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Abstract— This paper considers optimized network topology
design and distributed control for linear discrete-time sys-
tems consisting of subsystems interconnected through states,
inputs, and a cost function. By using a distributed control
law, which makes use of the communicated states of other
subsystems, closed-loop performance is increased at the expense
of communication costs. This raises the question of how to
find a topology and associated distributed control law with
optimal trade-off between communication costs and closed-loop
performance. As an answer to this question, we propose an
approach to simultaneous optimization of network topology and
control law with respect to a cost function which combines
a quadratic performance criterion with costs associated to
the presence of communication links. The problem is formu-
lated as mixed-integer semi-definite problem (MISDP) where
the discrete optimization of the network topology subject to
communication constraints and embedded subproblems for
structured controller synthesis lead to an upper bound for the
combined cost. An example is used to illustrate the method.

I. INTRODUCTION

Control of interconnected dynamical systems is a chal-

lenging problem with many applications, for example in

power grids and process control. We consider a class of

systems in which subsystems are coupled over states, inputs,

and a performance criterion. The control of systems coupled

via states has already been tackled to a considerable extent

within the framework of decentralized control [1]. Within this

framework, the overall system is decomposed by exploiting

structural interconnection constraints in order to obtain a

system structure which allows to design decentralized control

laws. Results have been published on how to alter the

decomposition if a system does not admit a stabilizing

decentralized controller [2]. However, even if a stabilizing

decentralized controller exists, performance might be signif-

icantly degraded compared to a centralized approach.

The use of digital communication networks allows for

potentially higher performance by exchanging information

on the states of other subsystems. This results in distributed

control laws [3] which typically offer better performance and

can be used even if no stabilizing decentralized control law

exists. On the other hand, the network induces phenomena

such as time-varying delays and packet dropouts. Much of

the work in the area of networked control systems (NCS)

is focused either on the effect these phenomena have on

closed-loop stability of centralized controllers connected to

the plant through a communication network, or on synthesis

of controllers that are robust with regard to the network
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uncertainties [4]. Most of the work on distributed control

assumes a certain type of communication topology (such

as communication only between neighbors). In [5], the

distributed control of identical and dynamically decoupled

systems is considered, and in [6] dual decomposition is used

for distributed optimization of local controllers. However,

digital communication networks often provide flexibility with

regard to the topology of the network, resulting in additional

freedom in the controller design. At the same time communi-

cation between subsystems also leads to additional costs, for

example energy consumption and hardware costs. This raises

the question which network topology and corresponding

distributed control law is optimal with regard to a cost

function considering closed-loop performance as well as

communication costs.

Results on optimal topology design for fixed local con-

trollers can be found in [7], where the special case of

average-consensus is considered, and in [8], where the focus

is on the H2-gain of locally controlled systems coupled

through outputs. Some results for topology design of linear

continuous-time systems that are interconnected through

states can be found in [9], where the underlying assumption

is that a decentralized stabilizing controller can be found by

a linear matrix inequality (LMI) approach. While the latter

work starts from a rather general formulation, an explicit

procedure to obtain a controller improving the decay rate

of the system by additional feedback via communication

is specified only for the assumptions that the subsystems

are scalar, that the communication is bidirectional, that all

communication links are equally expensive, and that the

system matrix A is symmetric. Except for an upper bound on

the communication costs no communication constraints are

considered. In addition, in many situations the decay rate

does not appear as a good performance measure because

input costs can not be considered. Furthermore, using a

decentralized controller as basis for the distributed scheme

may lead to reduced performance.

In contrast to previous work, this paper considers lin-

ear discrete-time systems which are interconnected through

states as well as inputs and a performance criterion. We pro-

pose a mixed integer semi-definite programming (MISDP)

approach to simultaneously optimize the communication

topology and the distributed controllers with respect to

quadratic infinite horizon cost of the closed-loop system as

well as communication costs and constraints. The proposed

method does not require the existence of a stabilizing decen-

tralized controller. The combined approach to controller syn-

thesis and network topology design leads to a combination
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of a discrete optimization problem with regard to the com-

