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Abstract— This paper addresses the problem of controlling an
uncertain multi-input multi-output (MIMO) system by means
of adaptive switching control schemes. In particular, the paper
aims at extending the approach of multiple-model unfalsified
adaptive switched control, so far restricted to single-input
single-output systems, to a general multivariable setting. The
proposed scheme relies on a data-driven “high-level” unit, called
the supervisor, which at any time can switch on in feedback
with the uncertain plant one controller from a finite family
of candidate controllers. The supervisor performs routing and
scheduling tasks by monitoring suitable test functionals which,
based on the measured data, provide a measure of mismatch
between the potential loop made up by the uncertain plant
in feedback with the candidate controller and the nominal
“reference loop” related to the same candidate controller.

I. INTRODUCTION

In many control systems, such as industrial plants, air-

crafts, and communication networks a large number of

actuator and/or sensors may be employed in order to achieve

the desired control task. In these kind of control problems,

the inputs and outputs cannot usually be grouped into pairs

and treated as if they were separate single-input single-

output (SISO) problems, because the interactions between

the multiple inputs and outputs are non-negligible. In this

case, one has to tackle control design as a genuine multiple-

input multi-output (MIMO) problem. The problem is even

more complicated when the multivariable system to be

controlled is completely or partially unknown. One of the

approaches for controlling uncertain plants is the introduction

of feedback adaptation. The extension of adaptive control

algorithms developed for SISO systems to a MIMO setting

is not trivial. Some MIMO adaptive control algorithms based

on the model reference approach and the pole placement

approach can be found in [1], [2]. In recent years, adaptive

switching control (ASC) has emerged as an alternative to

conventional continuous adaptation, providing an attractive

framework for combining tools from adaptive and robust

control [3], [4], [5], [6], [7]. The supervisory architecture

comprises a multicontroller consisting of a family of precom-

puted candidate controllers and a supervisor that orchestrates
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Fig. 1. Typical ASC arrangement.

the switching by selecting at any time one among the

candidate controllers based on processed plant input/output

data [8]. Although the literature on ASC is quite vast, most

of the works deal with the SISO case with notable exceptions

being [9], [10], [11], [12].

This paper aims at extending multi-model unfalsfied ASC

(MMUASC) of [7], [13] to a MIMO setting. In MUASSC,

the supervisor performs in real-time the scheduling task

(when to switch) and the routing task (which controller

select), by monitoring suitable test functionals, pairwise

associated with the given candidate controllers, as indicators

of controller suitability. Each test functional, computed on

the basis of the measured plant input and output, provides

a measure of percentage discrepancy between the potential

loop, made up by the uncertain plant in feedback with the

candidate controller, and a nominal “reference loop” related

to the same candidate controller.

While, in the SISO case, such a discrepancy can in

principle be defined by resorting to the concept of a virtual

reference, the situation becomes more intricate in a MIMO

setting since in this case the virtual reference need not

exist. Nevertheless, it will be constructively shown that,

irrespectively of the existence of the virtual reference, the

interpretation based on discrepancy can be recovered and the

inferred stability information on the potential loop remains

unaltered.

II. SWITCHING CONTROL FRAMEWORK

Let the “switched” system be represented as follows

y(t) = P(δu)(t)
δu(t) = Cσ(t)(r − y)(t)

}

(1)

where t ∈ Z+, Z+ := {0, 1, · · ·}, P : δu 7→ y denotes

the uncertain plant with input-increment δu(t) := u(t) −
u(t − 1) ∈ Rm and output y(t) ∈ Rp; r(t) ∈ Rp denotes

the reference to be tracked by the plant output and σ(t)
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the subscript identifying the candidate controller connected

in feedback to the plant at time t. It is assumed that the

uncertain plant consists of a discrete-time strictly causal

MIMO LTI dynamic system with matrix fraction descriptions

(MFDs, for short)

P : A−1(d)B(d) = N(d)D−1(d) (2)

where A(d) = A (d)∆(d), A (d) = Ip+A1d+. . .+Ana
dna ,

∆(d) = (1 − d)Ip and B(d) = B1d + . . . + Bnb
dnb are

polynomial matrices in the unit backward-shift operator d
with strictly Schur greatest common left divisor (g.c.l.d.).

Similar definitions apply to the right MFD N(d)D−1(d).

