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Abstract— This paper proposes a data-driven stability cri-
terion based on the geometric interpretation of quadratic
Lyapunov functions, which can be used for online stability
assessment of unknown discrete-time nonlinear systems. The
paper shows that the existence of a Quadratic Lyapunov
Function can only be guaranteed if the intersection of the
positive real space and the convex cone determined by the
data set transformed from the measured states with a suitable
orthogonal matrix is not empty, which can be numerically de-
termined by solving a max-min problem. The stability judgment
can be given according to the sign of the optimized value.
The proposed method requires no system model but only the
measurements of system states. Numerical examples are given
to show the effectiveness of the proposed method.

I. INTRODUCTION
Stability monitoring is an important subject in stability

analysis and has been widely investigated in many engi-
neering fields, such as in chemistry, vibrating structures,
and especially electrical power systems [1]–[6]. The current
stability monitoring techniques rely in general on a mathe-
matical model of the system, such as transfer functions [3] or
state-space equations [5], and can therefore be classified as
model-based methods. However, it is reasonable to believe
that the utilization of a mathematical model is not inevitably
necessary, especially in cases when the model cannot be
built analytically and needs to be established with system
identification techniques. Since the identified model used for
judging stability is obtained from the measured data, the
stability of the concerned system should be able to be judged
directly from the data set containing system trajectories,
jumping over the step of system identification. From this
point of view, the task of stability monitoring should be able
to be fulfilled in a data-driven manner.

The term ’data-driven’ is used to characterize the class of
methods that use only measured data of the target system
to solve system analysis and control problems [7]. Unfortu-
nately, most discussions towards stability in the data-driven
context concentrate on showing certain stability conditions
for a specific data-driven control strategy [8]–[13], which
can hardly be extended to assess the stability of an arbitrary
dynamical systems. The representatives of other data-driven
stability analysis approaches not linked to a specified con-
troller design may include the data-space-based stability cri-
terion in the form of a linear matrix inequality [14], the data-
based stability test of assessing transient instability which is
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analog to the Nyquist criterion in frequency domain [15], and
the stability condition formulated in terms of the H∞-norm
of a particular error function [16], all of which are suitable
for stability judgment of LTI systems using measured data.
Nevertheless, it is not shown that these methods can also be
applied to real-time implementation and nonlinear systems.
As a consequence, the known data-driven stability analysis
methods cannot be directly used for stability monitoring of
nonlinear systems.

Motivated by these concerns, this paper focuses on es-
tablishing a data-driven online stability monitoring method
suitable for unknown discrete-time nonlinear systems. A
necessary and sufficient condition for determining the ex-
istence of a Quadratic Lyapunov Function (QLF) for the
currently measured system trajectory is proposed based on
the geometrical links of QLFs with convex cones. The
proposed stability condition shows that the existence of a
QLF can only be guaranteed if the observed system trajectory
can be mapped with one certain orthogonal matrix at every
time instant into a negative halfspace, which is equivalent to
the fact that the corresponding polar cone of the mapped data
has a non-empty intersection with the positive real space.
The geometric problem can be transformed into a max-min
optimization problem according to computational geometry
theory [17]. Correspondingly, the data-driven online stability
monitoring can be realized by solving this optimization
problem at every time instant. Considering its independence
on mathematical models, the proposed data-driven method
possesses the advantage of flexibility in dealing with the
cases when the system models are hard to be identified,
compared to model-based approaches.

The paper is organized as follows: at first, the problem
definition of online stability monitoring is introduced in
section II; secondly, the main results of this contribution,
i.e., the stability condition and its numerical algorithm for
implementation, are presented in section III; after that, in
section IV numerical examples of the proposed method in
monitoring the stability of unknown nonlinear systems are
presented; finally, a conclusion of this contribution is given
in the last section.

II. PROBLEM FORMULATION

The autonomous discrete-time nonlinear system concerned
in this paper has the form of

x (k + 1) = f(x (k)) , (1)

with f(·) : Ω→ Rn a mapping from a compact set Ω ⊂ Rn

into Rn, and with the system state vector x belonging to the
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region Ω.
Following the definition in [18], the quadratic stability for

such systems can be stated as follows:
Definition 1 (Quadratic Stability): The discrete-time non-

linear system (1) is said to be quadratic stable if there exists
a positive definite Hermitian matrix P such that the first-
order difference of the function V (x (k)) = x (k)T P x (k)
along the solution of system (1) satisfies

∆V (x (k)) = V (x (k + 1))− V (x (k))

= V (f(x (k)))− V (x (k)) < 0. (2)
Correspondingly, the function V (x (k)) = x (k)TPx (k)

is defined as the Quadratic Lyapunov Function (QLF). If in
addition P is diagonal, V (x (k)) is defined the Diagonal
Quadratic Lyapunov Function (DQLF) and the system (1) is
diagonally quadratic stable.