munication topology and a continuous optimization problem

for the distributed controllers. The communication topology

introduces structural constraints on the controller, resulting in

a non-convex controller synthesis problem [10]. Suboptimal

solutions to this problem can be obtained by means of bilin-

ear matrix inequalities (BMI) or iterative procedures based

on LMIs [11]. Both of these approaches are computationally

expensive. Since the structured controller synthesis problems

are subproblems that are repeatedly solved in the optimiza-

tion of the network topology, these methods are not suitable

for the problem considered here (see the discussion in Sec. II-

C). In [12] an iterative LMI approach is used to design static

H∞ controllers with a minimized number of communication

links, however constraints on the communication topology

are not considered. In [13] a convex parametrization for

optimizing frequency domain controllers subject to structural

constraints is proposed. However, for unstable plants a stabi-

lizing controller that satisfies the structural constraints has to

be known a priori. In the context of this work, the structural

constraints arise from the network topology which is not

fixed. Thus, a controller that satisfies all possible structural

constraints would have to be a decentralized controller.

To avoid these issues we propose sufficient convex LMI

conditions for the structured controller synthesis problem

based on the well known ideas in [14]. In combination

with a Big-M reformulation [15] of the constraints resulting

from the network topology, a MISDP is obtained which

can be solved by branch and bound techniques. In the next

section the system class, the performance criteria, and the

resulting optimization problem are defined. Sec. III presents

the proposed MISDP approach, and in Sec. IV the method

is illustrated by an example.

II. PROBLEM FORMULATION

A. System Dynamics and Performance Criterion

The considered class of systems is one where the global

system consists of a set of N linear discrete-time subsystems

that are coupled through their states, the inputs, and a

performance criterion. The dynamics of the global system

is defined by the following difference equation:

x
(g)
k+1 = Ax

(g)
k +Bu

(g)
k , (1)

where x
(g)
k ∈ R

ng and u
(g)
k ∈ R

mg represent the global states

and inputs obtained by stacking the respective vectors of the

local subsystems together according to:

x
(g)
k =

[

x
(1)T

k , . . . , x
(N)T

k

]T

, u
(g)
k =

[

u
(1)T

k , . . . , u
(N)T

k

]T

.

Herein, x
(i)
k ∈ R

ni , u
(i)
k ∈ R

mi ∀i ∈ {1, . . . , N} are the

local states and inputs.

The dimensions of the global system are ng =
∑N

i=1 ni

and mg =
∑N

i=1 mi. The matrices A and B can be parti-

tioned according to the states and inputs of the subsystems:

A=






A1,1 · · · A1,N

...
. . .

...

AN,1 · · · AN,N




, B=






B1,1 · · · B1,N

...
. . .

...

BN,1 · · · BN,N




, (2)

where Ai,j ∈ R
ni×nj , Bi,j ∈ R

ni×mj ∀i, j ∈ {1, . . . , N}.

The objective is to fix the control inputs by the following

static control law with gain matrix K∈R
mg×ng :

u
(g)
k =






K1,1 · · · K1,N

...
. . .

...

KN,1 · · · KN,N






︸ ︷︷ ︸

:=K

x
(g)
k . (3)

As performance measure for the closed-loop system, con-

sider an optimal infinite horizon quadratic cost function for

the discrete-time dynamics (1), which is with (3):

V ∗
(

x
(g)
k

)

= min
K

∞∑

i=0

x
(g)
k+i

T
(Q+KTRK)x

(g)
k+i. (4)

Here, Q = QT > 0 ∈ R
ng×ng and R = RT > 0 ∈ R

mg×mg

determine symmetric positive definite weighting matrices for

the states and control inputs. Notice that (4) formulates

coupling through the cost function. The optimal infinite

horizon cost function is a quadratic function [16]:

V ∗
(

x
(g)
k

)

= x
(g)
k

T
P ∗x

(g)
k . (5)

where P ∗ = P ∗T > 0 ∈ R
ng×ng .

Proposition 1 The pair P and K is optimal with respect

to (4), if and only if it minimizes the following optimization

problem.

min
P,K

trace(P ), s.t. (6)

P = PT > 0 (7)
(
P−(A+BK)TP (A+BK)−Q−KTRK

)
≥0 (8)

Proof: Considering the system dynamics (1) and con-

troller (3), it can be verified that (8) is equivalent to:

x
(g)T

k Px
(g)
k ≥ x

(g)T

k (Q+KTRK)x
(g)
k +x

(g)T

k+1 Px
(g)
k+1. (9)

Induction for (9) leads to:

x
(g)T

k Px
(g)
k −x

(g)T

k+l+1Px
(g)
k+l+1≥

l∑

i=0

x
(g)T

k+i (Q+KTRK)x
(g)
k+i.