A so-called switching supervisory unit handles the plant

I/O records in order to generate the sequence σ specifying

the switching controller Cσ(t). Specifically, at each time t,
the controller Cσ(t) is one element from a finite family of N

one-degree-of-freedom LTI controllers Ci C = {Ci, i ∈
←−
N },

←−
N := {1, 2, · · · , N}, with MFDs

Ci : R
−1
i (d)Si(d) = Yi(d)X

−1
i (d) (3)

where Ri(d) = Im + Ri1d + . . . + Rinr
dnr and Si(d) =

Si0 + Si1d + . . . + Sins
dns are polynomial matrices with

strictly Shur g.c.l.d.. As beforehand, a similar definition

applies to the right MFDs Yi(d)X
−1
i (d). Plant input in-

crements are considered throughout this paper so as to

address the common practice of controllers equipped with

an “integral action”.

In the remainder of the paper, the linear time-varying

feedback system (1) will be denoted by (P/Cσ(t)). Let now

S denote the linear space of all the real-valued sequences

on Z+. Then, given a vector-valued sequence x ∈ S of

dimension n, xt denotes its time truncation up to time t, i.e.,

xt := {x(0), x(1), . . . , x(t)}, with x(k) ∈ Rn. Furthermore,

‖xt‖2 :=
∑t

k=0 |x(k)|
2 where | · | denotes Euclidean norm.

Definition 1: The switched system (1) is said to be stable

relatively to r (r-stable, for short) if, for every input r ∈ S,

there exist finite positive reals ci, i = 1, 2, such that
∥

∥zt
∥

∥ ≤ c1 + c2
∥

∥rt
∥

∥ , ∀t ∈ Z+ (4)

where z(k) := [ δu(k)′ y(k)′ ]′.

Let P denote the plant uncertainty set. In other terms,

P represents the set of possible plant configurations, e.g. a

range of parametric uncertainty. In order for the problem to

be well-posed, the following requirement is assumed.

Definition 2: The adaptive switching control problem is

said to be feasible if, for every P ∈P , there is at least an

index i ∈
←−
N , such that (P/Ci) is internally stable.

Before proceeding some comments are in order. For clarity

of exposition, in the remainder of this paper, the analysis will

be carried out assuming zero plant initial conditions and zero

noises/disturbances. Nonetheless, the results to be presented

can be readily extended to the general case along the same

lines as those of [7], [14]. In accordance with the mentioned

restrictions, next definition is introduced in order to avoid

possible ambiguities.

Definition 3: Given an LTI dynamic system with transfer

matrix F (d), and left MFD, F (d) = G−1(d)H(d), with

input u and output y, by the notation y(t) = F (d)u(t) we

mean that the sequence y(t), t ∈ Z+, is computed via the

following difference equation (detG0 6= 0)

nG
∑

k=0

Gk y(t− k) =

nH
∑

k=0

Hk u(t− k)

y(k) = 0, u(k) = 0, k = −1,−2, · · · (5)

if G(d) =
∑nG

k=0 Gk dk and H(d) =
∑nH

k=0 Hk dk.

In order to decide whether or not, and, in the affirmative,

how to change the controller, the supervisor embodies a

family Π :=
{

Πi, i ∈
←−
N
}

of test functionals such that,

in broad terms, Πi(t) quantifies the suitability of the i-
th potential loop (P/Ci) given the data up to time t. In

the hysteresis switching logic considered hereafter, at each

step, one computes the least index i∗(t) in
←−
N such that

Πi∗(t)(t) ≤ Πi(t), ∀i ∈
←−
N . Then, the switching index

sequence σ is given by

σ(t+ 1) = l(σ(t),Π(t)), σ(0) = i0 ∈
←−
N

l(i,Π(t)) =

{

i, if Πi(t) < Πi∗(t)(t) + h
i∗(t), otherwise

(6)

where h > 0 is the hysteresis constant.

The next Hysteresis Switching Logic (HSL) lemma estab-

lishes the limiting behavior of (P/Cσ(·)) subject to (6). Let Σ
denote the class of all possible switching sequences σ giving

rise to the switched system (1). Consider the assumptions:

A1. For each σ ∈ Σ and i ∈
←−
N , Πi(t) admits a limit (even

infinite) as t→∞;

A2. For each σ ∈ Σ, there exist integers µ ∈
←−
N such that

Πµ(·) is bounded.

HSL Lemma [3] Let z denote the vector-valued sequence of

I/O plant data, and σ the switching sequence resulting from

(1) and (6). Then, for any initial condition and reference r,

if A1 and A2 hold, there is a finite time tf ∈ Z+, after which

no more switching occurs. Moreover, Πσ(tf )(·) is bounded.

