient
to guarantee Assumption 2 and the function x 7→ Fav(x) :=
f0(x, h(x)) is the average of f0 with respect to ψ0 for system
Hε in (1) based on Assumption 4. Then, its average system
is Hav in (6) with

Fav(x) := f0(x, h(x)) ∀ x ∈ C, (10)

and the following two corollaries follow directly from our
main results. Note that the results in the following corollaries
are more general than [4], [11], [15], [16], where both the
closeness of solutions between the actual continuous time
system with its average system and the stability properties
of the actual system are considered, since the assumption of
Lipschitz continuity for the functions f0 and ψ0 in [4], [11],
[15], [16] are not needed in the current paper.

Corollary 1: Suppose that the singularly perturbed system
Hε in (1) satisfies Assumptions 1 and 4 and its average
system Hav defined in (6) and (10) is forward pre-complete
from a compact set K0 ⊂ Rn. Then, for each ρ > 0 and any
T, J > 0 there exists ε∗ > 0 such that, for each ε ∈ (0, ε∗]
and each solution x to system Hε with x(0, 0) ∈ K0 there
exists some solution ξ to system Hav with ξ(0, 0) ∈ K0 such
that x and ξ are (T, J, ρ)-close. �

Corollary 2: Suppose that the singularly perturbed system
Hε in (1) satisfies Assumption 1 and 4 and the compact set A
is globally asymptotically stable for its average system Hav

defined in (6) and (10) with respect to β ∈ KL. Then, the
compact set A× Ψ is SGP-AS for system Hε with respect
to β. �

IV. AN EXAMPLE

In this section, we compare the main results given above
with [19] and [13]. In particular, we show that our results

apply to a larger class of systems than the singular perturba-
tion results in [19]. Indeed, we show that the average in Def.
1 may exist even in cases when the average used in [19] for
the slow dynamics may not exist. Using the same example,
we also show that our results give sharper conclusions than
[13] in some cases. We first recall the average definition in
[19].

Definition 6: For functions f0 : C × Ψ → Rn and ψ0 :
C × Ψ → Rm, the function fav : C → Rn is said to be
an average of f0 with respect to ψ0 on C × Ψ if for each
compact set K ⊂ Rn there exists a class-L function σK
such that, for each L > 0, x ∈ C ∩ K and each function
zbl : [0, L] 7→ Ψ satisfying żbl = ψ0(x, zbl), the following
holds: ∣∣∣∣∣ 1L

∫ L

0

[f0(x, zbl(s))− fav(x)]ds

∣∣∣∣∣ ≤ σK(L).

�
Consider a singularly perturbed hybrid system with states

x ∈ R and z ∈ R2:

ẋ = εf0(x, z)
ż = ψ0(z) + εφ(x, z)

}
(x, z) ∈ C ×Ψ (11)

(x, z)+ ∈ G(x, z) (x, z) ∈ D ×Ψ

where G and D come from (8), C := {x : x ≥ 0}, Ψ is a
compact set satisfying S1 ⊂ Ψ ⊂ R2 \{0} with S1 being the
unit circle, f0(x, z) := (−0.5x + xz1), φ : C × Ψ → Ψ is
locally bounded, and

ψ0(z) :=

 −
z1

(√
z2
1+z2

2−1
)3

√
z2
1+z2

2

+

−
z2

(√
z2
1+z2

2−1
)3

√
z2
1+z2

2

−
(12)

z2(z1 + z2 − 1)2 + z2

(
1−

√
z21 + z22

)2
z1(z1 + z2 − 1)2 − z1

(
1−

√
z21 + z22

)2
 .

We first show that the boundary layer system for (11)
contains equilibria that are neither stable nor attractive.
Noting the dynamics ż = ψ0(z) in polar coordinates:

ρ̇ = −(ρ− 1)3

θ̇ = (ρ sin(θ) + ρ cos(θ)− 1)2 + (1− ρ)2 ,
(13)

we know that θ is unbounded when the solution of ż = ψ0(z)
starts off the unit circle S1, since the first term of righthand of
dynamics of θ is positive and second term is not integrable.
From Fig. 1, we can get that solutions of ż = ψ0(z) that
start off the unit circle S1, tend toward S1 while rotating
in the counterclockwise direction with motion that becomes
arbitrarily slow at points arbitrarily close to equilibria (0, 1)
or (1, 0). Considering that θ̇ > 0 and θ(t) is unbounded when
t grows, we know that the equilibria of the boundary layer
system Hbl of system (11) are neither stable nor attractive
for any solution of system Hbl that starts in Ψ \ S1.
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Fig. 1. Trajectories of the solution z of ż = ψ0(z).