(10)

Denote the feasible set of (6) by H . It follows that

lim
l→∞

x
(g)T

k+l Px
(g)
k+l = 0 ∀P,K ∈ H . For l → ∞ in (10), it

holds that P ≥ P ∗ ∀P,K ∈ H . By Bellman’s optimality

principle the solution to (4) provides K and the smallest P

such that (9) holds. It follows that P ∗,K∗ ∈ H and P ∗

minimizes (6). Because of Q > 0 and R > 0, the minimum

of both (4) and (6) is unique, hence the optimal solutions to

(6) and (4) are identical.
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B. Communication Topology and Cost

The structure of the control system consisting of the

communication network, the interconnected subsystems, and

the distributed controllers is shown in Fig. 1. Motivated by

the flexibility provided by digital communication networks,

we consider the case that the network topology can be

chosen within constraints. In general, only a centralized

control law is optimal with regard to the criteria presented in

Sec. II-A. However this might be expensive, or impossible,

to implement. Therefore, communication constraints and

costs for realizing a communication link are considered in

the optimization of the distributed control system. In the

following, we present a model of the network topology and

associated communication costs which, in combination with

the performance criterion of Sec. II-A, are used in optimizing

the overall system.

Assumption 1 In this paper, we assume that any delay in-

duced by the communication network is negligible compared

to the dynamics of the system under control. 1

The topology of the communication network is described by

the directed graph G = (V,E) with nodes V = {1, . . . , N}
and edges E ⊆ V × V . The set of systems communicating

with the i − th subsystem is given by Ni = {j ∈ V :
(i, j) ∈ E}. In the remaining parts of this paper, the graph

G is represented by the matrix D ∈ D, where D is the

set of admissible network topologies. The matrix D has the

following structure:

D =






δ1,1 · · · δ1,N
...

. . .
...

δN,1 · · · δN,N




 , (11)

where the boolean entries δi,j ∈ {1, 0} of D are given by

δi,j =

{

1 j ∈ Ni or i = j

0 otherwise
. (12)

Thus, the boolean variables δi,j indicate whether or not infor-

mation is communicated from subsystem j to the controller

1An extension of the proposed method to the case of possibly unknown,
bounded delays is currently under investigation.

S1 S2

S3

C1 C2

C3

G

D =





1 1 0
0 1 0
1 0 1





Fig. 1. Example of a graph G of a communication network (dashed),
interconnected local subsystems Si and local controllers Ci.

of subsystem i. This results in the following condition for

the controller:

(δi,j = 0) =⇒ (Ki,j = 0). (13)

Finally for considering the costs of communication, we

propose the following cost function with weights ci,j for

a communication link between the j-th and i-th subsystem,

such that:

Jcom =

N∑

i=1

N∑

j=1/i

ci,jδi,j (14)

The costs ci,j associated with a communication link could,

for example, be chosen based on the following aspects:

1) hardware costs,

2) energy consumption for communicating information,

3) distance between subsystems,

4) or the number of hops in a multi-hop wireless network.

Remark 1 The integer model of the communication topol-

ogy allows for a more comprehensive definition of commu-

nication costs containing logical statements such as AND,

OR, and IF [15] – an example is provided in Sec. IV.

C. Combined Optimization of Closed-loop Performance and

Communication Cost

Based on the performance criterion (4) and the com-

munication cost (14), a mixed integer problem (MIP) is

formulated. Combining (6) and (14) results in the follow-

ing optimization problem which minimizes the sum of the

quadratic infinite horizon cost (4) and the communication

cost (14):

min
P,K,D

J = trace(P ) +

N∑

i=1

N∑

j=1/i

ci,jδi,j (15)

s.t.

P − (A+BK)TP (A+BK)−Q−KTRK ≥ 0 (16)

P = PT > 0 (17)

D ∈ D (18)

(δi,j = 0) =⇒ (Ki,j = 0) (19)

This problem involves a BMI constraint for P and K as

well as logical implication constraints on K which render

the problem non-convex. The latter constraints can be for-

mulated in a MIP framework. Solutions to a MIP problem

are obtained by iterative procedures; a branch and bound

algorithm, e.g., solves relaxed subproblems to obtain lower

bounds on the cost, fixes integer variables and, if an integer

feasible solution is found, solves the original problem to

obtain an upper bound on the cost.