III. REFERENCE LOOP IDENTIFICATION IN

MULTIVARIABLE SYSTEMS

As discussed in [7], the combination of Multiple-Models

and Unfalsified Control has appealing features and intuitive

advantages. Indeed, the resulting approach, called MMUASC

(multi-model unfalsified adaptive switching control), pro-

vides good performance, as is typical in multiple-models

schemes, in case a set M of nominal models is avail-

able which tightly approximates P . On the other hand, in

MMUASC, stability depends only on the problem feasibility,

not on specific choices of M .
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The remaining part of this section will be devoted to

briefly recall the main concepts underlying MMUASC as

well as to discuss the main issues which appear in the MIMO

case and require careful interpretation.

Let M := {Mi, i ∈
←−
N } be a set of N discrete-time

strictly causal MIMO LTI dynamic systems with MFDs

Mi : A−1
i (d)Bi(d) = Ni(d)D

−1
i (d) (7)

where Ai(d) = Ai(d)∆(d), Ai(d) = Ip + Ai1d + . . . +
Aina

dna and Bi(d) = Bi1d+ . . .+Binb
dnb are polynomial

matrices with strictly Schur greatest g.c.l.d.. Similar defini-

tions apply to the right MFDs Ni(d)D
−1
i (d).

In connection with M , the controllers Ci’s are chosen so as

to form, along with the associatedMi’s, a finite family F =
{(Mi/Ci), i ∈

←−
N } of internally stable feedback loops, each

designed to fulfill desirable prescriptions (which in general

need not be optimal relatively to any specific performance

index). Hereafter, (Mi/Ci) will be referred to as the i-th
reference loop. Given the uncertain plant P , the aim is to

carry out a reference loop identification task, viz., select a

candidate controller Cσ in such a way that (P/Cσ) behaves as

closest as possible to one of the candidate reference loops in

F . Hence, roughly speaking, the ideal goal of the switching

supervisor, can be envisaged as follows. Given an uncertain

plant P ∈P , find an index σ ∈
←−
N such that:

i) (P/Cσ) be stable;

ii) The behavioral data produced by (P/Cσ) in response

to r be as closest as possible to the ones produced by

(Mσ/Cσ) in accordance to the reference loop identifi-

cation criterion

σ := arg min
i∈
←−
N

sup
r 6=0

‖(P/Ci)r − (Mi/Ci)r‖

‖(Mi/Ci)r‖
(8)

where (P/Ci) r and (Mi/Ci) r denote the behavioral

data produced by (P/Ci) and (Mi/Ci) r, respectively,

in response to r: by simplicity no time-indication is

shown.

Remark 1: As elaborated in detail in [15], [16], the reason

for using percentage criteria is essentially that, in case

of large uncertain plant dynamic range, we can have a

different cost associated to each index i. Selection criteria in

normalized form like (8) thus help to avoid possible biases

associated with the controller selection.

Unfortunately, on line implementation of (8) is impossible

without using logics like pre-routing, which in general have

to be ruled out because typically cause large and long-

lasting learning transients. The Unfalsified Control approach

introduced in [17] provides, under certain conditions, a way

to side-step this problem. At each time and for each candidate

controller, one computes (if possible) the variable vi(t)
which solves the difference equation

Si(d)vi(t) = Ri(d)δu(t) + Si(d)y(t). (9)

In words, vti equals the virtual reference sequence which

would reproduce the recorded I/O sequence (δut, yt) should

the plant P be fed-back by the candidate controller Ci,
irrespective of the way the plant data is generated. This

means that, if (P/Cσ(·)) is intended as the linear (time-

varying) transformation (1) mapping the reference r into z,

one has z =
(

P/Cσ(·)
)

r = (P/Ci) vi.

Ci

Ci

−

−

−

−

P

Mi

vi

yδu

yi/iδui/i

ỹi/i

δũi/i

Fig. 2. Detail of a multiple-model switching control.

