
 

Abstract—In this paper, a novel model-based fault diagnosis 

scheme is proposed for a class of uncertain nonlinear 

discrete-time systems which can be subjected to both additive 

and multiplicative faults. Faults are detected by using a novel 

(FD) observer consisting of two online approximators in 

discrete-time (OLAD) and a robust adaptive term.  Upon 

detection, a fault diagnosis scheme is introduced to determine 

the fault type by monitoring the input residual generated via the 

first OLAD output. Then the appropriate OLAD is included in 

the observer while the other OLAD is switched off. Next, by 

using both the parameter update law of the active OLAD and 

user-selected failure thresholds, an online time-to-failure (TTF) 

scheme is introduced. Boundedness and asymptotic convergence 

of the residual and parameter estimation errors respectively are 

derived in the case of multiplicative and additive faults 

respectively. Finally a simulation example is used to 

demonstrate the proposed fault diagnosis scheme. 

I. INTRODUCTION 

Due to the high risk of failures, reliable fault diagnosis 

schemes are required to guarantee safe operation for complex 

industrial systems even in the presence of uncertainties and 

faults. If the faults can be detected early enough, further 

damage to the system could be prevented. 

Fault diagnosis schemes are generally divided into 

data-driven and model-based methods. Data-driven fault 

diagnosis approaches need healthy and faulty data and an 

offline training session. As a result, these methods are not 

usually preferred since they are expensive and they may result 

in false alarms when the operating conditions change. On the 

other hand, model-based fault diagnosis methods [1] relax the 

need for a priori data and detect faults online. In this 

approach, an observer or estimator representative of the 

system is utilized for detecting faults [1,2]. These 

model-based fault detection (FD) methods have been 

implemented on both linear and nonlinear systems that have a 

linear representation [3,4].   

As part of model-based FD framework, in [5], fault 

diagnosis schemes using adaptive estimators have been 

discussed, while neural network (NN)-based estimators and 

fuzzy observers have been utilized for the purpose of fault 

detection, in [6] and [7] respectively.  
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Numerous researchers have worked on detection of 

additive faults [5,8,9]. Fault diagnosis for systems with 

multiplicative actuator faults has also been done using  

parameter similarity measures [10], and NN-based method 

[7]. However in all these papers, only one type of fault is 

normally considered while practical nonlinear systems can be 

subject to both fault types. 

Therefore, a class of nonlinear discrete-time system is 

considered in this paper that is subjected to both additive and 

multiplicative faults. A novel observer design is proposed 

wherein two OLADs, one for each fault type, is introduced. 

Detection residual is generated by comparing the estimated 

states of the observer with that of the nonlinear system. A 

deadzone operator is used to declare the presence of a fault 

when the detection residual exceeds a user defined threshold. 

Upon detection, the first OLAD is activated to learn the 

fault dynamics and to generate an input residual which is 

subsequently utilized for identifying the fault type. A decision 

is then made to activate the appropriate OLAD. In other 

words, upon detection, only one OLAD will be active. 

Next, the time-to-failure (TTF) is determined online by 

comparing the active OLAD parameter estimates against the 

designer specified limits since for most practical systems the 

parameters could be tied to physical quantities which have a 

safe range of values [8]. In this paper TTF determination is 

performed for the system both with additive or multiplicative 

faults provided a single fault type can occur at a given time. 

Thus the contributions of this paper include the 

development of unified prognostic framework to handle 

additive and multiplicative faults in contrast with the 

literature [5,7,8,10] where a single fault type is normally 

handled. Fault type is identified via input residual and TTF 

determination scheme is then introduced online whereas such 

schemes are not available in the literature for model-based 

methods [5,6,9]. 

II. SYSTEM DESCRIPTION

Consider the nonlinear discrete-time system ��� � �� � �	����
 ����� � 	����
 �����
where � � ��  is the control input vector, � � ��  is the 

system state vector, ���� � �� � �� represents the known 

nonlinear system dynamics, and � �� � �� � ��
represents the system uncertainties. 