However, BMI solvers are relatively inefficient and pro-

vide only locally optimal solutions 2. Hence, both the integer

constraints as well as the BMI constraints have to be relaxed

to obtain a lower bound, but often only relatively conserva-

tive upper and lower bounds are obtained.

2Globally optimal solutions can be obtained by repeatedly solving BMIs
and LMIs in a branch and bound algorithm, resulting in far worse efficiency.
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If the integer variables are fixed, the problem (15) becomes

a structured controller synthesis problem, for which iterative

LMI methods have been proposed. However, these methods

in general either require a feasible initial solution or do

not guarantee convergence to a feasible solution, and the

solutions may not be locally optimal [11].

Thus, in the next section, we will focus on deriving

sufficient, convex conditions that ensure that (16) and (19)

hold.

III. MAIN RESULT

A. LMI Reformulation

The following theorem gives sufficient LMI conditions for

the BMI constraint (16), allowing the reformulation of (15)

into a MISDP. We use an extended LMI parametrization,

similar to the approach known from [14].

Theorem 1 The non-convex constraint (16) holds with P =
Y −1 and K = LG−1 if there exists G ∈ R

ng×ng , Y =
Y T > 0 ∈ R

ng×ng and L ∈ R
mg×ng , such that the following

LMI holds:






G+GT − Y (AG+BL)T GT LT

AG+BL Y 0 0
G 0 Q−1 0
L 0 0 R−1






> 0, (20)

where 0 denotes zero matrices of appropriate dimensions.

Proof: Multiplying (16) from the left and the right by

Y = P−1 as well as making the inequality strict leads to:

Y − (AY +BKY )
T
Y −1 (AY +BKY )

−Y QY + (KY )
T
RKY > 0. (21)

Applying the Schur complement [17] to (21) yields:






Y (AY +BKY )T Y T (KY )T

AY +BKY Y 0 0
Y 0 Q−1 0
KY 0 0 R−1






> 0.

(22)

Consider the following change of coordinates:

T =







PG 0 0 0
0 Ing

0 0
0 0 Ing

0
0 0 0 Img






, (23)

where Iq denotes the identity matrix with dimension q. From

the upper left block of the LMI (20) it follows that G+GT −
Y > 0, which requires G+GT > Y > 0 and G > 0. Hence,

T is nonsingular. Multiplying (22) by TT from the left and

by T from the right results in:






GTPG (AG+BKG)T GT (KG)T

AG+BKG Y 0 0
G 0 Q−1 0
KG 0 0 R−1






> 0.

(24)

Furthermore, Y > 0 implies P > 0. As proposed in [18],

this implies (Y −G)TP (Y −G) ≥ 0, thus it can be verified

that Y −G−GT +GTPG ≥ 0, and it follows that:

GTPG ≥ G+GT − Y. (25)

Substituting (25) and L = KG into (24) completes the proof.

The cost function of the optimization problem (15) depends

on P while the LMI (20) depends on Y . However, an

arbitrarily close upper bound on P can be obtained as

follows. Denote an upper bound of Y −1 by P̂ . Applying

the Schur complement for non-strict inequalities, P̂ ≥ Y −1

is equivalent to:
[

P̂ Ing

Ing
Y

]

≥ 0. (26)

B. Structured Controller Synthesis

Finally, we need to establish conditions which guarantee

that the structure of the controller K = LG−1 satisfies (13).

Hence, constraints on L and G have to be found which ensure

that the system of linear equations L = KG has a solution

K with the structure given by G. Partitioning L and G such

that they are compatible with the structure of K leads to:





L1,1 · · · L1,N

...
. . .

...

LN,1 · · · LN,N




=






K1,1 · · · K1,N

...
. . .

...

KN,1 · · · KN,N











G1,1 · · · G1,N

...
. . .

...