In MMUASC, the virtual reference concept is used as

follows. For each candidate reference loop (Mi/Ci), we

define the closed loop response of (Mi/Ci) to vi as

yi/i(t) =Mi(δui/i)(t)
δui/i(t) = Ci(vi − yi/i)(t)

}

(10)

Accordingly, by letting (Mi/Ci) vi := [δu′
i/i y

′
i/i]

′ (Figure

2), the reference loop identification criterion (8) can be

modified in the following on-line implementable form

σ := arg min
i∈
←−
N

sup
vi 6=0

‖(P/Ci)vi − (Mi/Ci)vi‖

‖(Mi/Ci)vi‖
(11)

As discussed in [7], test functionals related to the identifica-

tion criterion (11) can be obtained with no need of computing

vi. In fact, in the section IV we will show that even in

the MIMO case the numerical computation of vi (which

would require Ci to be stably invertible) can be avoided and

substituted by a suitably filtered prediction error based on

the nominal model. Then, from a practical viewpoint, one

could simply ask whether a similar result exists also for

MIMO systems. However, from a theoretical point of view,

the introduction for MIMO systems of identification criteria

like (11) is more intricate than in the SISO case, since the

virtual reference in (9) need not even exist. Such an issue is

addressed in detail in the following.

A. Virtual Implementation of the Control Loop

To begin with, some results of linear algebra are briefly

recalled for the reader’s benefit [18].

Lemma 1: Consider the linear equation

Gx = L , (12)

where G ∈ Rm×p, and L ∈ Rm are given matrices. Then,

the following statements are equivalent:

i) there exists a solution x ∈ Rp;

ii) the columns of L ∈ ImG.
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Furthermore, the solution, if it exists, is unique if and only

if G has full column rank, i.e., rankG = p. �

Lemma 2: Consider the linear equation (12), where m ≤
p and G has full row rank, i.e., rankG = m. Then, the

solution, provided it exists, can be expressed as

x = G†L+ (Ip −G†G)γ (13)

where γ ∈ Rp while G† := G′ (GG′)−1 denotes right

pseudo-inverse of G. �

Now, consistent with Section II, the difference equation

(9) can be suitably rewritten as

Si0vi(t) = Ri(d)δu(t) + Si(d)y(t) + [Si0 − Si(d)] vi(t)

:= ξi(t) . (14)

Then, three possible cases arise.

1) Let m = p. Then, if Si0 has full column rank, exists

unique the virtual reference vi(t) = S
−1
i0 ξi(t);

2) Let m < p. Then, if Si0 has full row rank, (Si0S
′
i0)

is invertible and all the possible vi’s are given by

vi(t) = S
†
i0ξi(t) + (Ip −S

†
i0Si0)ν(t) (15)

where ν(·), ν(t) ∈ Rp, is an arbitrary signal;

3) Let m > p. Then, the virtual reference vi need not exist

unless ξi(t) ∈ Im Si0.

This analysis forces one to use identification criteria

alternative to those based on the virtual reference as defined

in (9). To this end, let w(t) := Sσ(t)(d)r(t). Then, (1) is

equivalent to the switched system of Figure 3 where R−1
σ(t)(d)

and Sσ(t)(d) are in the forward path and, respectively, in the

backward path of control loop. Consequently, in place of vi,
one can define (see Figure 4)

wi(t) = Ri(d)δu(t) + Si(d)y(t) . (16)

Note that, in contrast with (9), the difference equation

(16) can always be solved in real-time with respect to wi.

In the light of (16), assuming that the control scheme is

implemented as in Figure 3, a convenient reference loop

identification-criterion turns out to be the following

σ := arg min
i∈
←−
N

sup
wi 6=0

∥

∥

∥
(̂P/Ci)wi − ̂(Mi/Ci)wi

∥

∥

∥

‖ ̂(Mi/Ci)wi‖
, (17)

where, with obvious meaning of the symbols, (̂P/Ci) and
̂(Mi/Ci) denote the i-th potential loop and the i-th reference

loop, respectively.

Hence, in case the virtual reference vi does not exist, the

criterion (17) can be considered as a possible substitute of

(11). In fact, as it will be shown in the next section, (17)

provides the same information on stability of the switched

system (1) as given by (11) and so, no reconfiguration of the

control loop in accordance with the arrangement of Figure 3

is actually needed.

R−1
σ(t)(d)

−

Sσ(t)(d)

P
w(t) y(t)δu(t)

Fig. 3. Virtual implementation of the switched-on control loop.

R−1
i (d)

−

Si(d)

P
wi(t) y(t)δu(t)

Fig. 4. Potential loop associated to definition of wi.

IV. STABILITY INFERENCE VIA PREDICTION ERRORS

FILTERING

A convenient test functional related to the identification

criterion (17) is as follows

Πi(t) := maxΛt
i (18)

Λ
1/2
i (t) :=

‖ z̃ti ‖

‖ (z − z̃i)t ‖
(19)

with z̃i := z− zi and, zi = ̂(Mi/Ci)wi := [ δu′
i y

′
i ]

′, i ∈
←−
N .