In the data-driven context, the existence of a QLF cannot
be determined by using the analytical form of f(x) because
it is unknown. Suppose that the system (1) be fully observ-
able and the system states be measured without noise. At
the time instant t = r, the data set containing r consecutive
measurements of system states can be denoted as

Xr = {x(1), ... ,x(r)} . (3)

In this paper, the task of online stability monitoring is defined
as to determine the existence of a QLF directly from the data
set (3) instead of a mathematical description of f(x) at every
time instant. The system is judged as stable if and only if a
QLF can be found based on the measured data.

It may be argued that a finite data-set is merely a subset
of the whole data space of the concerned system and the
stability judgment merely based on part of the data-space
seems not convincing. However, in stability monitoring only
the currently running motion of the concerned system is
taken into consideration, rather than all the possible motions
of the system. This is exactly analogous to the commonly
used model-based stability monitoring methods which build a
linearized model of the concerned system with the measured
data and then make stability judgment based on the identified
model [2], where the stability judgment is necessarily local
but still of great practical interest [19].

III. THE MAIN RESULTS

A. Necessary and Sufficient Condition for DQLF

Consider the nonlinear discrete-time system (1) with an
equilibrium point at x = 0. Define a transformation for every
vector x(k) ∈ Ω as

v(k) = x(k + 1)� x(k + 1)− x(k)� x(k) , (4)

where v(k) represents the corresponding transformed vector
and the symbol � represents an array multiplication defined
by

x(k)� x(k) = [x2j (k)], j = 1, ... , n. (5)

Denote the complete vector set of v(k), k = 1 , ... , ∞, as
V , and the convex conic hull (the smallest convex cone)
determined by V as coneV . Define the vector set whose

elements have nonnegative inner products with one certain
vector located in the positive real space Rn as the negative
halfspace, which is denoted as H− and satisfies Rn

− ⊆ H−.
The necessary and sufficient condition of existence of a
DQLF can be given as the following theorem:

Theorem 1: There exists a DQLF Vd(x) for the consid-
ered nonlinear discrete-time system (1) within the domain Ω
if and only if for all the x ∈ Ω, the convex conic hull coneV
of the transformed vectors v(k) is located in a negative
halfspace H− of Rn.

Proof :To prove sufficiency, suppose the convex conic hull
coneV lie in a negative halfspace H− of Rn. Obviously
all the vectors v within the set coneV also belong to H−,
because coneV ⊂ H− ⊂ Rn.

Thus, according to the definition of the negative halfspace,
there must exist at least one vector located in Rn

+, denoted
as d and d ∈ Rn

+, which has negative inner products with
any vector v(k) belonging to coneV , i.e.,

〈v(k),d〉 = v(k)T d = dTv(k) < 0, d ∈ Rn
+. (6)

Using the definition of v(k) in (4), the inner product
between v(k) and d can be represented as

〈v(k),d〉=dT (x(k + 1)� x(k + 1)− x(k)� x(k)). (7)

Define a diagonal matrix D as D = diag [d]. Obviously
D is positive definite because it is diagonal and its diagonal
elements vector d belongs to Rn

+. With notation that

x(k + 1)� x(k + 1) = diag [x(k + 1)]x(k + 1) ,

dTdiag[x(k + 1)] = x(k + 1)T diag[d] , (8)

and the similar relations for d and x(k), one can obtain
the following equation by substituting (7) and (8) into the
inequality (6), as

〈v(k),d〉 = x(k + 1)T diag [d]x(k + 1)

−x(k)T diag [d]x(k)

= x(k + 1)T Dx(k + 1)

−x(k)T Dx(k) < 0 . (9)

According to the definition of DQLF it can be seen that
the function Vd(x(k)) = x(k)T Dx(k) is a DQLF for
the concerned nonlinear discrete-time system, because D
is a diagonal positive definite matrix and ∆Vd(x(k)) =
x(k + 1)T Dx(k + 1) − x(k)T Dx(k) < 0. This proves
the sufficiency of the proposed theorem.