GN,1 · · · GN,N




 (27)

We parametrize the feedback such that (Ki,j = 0) =⇒
(Li,j = 0), i.e. ¬δi,j =⇒ (Li,j = 0). Clearly this is not a

necessary condition for the constraint (13), however we use

this approach to obtain sufficient convex conditions at the

expense of reducing the size of the feasible set compared to

the non-convex problem (15). From (27) it can be verified

that:

Li,j = Ki,iGi,j +Ki,jGj,j +

N∑

z=1\{i,j}

Ki,zGz,j (28)

If there is no communication between the j-th and i-th

subsystem (i.e. ¬δi,j), this results in

¬δi,j =⇒ (Ki,iGi,j +

N∑

z=1/{i,j}

Ki,zGz,j = 0), (29)

where i, j ∈ {1, . . . , N} and z ∈ {1, . . . , N} \ {i, j}. A

sufficient condition to satisfy (29) is that all the summands

are 0. This is ensured if ¬δi,j implies (Gi,j = 0) and

(Ki,z = 0)∨ (Gz,j = 0) ∀i, j, z. The latter is equivalent to

¬δi,j =⇒ ¬δi,z ∨ (Gz,j = 0) ∀i, j, z and ¬δi,j ∧δi,z =⇒
(Gz,j = 0) ∀i, j, z. This results in the following conditions:

¬δi,j =⇒ (Li,j = 0) ∀i, j (30)

¬δi,j =⇒ (Gi,j = 0) ∀i, j (31)

¬δi,j ∧ δi,z =⇒ (Gz,j = 0) ∀i, j, z. (32)

In order to derive a MISDP, the conditions (30) are refor-

mulated using the so called Big-M method [15], resulting in

the constraints:

−Mδi,j ≤ Li,j ≤ Mδi,j ∀i, j (33)

−Mδi,j ≤ Gi,j ≤ Mδi,j ∀i, j

−M(δi,j−δi,z+1) ≤ Gz,j ≤ M(δi,j−δi,z+1) ∀i, j, z
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where M is a sufficiently large number. In order to avoid

poor relaxations of the MISDP, which result in poor solver

performance, M should be chosen as small as possible. Here,

M has to be larger than the entries of G and L, which are

often small (e.g. smaller than 1 in the example in Sec. IV).

Theorem 2 Suppose the LMI (20) holds for L and G subject

to (33). Then the controller K=LG−1 satisfies the structural

constraint (13) imposed by the communication graph G.

Proof: The constraints (33) guarantee that L=KG has

a solution K that satisfies (13). If the LMI (20) is feasible,

G is nonsingular and the system of linear equations L=KG

has exactly one solution K. Hence K can be obtained from

K=LG−1 and satisfies (13).

If the communication graph G is full, L and G are uncon-

strained and (20) solves the LQR problem (4).

C. MISDP Formulation

Combining the results from theorem 1 and 2 leads to the

following MISDP, which minimizes the sum of the upper

bound P̂ of the quadratic infinite horizon cost and the

communication cost.

min
P,K,D

J = trace
(

P̂
)

+

N∑

i=1

N∑

j=1/i

ci,jδi,j (34)

s.t.






G+GT − Y (AG+BL)T GT LT

AG+BL Y 0 0
G 0 Q−1 0
L 0 0 R−1






> 0

[

P̂ Ing

Ing
Y

]

≥ 0

−Mδi,j ≤ Li,j ≤ Mδi,j ∀i, j

−Mδi,j ≤ Gi,j ≤ Mδi,j ∀i, j

−M(δi,j−δi,z+1) ≤ Gz,j ≤ M(δi,j−δi,z+1) ∀i, j, z

IV. SIMULATION RESULTS

To illustrate the proposed method, consider the following

system:







x
(1)
k+1

x
(2)
k+1

x
(3)
k+1






=











1 0.1 0 0 0 0
0 1 0 0 0 0
0.1 0.1 1 0.1 0 0.1
0 0 0 1 0 0
0 0 0 0.1 1 0.1
0 0 0 0 0 1











x
(g)
k +











0 0 0
0.1 0 0
0 0 0
0 0.1 0
0 0 0
0 0 0.1











u
(g)
k .

(35)

Here, x
(i)
k ∈ R

2, u
(i)
k ∈ R

1 ∀i = {1, . . . , 3} are the local

states and inputs, and the second subsystem is interconnected

with the first and third subsystem. This example is motivated

by the first example given in [2], where it is demonstrated

that (i) a similar system can not be asymptotically stabilized

by decentralized feedback, and (ii) feedback from the second

to the first subsystem (i.e. δ1,2 = 1) is sufficient to asymptot-

ically stabilize the system. By using Euler discretization, the

results for the continuous-time example in [2] hold for (35).