Now consider the nonlinear system with additive fault term ��� � �� � �	����
 ����� � 	����
 ������ ��� � ����	����
 �����
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where ������
 ����� represents a vector of possible additive 

fault dynamics, which are defined as ��� � � ������	����
 �����
 � 
 �����	����
 ����� . �! � �"# $
% � �
� 
 & , is an unknown parameter vector, and �!� �� ��� � �"# $
 % � �
� 
 & , is a known fault basis function. Each �! represents the fault function of the i
th

 fault affecting the i
th

state equation, and each �! is the unknown magnitude of the 

i
th

 fault function. The time profile of a fault is given by ��� � ���. 

The system under consideration can also have 

multiplicative faults. Let  '(	����
 ����� � )%*+,'(!	����
 �����-$
 % � �
� 
.   

denote the matrix of unknown multiplicative actuator faults 

[7], and �/��� � '(	����
 ����������  If we replace ����
by �/���  then the nonlinear system dynamics with the 

additive and multiplicative faults can be rewritten as ��� � �� � � 0����
 �/���1 �  0����
 �/���1���� � ���� 0����
 �/���1          (1) 

The time profile ��� � ��� is modeled by ��� � ��� � )%*+23��� � ���
 34�� � ���
 � 
 3��� � ���5
where 36�� � ��� � 78
$$$$$$$$$$$$$$$$$$%�$9 : 8� � ;<=>#? 
$$$%�$9 @ 8 $$$�AB$% � �
� 
 &
and CD!  is an unknown constant that represents the rate at 

which a fault occurs. A larger value of CD!indicates that it is an 

abrupt fault. The use of such time profiles is common in fault 

diagnosis literature [5,8].  Next standard assumptions are 

needed in order to proceed. 

Assumption 1: The modeling uncertainty is bounded, i.e. E	����
 �����E F G 
 H��
 �� � �I � J� , where G  is a 

positive known constant. 

Assumption 2: In order to perform the diagnosis online, it is 

assumed that only a single fault type (either multiplicative or 

additive) occurs in the system at any given time. This means 

that both additive and multiplicative faults cannot occur at the 

same time. 

Remark 1: Assumption 1 is needed to distinguish between 

faults and system uncertainties while Assumption 2 is needed 

to identify the fault types.

Assumption 3: The nonlinear system dynamics ���
 �� is 

Lipschitz in �  and � , i.e., K�L���K F MNK;���K , where MN O 8 is the Lipschitz constant. 

Next the proposed fault diagnosis scheme is introduced. 

III. FAULT DIAGNOSIS SCHEME

In this section, the proposed fault diagnosis scheme for 

detecting additive and multiplicative faults will be described 

via the estimator. Consider the nonlinear FD estimator �DP�� � �� � QR�DP��� � � 0����
 �S/	����
 'P(����1
��PR 0����
 ����T �PR���1 � QR���� � U���  (2) 

�S/	����
 'P(���� � 'P( 0����
 ����T �P(���1 ����
where�DP��� � ��  is the estimated state vector,  'P(� �� ��V�� � ��$is the output of the first detection OLAD  with 

�P( � �V�� being its set of adjustable parameters, �PR� �� ��W�� � ��  is the output of the second OLAD with �PR ��W�� being its set of unknown parameters, U��� denotes the 

robust adaptive term, and QR  is a user defined diagonal 

matrix, which must be selected in a way that the eigenvalues 

of the closed loop system lies within the unit circle [11]. 

Initial values of the FD estimator are taken to be �DP�8� � �D�
�PR�8� � �PRX , 'P(�8� � 'P(X , such that �P	�
 �
 �PRX� � 8
'P(��
 �
 �P(X� � Y$$$H� � Z$
 � � J.  

Remark 2: The proposed observer/estimator uses two 

OLADs to identify additive and multiplicative faults in 

contrast with other FD schemes that use one OLAD in their 

observer [5,8]. 

In the proposed FD estimator, NNs are used as the OLADs. 