To prove the necessity, suppose there exist a diagonal
quadratic Lyapunov function within the domain Ω, denoted
as Vd(x(k)) = x(k)T D̂ x(k) with D̂ = diag [d̂] and
d̂ ∈ Rn

+. Because x(k + 1)T D̂ x(k + 1) = d̂
T
diag [x(k +

1)]x(k + 1) and x(k)T D̂ x(k) = d̂
T
diag [x(k)]x(k), the
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difference of Vd(x(k)) can be expressed as

∆Vd(x(k)) = x(k + 1)T D̃ x(k + 1)

−x(k)T D̃ x(k)

= d̂
T

(diag [x(k + 1)]x(k + 1)

−diag [x(k)]x(k))

= d̂
T
v(k) < 0, (10)

with x(k + 1) � x(k + 1) = diag [x(k + 1)]x(k + 1) and
x(k)� x(k) = diag [x(k)]x(k).

Equation (10) shows that the inner product of the vector
v(k) with a vector d̂, d̂ ∈ Rn

+, is always less than zero.
Therefore, all the transformed vectors v(k) are located within
one negative halfspace. Denoting this negative halfspace as
H−

d̂
, it can be concluded that the convex conic hull coneV ⊂

H−
d̂

. This completes the proof to the theorem. �

B. Necessary and Sufficient Condition for QLF

Assume the discrete-time system x (k+ 1) = f(x (k)) is
quadratically stable within the domain Ω and there exists a
QLF V (x) = x (k)T P x (k) proving its quadratic stability.
Because the matrix P of a QLF is a positive definite matrix,
there exists an orthogonal matrix Φ such that P can be
transformed into the diagonal form with positive diagonal
elements, as

D = ΦP ΦT , (11)

where D is a diagonal matrix defined as D = diag[d],
d ∈ Rn

+.
By left multiplying an orthogonal matrix Φ to the both

side of (1), the concerned discrete-time system can be
transformed as

z (k + 1) = g(z (k)), (12)

with z (k) = Φx (k) and g(z (k)) = Φ f(x (k)). As it
is well-known that the orthogonal transformation preserves
stability characteristics, the transformed system (12) is also
quadratic stable and this conclusion is stated in the following
lemma.

Lemma 1: If the nonlinear discrete-time system (1) has
a QLF V (x (k)) = x (k)T P x (k), then there exists an
orthogonal matrix Φ such that the transformed system (12)
possesses a DQLF as Vd(z (k)) = z (k)T Dz (k), where
D = ΦP ΦT and z (k) = Φx (k).

Lemma 1 shows that if there exists a DQLF for system
(12) that is transformed from (1) with an orthogonal matrix,
the system (1) also owns a QLF, and vice versa.

In accordance with the topological structure of QLF given
in [20], the diagonal vector d of D in (11) belongs to
the conventional topology of Rn

+, the orthogonal matrix Φ
belongs to the special orthogonal group SO(n,R), and the
matrix P can be obtained from the following mapping as

P = {ΦTDΦ, D=diag[d], d ∈ Rn
+, Φ ∈ SO(n,R)}.

(13)
The mapping (13) is proven in [20] to be a surjective

mapping, which indicates that determining the existence of

a QLF for a discrete-time system is equivalent to determining
the existence of a DQLF for the concerned system using one
certain orthogonal transformation. Therefore, considering
Lemma 1, it can be concluded that the existence of a QLF for
system (1) can be determined by examining the existence of a
DQLF for system (12) transformed by any orthogonal matrix
Φ belonging to the special orthogonal group SO(n,R).

Based on this fact, theorem 1 can be extended to the
sufficient and necessary condition for the existence of a QLF,
which is the theoretical fundamental of this paper and stated
in the following theorem.

Theorem 2: Consider the nonlinear discrete-time system
(1) with an equilibrium point at x = 0. For every vector
x(k) ∈ Ω, a new vector ṽ(k) can be generated using the
following calculation

ṽ(k) = x̃(k + 1)� x̃(k + 1)− x̃(k)� x̃(k) , (14)

where x̃(k) = Φx(k) and Φ is an orthogonal matrix. Let
Ṽ represent the complete vector set of ṽ(k), k = 1 , ... , ∞,
and the symbol cone Ṽ represent the convex conic hull (the
smallest convex cone) for Ṽ . There exists a QLF for system
(1), if and only if there exists at least one orthogonal matrix
Φ such that cone Ṽ is located in a negative halfspace H−
of Rn.

Theorem 2 does not require explicitly an analytical form
of the nonlinear function f(·) in system (1), but the complete
time histories of system states. This fact makes it possible to
apply the above theorem in the data-driven context to judge
quadratic stability.