The weighting matrix for the infinite horizon cost function

are chosen as follows and introduce further coupling between

the first and third subsystem:

Q=











1 0.1 0 0 0.2 0
0.1 1 0 0 0 0
0 0 1 0.2 0 0
0 0 0.2 1 0 0
0.2 0 0 0 1 0
0 0 0 0 0 1











, R=





0.1 0 0
0 0.2 0
0 0 0.3



.

(36)

First we consider the case that all communication links are

equally expensive (i.e. ci,j=c ∀i, j\i for a chosen c). The

resulting topologies and costs are shown in Table I. For com-

parison, a centralized LQR controller is included in the last

row. It can be seen that the proposed method results in the

LQR controller if the communication graph is full and that

communication links are removed when their costs increase.

The MISDP was solved using the Matlab toolbox

YALMIP [19], using branch and bound and the solver Se-

DuMi for the semi-definite subproblems. Computation times

for this example range between 8s and 16s on a Core2 Duo

2.2 GHz with 1 GB of RAM. For the case c = 15, the

following distributed controller is obtained:

K=





−4.03 −5.81 −3.62 0.97 0 0
0 0 −0.83 −5.12 0 0
0 0 0 0 −2.21 −3.74



 (37)

Simulation results for this controller and a centralized LQR

controller are shown in Fig. 2. Compared to the centralized

controller, the distributed controller results in slower conver-

gence and larger control amplitudes. However the commu-

nication costs of the centralized controller are Jcom = 90,

compared to Jcom=15 for the distributed controller, leading

to overall costs of J =154.97 (centralized) and J =113.84
(distributed). Despite using only one communication link, the

performance of the distributed controller is very similar to

that of the centralized controller. In addition, the influence

of the cost function (36) can be seen; e.g., the input signals

with larger weights are smaller.

Finally, we consider a more complicated scenario, in which

TABLE I

RESULTS FOR SYSTEM (35) WITH DIFFERENT COMMUNICATION COSTS.

c # of links D trace(P̂ ) Jcom J

2 6





1 1 1
1 1 1
1 1 1



 64.97 12 76.97

9 4





1 1 1
0 1 1
0 1 1



 70.43 36 106.43

9.5 2





1 1 0
1 1 0
0 0 1



 89.26 19 108.26

15 1





1 1 0
0 1 0
0 0 1



 98.84 15 113.84

15 (LQR) 6





1 1 1
1 1 1
1 1 1



 64.97 90 154.97
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Fig. 2. Simulation results for a distributed controller (left) and a centralized LQR controller (right) with high communication costs.

each subsystem can only communicate with one other

subsystem and transmitting information is expensive for

the second subsystem. This is modeled by the constraints
∑3

j=1 δi,j ≤ 2 and
∑3

i=1 δi,j ≤ 2, and costs c1,2=c3,2=40,

c1,3 = c3,1 = 8, c2,1 = c2,3 = 4. Furthermore, the cost

of bidirectional communication between two subsystems is

lower than the cost of the two individual links between the

systems. This is modeled by introducing slack variables Si,j ,

such that Jcom = S1,2 + S1,3 + S2,3 and

Si,j ≥ ci,jδi,j , Si,j ≥ cj,iδj,i (38)

Si,j ≥ c̃i,j(δi,j + δj,i − 1) ∀(i, j) ∈ {(1, 2), (1, 3), (2, 3)}.

Here, c̃i,j is the cost for implementing bidirectional commu-

nication between the i-th and j-th subsystem. These costs

are c̃1,2 =41, c̃1,3 =41, c̃2,3 =10. The optimization results

in trace(P̂ )=108.34, Jcom=10 and in a network topology

which avoids the expensive outgoing communication from

subsystem two and which has two active communication

links (δ3,1=δ1,3=1).

V. CONCLUSIONS AND FUTURE WORKS

In this paper, an approach to optimal distributed control

considering closed-loop performance and communication

costs was presented. Based on a quadratic performance

criterion, sufficient convex LMI conditions for structured

controller synthesis are obtained. In combination with a

model of the costs of communication topologies, a MISDP

is obtained which allows joint optimization of the network

topology and distributed controllers. An extension of the

proposed method to delayed feedback is the focus of ongoing

work. Robustness with regard to link failures is seen as in-

teresting topic for future research. More efficient methods to

solve or reformulate MISDPs should be explored to achieve

better scalability of the proposed method with respect to the

system size. For instance, in [20] it is proposed to convert

the MISDP to a mixed integer nonlinear program (MINLP)

with smooth convex NLP subproblems.
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