Letting K = [−M,M ] and defining Ω := (C ∩K)× S1,
it is clear that Ω is globally asymptotically stable for the
boundary layer system with C replaced by C ∩K. We next
consider if there exists a σΩ ∈ L such that Assumption 3
holds to invoke Lemma 1. Note that system (13) degenerates
into θ̇ = ϕ(θ) when z(0) ∈ S1 with ϕ(θ) := (sin(θ) +
cos(θ) − 1)2, and θ = 0 and θ = π/2 are the equilibria
of θ̇ = ϕ(θ). Considering Def. 6, the average of f0(x, z) is
−0.5x if solutions of system (13) start from the equilibrium
θ = 0 and it is −1.5x for the other equilibrium θ = π/2.
Thus, the single-valued average given in Def. 6, that was
employed in [19], can not be used to average f0(x, z) with
respect to ψ0 of system (11). On the other hand, we next
show that the multi-valued average in Def. 1 exists for this
example.

Let Θ := [0, π/2] and Ω1 := [−M,M ]×{ρ = 1, θ ∈ Θ}.
Note that each solution z1(t) = sin(θ(t, θ(0))) of system
Hbl, where θ(0) is determined by initial condition z(0),
picks value in [0, 1] when it starts with (x, z(0)) ∈ Ω1. We
can get that the function f0(x, z) of system (11) satisfies
f0(x, z(s)) ∈ [−1.5,−0.5]x for all solutions (x, z) of system
Hbl with (x, z(0)) ∈ Ω1. Let Fav(x) := [−1.5,−0.5]x.
Then, for each solution z of system Hbl of (11) starting
on the set Ω1, we can always find fzbl(s) ∈ Fav(x) such
that Assumption 3 holds for arbitrary class-L function σΩ.

Noting Ω1 ⊂ Ω, we next consider the solution z1 =
sin(θ(t, θ(0))) of Hbl starting from Ω \ Ω1. For arbitrary
δ ∈ (0, 0.5], let

ϑ := arcsin(δ) ∈ [0, π/6]

T (δ) := {t : θ(t, ϑ+ π/2) = 2π − ϑ}. (14)

For dynamics of θ(t) that agree with θ̇ = ϕ(θ), noting ϕ :
(π/2, 2π) → [0, (

√
2+1)2] is symmetric about θ = 5π/4, we

can only consider its property on (π/2, 5π/4]. Since dϕ(θ)
dθ >

0 for θ ∈ (π/2, 5π/4], we have that ϕ(θ) is strictly increasing
and then θ̇ ≥ ϕ(ϑ) for all θ ∈ [π/2+ϑ, 5π/4]. With ϕ(ϑ) =
2(1− δ)(1−

√
1− δ2), we have T (δ) ≤ 3π/4−arcsin(δ)

(1−δ)(1−
√
1−δ2)

:=

T̃ (δ). Noting that T̃ : (0, 0.5] → R>0 is continuous, strictly
decreasing, bounded away from zero and limδ→0 T̃ (δ) =

∞, there exists a α ∈ K∞ such that α(1/δ) = T̃ (δ) for
δ ∈ (0, 0.5].

For each solution of θ̇ = ϕ(θ) with θ(0) ∈ (π/2, 2π),
let T1 := {t ≥ 0 : θ(t) = π/2 + ϑ} and T1 := 0 if θ(t) ≥
π/2+ϑ for all t ≥ 0, let T2 ≥ T1 := {t ≥ 0 : θ(t) = 2π−ϑ}
and T2 := T1 if θ(t) ≥ 2π − ϑ for all t ≥ 0. With noting
T2 − T1 ≤ Tδ in (14), we have for each L > 0:

1

L

∫ L

0

| sin(θ(s))|ds

≤ 1

L

∫ T1

0

1ds+

∫ T2

T1

1ds+

∫ L

T2

δds

≤ T1
L

+
T̃ (δ)

L
+ δ =

T1
L

+
α(1/δ)

L
+ δ. (15)

Noting that (15) holds for arbitrary δ ∈ (0, 1/2], it holds for

δ = min

0.5,
1

α−1
(√

L
)
 . (16)

Let c := T1

L and note that c ∈ [0, 1] from the definition
of L and T1 in (15). Then, we have for each M > 0, L >
0, x ∈ [−M,M ] and solution z1 : [0, L] 7→ Ψ of system
Hbl satisfying (x, z(0)) ∈ (Ω \ Ω1), the function fzbl(s) =
−(0.5 + c)x ∈ Fav(x) satisfies:

∣∣∣∣∣ 1L
∫ L

0

[−(0.5x+ xz1(s))− fzbl(s)]ds

∣∣∣∣∣
=

∣∣∣∣∣ 1L
∫ L

0

[−(0.5x+ xz1(s)) + (0.5− c)x]ds

∣∣∣∣∣
≤ |x|

(
1

L

∫ L

0

| sin(θ(s))|ds− c

)
,

≤M

max
{
2, α

(√
L
)}

L
+min

0.5,
1

α−1
(√

L
)
 ,

:= σΩ(L).