Both NN-based OLADs are off prior to the detection of a fault 

and thus their outputs are zero.  Upon detection of a fault the 

first OLAD is turned on to estimate the input by assuming that 

it could be a multiplicative fault.  A decision is made to 

identify the type of fault occurred by monitoring the input 

residual.  Depending upon this decision, the appropriate 

OLAD is left on and the other is switched off.  Next the 

process of detecting a fault is introduced next. 

Define the detection residual as ; � � � �DP.  Prior to the 

detection of a fault, the residual dynamics are given by ;�� � �� � QR;��� � 	����
 �����
which is  bounded with the appropriate selection of QR. Now 

consider a dead-zone operator 

[\;���] � 78
$$$$$$$$$$$$$$$%�$^;���^ F _;���
 %�$^;���^ O _
where _ is the FD threshold. A fault is detected, regardless of 

its type, when the FD residual exceeds the predefined 

threshold. However these thresholds must be chosen carefully 

in order to minimize false or missed alarms. Analytically, a 

time varying threshold _ � `ab��<cd���<c�   or a constant threshold 

can be determined by$_ � `ab��<c� , where � efg , g and ef are 

some positive constants such that hQRihj F efgi  can be 

derived.  

When the detection residual exceeds the detection 

threshold, a fault is declared active through the dead-zone 

operator and the first OLAD that generates 'P(�� �, is initiated 

and tuned online using the following update law �P(�� � �� � �P(��� � k�l����[\;��� � ��]�m�KY � k�l����l�����K�P(���  (3) 

where k�>0 is the learning rate, 8 : m� : � is the forgetting 

factor, and l���� � l�	����
 ����� is a basis function such 

as sigmoid or RBF.  Then, the output of the first OLAD that 

estimates the multiplicative fault function is given by 'P(��� � �P(����l�	����
 �����
 The input residual is then computed online using actual 

input and its estimate from the first OLAD. On the other hand, 

if a fault is identified as additive based on the input residual, 

then the first OLAD will be turned off and the second OLAD 
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will be initiated and tuned online using the following update 

law �PR�� � �� � �PR��� � k4l4���;��� � ���m4KY � k4l4���l4����K�P(���  (4) 

where k4 O 8  is the learning rate, 8 : m4 : �  is the 

forgetting factor, and l4��� � l4	����
 �����  is a basis 

function like sigmoid or RBF. Moreover the output of the 

second OLAD to estimate the fault function will be given by �PR��� � �PR����l4	����
 �����
A robust adaptive term is also turned on with the additive 

fault. In the following theorem conditions for fault 

detectability are presented.  

Theorem 1 (Fault Detectability): Consider the nonlinear 

system defined by (1) and the FD estimator (2). The fault will 

be detected, if there exists a time instant �R, such that the fault 

function satisfy �n � hQRiohp q QRio<r<� s� 0��t�
 �/�t�1 � �	��t�
 ��t��uio<�
rv� p @ _

or �n � hQRiohp q QRio<r<� s��� � ���� 0����
 �/���1uio<�
rv� p @ _

in the case of multiplicative or additive fault respectively. 

Next the performance of the proposed fault diagnosis 

observer is evaluated on multiplicative faults first and then 

additive faults. 

A. Multiplicative Fault Case 

After detection, the FD estimator dynamics would be 

described by �DP�� � �� � QR�DP��� � � 0����
 �S/	����
 'P(����1�QR����                (5) �S/	����
 'P(���� � 'P( 0����
 ����T �P(���1 ����
Consequently, the detection residual dynamics are given by;�� � �� � QR;��� � � 0����
 �/���1 � � 0����
 �S/���1

� 0����
 �/���1         (6) 

Define the input residual �w � � � �S/ . The next theorem 

will assure the boundedness of the detection residual 

dynamics upon detecting a multiplicative fault. Hence the 

multiplicative fault can be estimated by the first OLAD, 

which will result in a noticeable difference between the actual 

and estimated input in a finite time or when the input residual 

exceeds a user defined threshold.  Using this input residual, 

the fault diagnosis is carried out to identify the fault type.