C. Criterion Used for Data-Driven Stability Monitoring

At the time instant t = r, every system vector x(k) ∈ Rn,
k = 1, ... , r − 1, in the data set Xr can be transformed
with one certain orthogonal matrix Φ into a new vector ṽ(k)
according to the mapping defined in (14). Correspondingly,
all the elements in the data set Xr mapped by (14) forms a
new vector set Ṽr−1 = {ṽ(k)}, k = 1, ... , r − 1.

It should be noted that the vector set Ṽr−1 is different
from the set Ṽ in theorem 2. The reason is that the set Ṽ is
obtained by transforming all the states vectors x(k) within
Ω, but due to the finiteness of the measured data, the vector
set Xr is only a subset of Ω where the nonlinear mapping
f(·) is defined. Thus Ṽr−1 = Ṽ is true only if r →∞.

According to theorem 2, the concerned system is quadratic
stable if and only if there exist a suitable orthogonal matrix
Φ and a vector d ∈ Rn

+ so that for all the transformed vectors
in the data set Ṽr−1, r →∞, the following condition holds

〈d, ṽ(k)〉 < 0, d ∈ Rn
+, k = 1, ... , r−1, and r →∞. (15)

On the other hand, the polar cone of cone Ṽr−1, denoted
as cone Ṽo

r−1, can be represented as

cone Ṽo
r−1 ={y|vTy ≤ 0,v ∈ cone Ṽr−1, y ∈ Rn}. (16)

By comparing (16) with (15), it can be found that the in-
equalities in (15) are identical to the definition of cone Ṽo

r−1
except that d is defined within Rn

+, while y ∈ Rn. In fact,
because d is an arbitrary vector located in Rn

+ and Rn
+ is also
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a polyhedral cone, the geometrical meaning of (15) can be
interpreted as the intersection of two polyhedral cones: one is
the polar cone cone Ṽo

r−1; the other is the positive real space
Rn

+. Based on this fact, the quadratic stability condition can
be given for the data-driven context into theorem 3.

Theorem 3: The nonlinear discrete-time system (1) is
quadratic stable if and only if there exists an orthogonal
matrix Φ such that at every time instant t = r, r → ∞,
the polyhedral cone cone Ṽo

r−1 constructed by the data set
Xr and the matrix Φ follows the relationship

cone Ṽo
r−1 ∩ Rn

+ 6= ∅ . (17)
Theorem 3 states that if the intersection between the set

cone Ṽo
r−1 and Rn

+ is not empty at every time instant, the
system is quadratic stable. Furthermore, letting d̃ be any
vector located within cone Ṽo

r−1 ∩ Rn
+, r = ∞, the QLF

for this system can be expressed as

V (x) = xTΦ diag [d̃] ΦTx . (18)

The condition (17) must be satisfied at every time instant
for a quadratic stable system. Thus, to give a correct stability
judgment, this criterion has to be implemented online and
checked at every time instant. If at some time instant this
condition is not satisfied, the observed motion is judged as
not quadratic stable.

It should be pointed out that the initial time of measure-
ments is irrelevant to the final result of the stability judgment.
By examining (16), it can be seen that cone Ṽo

r−1 is a convex
cone by adding an inequality constraints −ṽ(r − 1)T d > 0
to cone Ṽo

r−2 , which implies that

cone Ṽo
r−1 =

r−1⋂
l=1

cone Ṽo
l . (19)

Equation (19) indicates that if cone Ṽo
r−1∩Rn

+ 6= ∅ at t = r,
the intersections between Rn

+ and any of the cones cone Ṽo
l

formulated at former time instants 1 ≤ l < r−1, is inherently
nonempty, which proves the irrelevance of initial judging
time to the final result.

Theorem 3 indicates that the task of online stability
monitoring is identical to determine whether there exists an
orthogonal matrix Φ so that the stability condition (17) can
be satisfied at every time instant. If such a matrix exists,
the observed motion of the concerned system is stable at
the present time; and vice versa. In the next subsection, it
is shown that this task can be transformed into an max-min
problem.

D. Algorithm for Implementation

Suppose at first that an orthogonal matrix Φ be available.
As stated before, the original data set Xr can be transformed
with Φ into a new set Ṽr−1 and the corresponding polar
cone cone Ṽo

r−1 can be determined. The objective now is to
examine whether the condition (17) can be satisfied.