Effectiveness of (19) stems from the fact that (P/Ci) is

r-stable if and only if Λi takes on finite values, ∀r ∈ S and

∀σ ∈ Σ. To see this, let the plant P be represented in terms

of a coprime factor uncertainty as follows

∆∗/i(d) := [∆Bi
(d) ∆Ai

(d) ]

= [B(d)−Bi(d) Ai(d)−A(d) ] . (20)

Consistent with Sections II and III, define two polynomial

matrices

Ξi/i(d) := Ai(d)Xi(d) +Bi(d)Yi(d) (21)

Ξ∗/i(d) := A(d)Xi(d) +B(d)Yi(d) (22)

whose determinants equal the characteristic polynomials of

the i-th reference loop and, respectively, the i-th potential

loop.

Lemma 3: Let us define the following two matrices

Qi/i(d) :=

[

Yi(d)
Xi(d)

]

Ξ−1
i/i(d) (23)

Q∗/i(d) :=

[

Yi(d)
Xi(d)

]

Ξ−1
∗/i(d) . (24)

Then,

Q∗/i(d)−Qi/i(d) = Q∗/i(d)∆∗/i(d)Qi/i(d) . (25)
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m m m m

y1 y2

δu1 δu2

θ ∈ [0.05, 1.5] υυ

ζζζ

Fig. 5. Four carts plant.

Hence, from Lemma 3 it is immediate to conclude that

z̃i(t) = Qi/i(d)∆∗/i(d) z(t)

= Q∗/i(d)∆∗/i(d)
[

I −Qi/i(d)∆∗/i(d)
]

z(t)

= Q∗/i(d)∆∗/i(d) (z(t)− z̃i(t)) . (26)

Remark 2: It follows from equation (26) that the bound-

edness of (19) depends on the stability of (P/Ci). In fact,

test functional (19) can take on unbounded value only for

indices corresponding to destabilizing controllers. We further

notice that, under Problem Feasibility, there always exists at

least one candidate controller such that the associated test

functional is bounded for every possible switching sequence.

Thus, the validity conditions of the HSL lemma hold true.

Next result shows that (19) can be obtained by suitable

filtering the prediction error related to the i-th model Mi.

Theorem 1: Consider the vector valued sequence z̃ti in

(19). Then,

z̃i(t) =

[

−Yi(d)
Xi(d)

]

Ξ−1
i/i(d) ǫi(t) (27)

where

ǫi(t) := Ai(d)y(t)−Bi(d)δu(t) (28)

is the prediction error based on Mi given the switched-on

loop (P/Cσ(t)).

V. MAIN RESULTS

Given any P ∈P , let S(P) ⊆
←−
N be the set of all indices

s ∈
←−
N such that (P/Cs) is stable. Note that, under Problem

Feasibility, S(P) 6= {∅}. Whenever the plant uncertainty set

P is compact and a priori known, M can be designed dense

enough in P so as to ensure that, for any P ∈ P , there

exist indices i ∈
←−
N , yielding stable loops (P/Ci) such that

maxP∈P mini∈S(P)

∥

∥Q∗/i ∆∗/i

∥

∥

∞
< β, given the desired

accuracy β. This is captured in the following.

Proposition 1: Let Θ be a compact set, and θ → P (θ)
continuous on Θ. Then, for any positive real β, there always

exists a finite model family such that:

max
P∈P

min
i∈S(P)

∥

∥Q∗/i ∆∗/i

∥

∥

∞
:= β < β . (29)

A model distribution, for which such a property holds,

will be denoted by M (β). The following theorem is the

main result of this section.

Theorem 2: Consider the switched system (P/Cσ(·)) (1),

P ∈ P , under zero plant initial conditions. Let σ(t) be

selected in accordance with the (6), with Πi(t) as in (18)-

(19). Then, provided that the problem feasibility holds, for

any reference r ∈ S, the HSL lemma holds, and the switched

system (P/Cσ(·)) is r-stable. Further, under a nominal model

distribution M (β) the total number of switches Nσ is

bounded as follows

Nσ ≤ N

⌈

β

h

⌉

, (30)

where ⌈α⌉ denotes the smallest integer greater than or equal

to α ∈ R+.