Theorem 2 (Fault Diagnosis Observer Performance with 

Multiplicative Faults): Let the proposed observer defined in 

(5) be used to monitor the system described by (2), with the 

first OLAD being turned on upon the detection of a fault. Let 

the update law in (3) be used to update the unknown 

parameter vector �P(. In the case of multiplicative faults, the 

FD residual,;���, and the parameter estimation errors,$�x(����, 

will be uniformly ultimately bounded (UUB). Moreover, the 

input residual will exceed the user-defined threshold. 

Proof: Consider the following Lyapunov function candidate y � ;����;��� � zB,�x(�����x(���-
where �x(���� � �( � �P(��� . The first derivative of the 

Lyapunov function is given by {y � 	;��� � ��;�� � �� � ;����;����|}}}}}}}}}}~}}}}}}}}}}�����zB,�x(��� � ���x(�� � �� � �x(�����x(���-|}}}}}}}}}}}~}}}}}}}}}}}����
  (7) 

By substituting ;�� � �� from the error dynamics (6), in {y� to get {y� � �0QR;��� � �L��� � ������
 �/����1 0QR;���
� �L��� � �����
 �/����1 � ;����;����

where �L��� � ������
 �/���� � ������
 �S/����. 

By using the Cauchy-Schwarz inequality ($��� � �4 � ��������� � �4 � � � ��� F &������ � �4��4 � �� ������ ) we 

get {y� F �;����QR�QR;��� $$� ��L�����L��� � ;����;������ 0����
 �/���1  0����
 �/���1        (8) 

Now we substitute �P(�� � �� from the update law 

and$;�� � ��, in {y4{y4 � zB,\�� � m�KY � k�l����l�����K��x(���� m�KY � k�l����l�����K�(� k�l����;��� � ��]�\��� m�KY � k�l����l�����K��x(���� m�KY � k�l����l�����K�(� k�l����;��� � ��] � �x(�����x(���-
Applying the Cauchy-Schwarz inequality on the above 

equation yields {y4 F zB,��x(�����x(���� �8m�KY � k�l����l�����K�x(�����x(���� �m�4KY � k�l����l�����K4�x(�����x(���-� zB2�m�4KY � k�l����l�����K4�(��(5� �k�4$;����QR�QR;���l�����l����� �k�4� 0����
 �/���1  0����
 �/���1l�����l������k�4�L�����L���l�����l����                 (9) 

By using equations (7),(8), and (9), the first difference of 

the Lyapunov function candidate, {y, can be found as {y � {y� � {y4 FF �;����QR�QR;��� � ��L�����L���� $�� 0����
 �/���1  0����
 �/���1 � ;����;���� zB,��x(�����x(���� �8m�KY � k�l����l�����K�x(�����x(���� �m�4KY � k�l����l�����K4�x(�����x(���-� zB2�m�4KY � k�l����l�����K4�(��(5� �k�4;����QR�QR;���l�����l����� �k�4�L�����L���l�����l����� �k�4� 0����
 �/���1  0����
 �/���1l�����l����
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Taking the Frobenius norm, the above inequality and by 

using the result of Assumptions 1 and 3, we will have {y F ��� � �� � �k�4l����4 ��QR���4 � MN4��K;���K4���8m�KY � k�l����l�����K� �m�4KY � k�l����l�����K4 � ��h�x(���h4
� �m�4KY � k�l����l�����K4K�(K4� �� � �k�4l����4 �G4

Hence {y F 8, if the following conditions are satisfied  

K;���K O � ������������� �ab��<������������� ��(o���� �f���   (10) 

or h�x(���h O ��̀
              (11) 

where k � �m�4KY � k�l����l�����K4K�(K4 and e ��8m�KY � k�l����l�����K � �m�4KY � k�l����l�����K4 � �. 

Therefore the detection residual and parameter estimation 

errors are uniformly ultimately bounded, with the bounds 

given in (10) and (11).  

Upon detection, if the input residual exceeds a predefined 

threshold, � , in a finite time, '� , then the fault type is 

identified as multiplicative and the first OLAD is kept online 

while the second OLAD will never be turned on. By contrast, 

if the input residual stays below �, within the interval of '� , 

then the fault type is declared as additive and the second 

OLAD is turned on and the first one is turned off. 