The positive real space Rn
+ in (17) can be represented by

using the unity matrix I ∈ Rn×n as

Rn
+ = cone(I) = {y | I y > 0, y ∈ Rn}. (20)

In order to reduce the data scale, the polar cone cone Ṽo
r−1

is represented by the extreme rays of cone Ṽr−1. Suppose
that the cone cone Ṽr−1 have p extreme rays, which are
denoted as {ṽx

1 , ṽ
x
2 , ... , ṽ

x
p}. By using the matrix Ṽ r−1 ∈

Rp×n defined as Ṽ r−1 = [−ṽx
i ]T , i = 1, ... p, the polar

cone cone Ṽo
r−1 can also be reformulated as cone(Ṽ r−1)

in the form of matrix inequalities, i.e.

cone Ṽo
r−1 = cone(Ṽ r−1)

= {y | Ṽ r−1 y > 0, y ∈ Rn} . (21)

Because both Rn
+ and cone Ṽo

r−1 are polyhedral cones,
their intersection is also a polyhedral cone, which can be
represented by taking advantage of the new forms of Rn

+

and cone Ṽo
r−1 defined in (20) and (21). Define a new matrix

B ∈ R(n+p)×n as

B =

[
Ṽ r−1
I

]
, (22)

the intersection set between Rn
+ and cone Ṽo

r−1 can be
represented as the polyhedral cone determined by matrix B,
as

Lr−1 = {y |By > 0, y ∈ Rn}. (23)

Theorem 3 shows that the system is quadratic stable if
the polyhedral cone Lr−1 is not empty, i.e., Lr−1 6= ∅,
r = 1, ... , ∞. According to the computational geometry
theory, to determine the emptiness of a polyhedral cone can
be dealt with by solving a quadratic programming problem
established according to the famous Farkas’ Lemma [17].
As far as the polyhedral cone Lr−1 is concerned, the
corresponding quadratic programming problem with respect
to determining its emptiness can be detailed as the following
optimization problem

min .
α

ϕ(α) = αT Mα

s.t.
∑n+p

i=1 αi = 1, and ,
αi ≥ 0, i = 1, 2, ...(n+ p) ,

(24)

where M is determined by M = BBT and α ∈ Rn+p

is the vector of optimization variables. It is shown in [17]
that the polyhedral set Lr−1 is not empty if and only if the
optimized value of ϕ(α), denoted as ϕ∗, is greater than zero.

Denoting the solution to the above optimization problem
as α∗, it is also proven in [17] that if ϕ(α∗) > 0, the vector
y∗, y∗ = BTα∗, is located inside the interior of Lr−1. If for
r = 1, ... , ∞, Lr−1 shares the same vector y∗, then d̃ = y∗

and a corresponding QLF can be given according to (18).
Because the matrix M in the optimization problem (24)

is dependent on the choice of the orthogonal matrix Φ, the
value of ϕ∗ also depends on Φ. Therefore, if the maximum
of ϕ∗ with respect to the complete set of orthogonal matrices
is not greater than zero, no suitable Φ can be found to
fulfill the stability condition (17). This fact indicates that the
stability condition (17) can be examined by solving a max-
min problem: using different Φ to maximize the minimum
of ϕ(α) with respect to α. If the optimized value in this
max-min problem has a positive sign at every time instant,
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the observed motion of the concerned system is quadratic
stable, and vice versa.

The parametric representation of orthogonal matrices pro-
posed in [21] taken to construct Φ in the max-min problem,
because it is proven to be capable of covering stochastically
the complete set of n × n orthogonal matrices. This para-
metric representation of orthogonal matrices is composed of
n(n − 1)/2 parameters which can vary within the interval
[0, 2π) respectively. Use θ to represent the vector composed
of θi ∈ [0, 2π), i = 1, ... , n(n − 1)/2. By choosing each
θi from the normal distribution within [0, 2π) randomly,
the matrix Φ constructed by this method is capable of
representing every the n× n orthogonal matrix.

Thus, taking Φ as a function of θ, the max-min optimiza-
tion can be written by substituting θ as

max
θ
.min
α
. ϕ(α ,θ) = αT M(Φ(θ))α

s.t. θi ∈ [0, 2π), i = 1, 2, ... , n(n− 1)/2,∑n+p
j=1 αj = 1, and

αj ≥ 0, j = 1, 2 , ... , (n+ p) .
(25)

Because the optimization variable θ in (25) must be cho-
sen stochastically, the gradient of the maximization problem
cannot be obtained. Hence, the max-min problem developed
above should correspondingly be solved with utilization of
random optimization algorithms. Denoting the solution to
the max-min optimization problem as {Φ(θ∗), α∗} and the
optimized value as ϕ∗∗, the system is quadratic stable if and
only if ϕ∗∗ > 0 at every time instant.