Noting that σΩ is of class-L, we know that Assumption 3
holds for system (11). Invoking Lemma 1 and letting the
jump mapping of the averaged system come from (9) in
Example 1, we have that the average of system (11) is

ξ′ ∈ [−1.5,−0.5]ξ ξ ∈ C
ξ+ ∈ −γξ + [c3, c4] ξ ∈ D .

(17)

We next compare our results with [13], which considers
a class of hybrid control systems singularly perturbed by
fast but continuous actuators, where a reduced system that
omits the actuator dynamics is used in analysis of stability
properties of the actual system. To extend the classical
singular perturbation theory to the hybrid setting, the equilib-
rium manifold in Assumption 4 is replaced by a set-valued
mapping H : Rn ⇒ Rm in [13]. The closed-loop of the
hybrid control system considered in [13] is formed as
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diag(In, εIm) y′ ∈ F1(y) y ∈ C ×Ψ

y+ ∈ G1(y) y ∈ D ×Ψ , (18)

where y := (x, z) ∈ Rn×Rm, In and Im respectively denote
the n × n and m ×m identity matrices, F1 : Rn × Rm ⇒
Rn×Rm and G1 : Rn×Rm ⇒ Rn×Rm. In [13], the reduced
system Hr := {Fr, Gr, C,D} of the perturbed system (18)
is defined as (6) with the set-valued mapping H and

Fr(x) := con{v1 ∈ Rn : (19)
(v1, v2) ∈ F1(x, z), z ∈ H(x), v2 ∈ Rm},

Gr(x) := {v1 ∈ Rn : (v1, v2) ∈ G1(x, z), (z, v2) ∈ Ψ×Ψ}.

Note that Gr defined above is a projection of G1 to the
subspace of the slow state x, which is same as the definition
of Gav in (7) for the average system, except that the fast
states z are constrained to the compact set Ψ in (19) and it
is not required for our main results.

Consider the singularly perturbed hybrid system (11).
From the definition of the reduced system in (19) given
in [13], noting the fact that the boundary layer system of
system (11) converges to S1 and letting c3 and c4 come from
Example 1, the reduced system is

ξ′ ∈ [−1.5, 0.5]ξ ξ ∈ C

ξ+ ∈ −γξ + [c3, c4] ξ ∈ D . (20)

Note that there are solutions for the reduced system (20) that
exponentially grow unbounded.

On the other hand, for the average system (17) where C =
{ξ : ξ ≥ 0}, the jump mapping Gav := −γξ + [c3, c4] make
all solutions starting from the set D go back to the flow set
C. We have that the origin is globally exponentially stable
for the average system. Then, we can analyze the stability
properties of system (11) with global asymptotic stability of
its average system (17) using Theorem 2, but we cannot draw
this stability conclusion from the reduced system (20) that
was used in [13].

V. CONCLUSIONS

We extended the analysis results in [19] to consider a class
of hybrid dynamical systems with the singular perturbation
theory and the averaging method. We showed that if there
exists a well defined average for the actual perturbed hybrid
system, the slow solutions of the actual system on compact
time domains are arbitrarily close to the solution of the
average system that approximates the slow dynamics of the
actual system for arbitrarily small values of the singular
perturbation parameter. We also showed that the global
asymptotic stability of a compact set for the average system
implies that the set is semi-globally practically asymptot-
ically stable for the actual perturbed system. Through an
example, we showed that the average definition introduced
in the present paper allows for a more general class of
hybrid systems. Using the same example, we also showed
that our results give sharper conclusions than [13] in some

cases. The continuity assumption on the slow vector field
can be relaxed to an assumption that small perturbations
to the solutions of the boundary layer system lead to small
changes in the integral that defines the average vector field.
Also, one can consider set-valued boundary layer dynamics.
These generalizations are useful for recovering the singular
perturbation results in [13]. We have not considered these
generalization here for ease of exposition.
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