VI. EXAMPLE

In this section, a MIMO plant will be considered. Let P
be the plant of Figure 5 made up by four carts, all having

mass m = 1 Kg. The carts are mechanically coupled by

springs and dampers: the latter ones have a viscous damping

coefficient ζ equal to 0.2 Ns/m; only the spring connecting

the carts on the left has an uncertain stiffness parameter

θ ∈ Θ = [0.05, 1.5] N/m, the other two have a known

stiffness coefficient υ equal to 0.7N/m. The control problem

is to position external carts by applying manipulable forces

to internal carts. Hence, this is a 2-inputs/2-outputs problem.

Three different one-degree-of-freedom continuous LTI

controllers were designed in order to guarantee the stabil-

ity and performances requirements on the whole uncertain

interval. The controllers were designed relatively to plant

models corresponding the following three stiffness values:

θ1 = 0.2 N/m, θ2 = 0.5 N/m and θ3 = 1.0 N/m. Let

Mi(s) = A−1
i (s)Bi(s) be the plant model with stiffness

θi from δu = [δu1 δu2]
′ to y = [y1 y2]

′, and Ci(s) =
Yi(s)Xi(s)

−1 the corresponding tuned controllers, i ∈
←−
3 ,

selected among all stabilizing controllers C̃ = Ỹ (d)X̃−1(d)
according to a weighted H∞ mixed-sensitivity criterion [19]:

Ci(s) = arg inf
C̃

sup
ω

σ[ΦW (jω, θi)]

where σ denotes the maximum singular value and ΦW (s, θi)
the W -weighted mixed sensitivity matrix

ΦW (s, θi) =

[

{Ψδu
i }

−1/2Wi(s)Ỹ (s)

{Ψy
i }

−1/2Wi(s)X̃(s)

]

Ξ̃−1
i (s)Ai(s)

where Ξ̃i(s) := Ai(s)X̃(s) + Bi(s)Ỹ (s). The weighting

polynomial matrices and the positive real-valued matrices

have been chosen as follows: Wi(s) = 0.01/(s + 0.01)I2,

Ψy
i = I2, i ∈

←−
3 , and, Ψδu

1 = 2.85 × 10−3I2, Ψδu
2 =

2.14×10−3I2, Ψδu
3 = 1.00×10−3I2. Then, nominal models
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θ = 0.10 θ = 0.30 θ = 0.40 θ = 0.65 θ = 0.70 θ = 0.80 θ = 1.10
Maximum values of 2.87 and 2.13 2.85 and 1.98 3.19 and 2.12 2.70 and 1.92 2.78 and 1.78 2.74 and 1.97 2.72 and 1.72
|y1| and |y2|
Maximum values of 5.98 and 5.82 5.98 and 5.81 6.33 and 5.70 6.34 and 5.70 4.69 and 5.01 4.71 and 5.12 4.70 and 5.12
|δu1| and |δu2|
Final controller 1 1 2 2 3 3 3
index
Final switching 0 s 0 s 2.9 s 1.6 s 4.8 s 1.5 s 1.3 s
instant

TABLE I

SIMULATION RESULTS IN THE IDEAL CASE WITH σ(0) = 1.

and relative controllers are discretized by the use of an

input zero-order holder with sample time equal to 0.1 s.

Each controller yields closed loop stability in the following

subintervals: Θ1 = [0.05, 0.48) N/m, Θ2 = (0.15, 1.01)
N/m, Θ3 = (0.65, 1.5] N/m. Simulation results reported

hereafter refers to the hysteresis constant h equal to 0.05 and

reference signals r1(t) and r2(t) given by square-waves of

amplitudes and periods of ±5m and 150 s, and, respectively,

±3 m and 100 s. In Table I, experiments relative to different

values of parameter θ and σ(0) = 1 are summed up. Such

experiments are carried out in a ideal case configuration, viz.

zero plant initial condition and zero noises/disturbances. In

particular, Figure 6 depicts the plant output and the controller

selection as function of time for the case θ = 0.4.
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Fig. 6. Tracking and controller selection for θ = 0.40 and σ(0) = 1.

VII. CONCLUSIONS

The paper has extended the MMUASC approach to a

MIMO setting. In fact, consideration has been given on how

to infer in real-time stability of a potential loop made up by

a given candidate controller interconnected in feedback with

an uncertain MIMO plant, while the latter is possibly driven

by a different controller. As in a SISO setting [7], even in

the MIMO case a sufficient condition on the stability of the

potential loop can be provided and, moreover, irrespectively

of the existence of the virtual reference, the consequent

test functional can be computed by suitably filtering the

prediction error based on the nominal model.
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