For the implementation in the stability monitoring prob-
lem, the aforementioned max-min problem should be solved
online at every time instant. If at any time instant, say, t = r,
the observed motion is judged as stable according to the
optimized value of the max-min problem, it can only be
concluded that the observed motion from t = 0 until t = r
is quadratic stable. No prediction about stability in the future
can be made. On the other hand, if at t = r the observed
motion is judged as unstable, the observed motion must be
quadratic unstable with respect to the discussion about (19).

IV. NUMERICAL EXAMPLES
Consider a 3-dimensional nonlinear system [23]. The

dynamical behavior of this system can be characterized by
the existence of an unstable limit cycle oscillation. The
mathematical description of this 3-dimensional system is
expressed below as

ẋ1 = x2 ,

ẋ2 = x3 ,

ẋ3 = −x3 − x2 − 2x1 − x3 − x22 . (26)

The proposed method are executed to monitor the stability
of system (26) under two different initial conditions, respec-
tively. In both cases, the sampling time for measuring the
system states are set to be 0.01s.

The initial condition of the first trajectory, x(0) =
[−0.8 , −0.4 , 1.5]T , is inside the unstable limit cycle.
Clearly this trajectory owns an stable equilibrium at the
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Fig. 1. Observed trajectory of system (26) with initial point inside limit
cycle

Fig. 2. Convex hull constructed by the trajectory of system (26) with initial
point inside limit cycle

origin. This stable trajectory obtained at t = 10s is shown
in the phase plane in Fig. 1.

Using the data of this trajectory, the proposed data-driven
method is applied to judge the stability of the motion
of system (26) with the corresponding initial condition
at t = 10s. The max-min problem is solved by genetic
algorithm with binary encoding technique [22]. The reason
for choosing the genetic algorithm is because the orthogonal
matrix Φ is produced randomly, and the genetic algorithm
is inherently a random optimization solver which is able
to converge to the optimal solution with a probability ap-
proaching to 1. The optimization results show that when
θ = [37.5561◦ , 0.6819◦ , 4.8378◦ ]T , the optimized value
ϕ∗∗ = 6.4014× 10−5 > 0. The transformed vector set Ṽr−1
and the corresponding convex conic hull are shown in Fig. 2.
It can be seen in Fig. 2 that the convex conic hull (smallest
convex cone) determined by the transformed data-set Ṽr−1
are located in an open negative halfspace, indicating that the
observed motion at t = 10s can be judged as quadratic stable.

The second trajectory with the initial conditions x(0) =
[1.8 , 0.4 , 1.5]T is outside the limit cycle, which implies
when time goes to infinity, the trajectory will also approach
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Fig. 3. Observed trajectory of system (26) with initial point outside limit
cycle

to infinity. This trajectory at t = 5s is shown in Fig. 3
and the corresponding data-set is given to the proposed
method for stability judge. The optimized value ϕ∗∗ equals
to 1.4131 × 10−28 for all the different values of θ, which
can be treated as zero and indicates the system is not
quadratic stable according to theorem 3. In fact, the origin
is contained in the convex hull determined the transformed
data-set, no matter which orthogonal matrix is used for the
transformation. This means every hyperplane passing the
origin will separate the transformed-data set into two parts.
Thus, no negative halfspace containing the transformed data-
set will exist and this motion is accordingly classified as not
quadratic stable.

From these examples it can be seen that the stability judg-
ments given by the proposed data-driven stability judgment
method are consistent with the real stability behaviors of the
concerned system, showing the effectiveness of the proposed
method.

V. CONCLUSION

This paper proposes a quadratic stability criterion which
can be used in online data-driven stability monitoring method
of unknown nonlinear discrete-time systems. The paper
shows that the existence of a QLF is identical to the
existence of a suitable orthogonal matrix with which all the
system states can be mapped into a negative halfspace. This
geometric problem can be further converted into determining
the emptiness of the intersection between the n-dimensional
real positive space and the convex cone generated by the data
set transformed with an orthogonal matrix from the measured
systems states, which can be coped with by solving a max-
min problem according to computational geometry theory.
The stability judgment can be given according to the sign of
the optimized value of the max-min problem. From the simu-
lation results it can be seen that the online quadratic stability
monitoring of unknown discrete-time nonlinear systems can
be realized by the proposed method.
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