Remark 3: The time interval, '� , is determined by  

multiplicative fault rates and magnitudes analytically. 

B. Additive Fault Case 

Since the first OLAD is designed to estimate the 

multiplicative fault function, it will not be compensating an 

additive fault. Therefore, in case of an additive fault the 

estimated input, �S/, will be close to the actual input, � or the 

input residual will be below the threshold. So in this case, the 

second part of Theorem 2 will help identify the fault type after 

a finite time '� ,  once a fault is detected. 

Since in this case only the second OLAD is online.  The FD 

estimator dynamics are described by �DP�� � �� � QR�DP��� � �	����
 �������PR 0����
 ����T �PR���1 � QR���� � U���  (12) 

where the robust adaptive term, U���, defined by 

U��� � �PR��������PR����PR����� � M
is utilized with the OLAD. Here � is a constant vector and M O 8  denotes a positive constant. The following theorem 

guarantees the performance of the observer with additive 

faults.

Theorem 3 [8] (Fault Diagnosis Observer Performance 

with Additive Faults): Let the proposed observer in (12) be 

used to monitor the system in (1), with the second OLAD and 

the robust adaptive term are turned on upon identifying an 

additive fault. Let the update law in (4) be used to update the 

unknown parameter set �PR. Then the FD residual, ;���, and 

the parameter estimation errors, $�xR���� , converge to zero 

asymptotically.

So far, the detection of a fault and the fault type

identification is done. The next section discusses the TTF 

scheme. 

IV. PREDICTION SCHEME

Time to failure (TTF) determination is necessary for 

prognostics. This is also referred to as remaining useful life of 

the system. After the detection of a fault, by comparing the 

estimated parameters obtained from the OLAD to the user 

defined limits, time to failure could be determined [8]. The 

TTF is defined as the time elapsed when the first parameter 

reaches its limit.  Next the following assumption is asserted. 

Assumption 4: For the purpose of TTF, fault functions can 

be expressed as linear in the unknown parameters (LIP) [11], 

i.e. both additive and multiplicative fault functions can be 

approximated by two-layer NN with bounded activation 

functions and weight parameters.   

The following theorem provides an analytical formula for 

finding TTF. 

Theorem 4 (TTF Determination): In the presence of 

multiplicative faults, TTF for the j
th
 parameter of the i

th
 fault, 

at the k
th

 time instant can be determined using 

''U!
r��� � ���� ����KY � k�l�l��K�(�
 $¡¢£ � k�l�#;r���KY � k�l�l��K�P(�
 ��� � k�l�#;r��¤�
^����� � ��KY � k�l�l��K�^

where �(�
 $¡¢£ is the failure limit in terms of maximum value 

of the system parameter , �(�
 $ , and $�P(�
 ��� is the estimated 

system parameter at the time instant k.  

Similarly in the presence of additive faults, TTF for the j
th

parameter of the i
th

 fault, at the kth
 time instant can be 

determined using 

''U!
r��� � ���� ���4KY � k4l4l4�K�R�
 $¡¢£ � k4l4#;r��4KY � k4l4l4�K�PR�
 ��� � k4l4#;r��¤�
^����� � �4KY � k4l4l4�K�^

where �R�
 $¡¢£ is the failure limit in terms of maximum value 

of the system parameter , �R�
 $ , and $�PR�
 ��� is the estimated 

system parameter at the time instant k. 

Proof: Suppose that a fault is detected and identified as 

multiplicative. Let *��� � � � m�KY � k�l����l�����K, and 

let ¥��� � l�#���;r��� � ��. Then the parameter update law 

in (3) can be rewritten as $�P(#
¦�� � �� � *����P(#
¦��� � k�¥���     (13) 

which is in the form of the state equation of linear 

time-varying system with �P(#
¦  being the state and ¥��� being 

the input. 

We know that 8 : * : � and ¥��� is bounded since the 

activation functions are bounded and the boundedness of the 

residual has been proven earlier. So we can assume that *���
and ¥��� are time invariant. Hence (13) can be rewritten as�P(#
¦�� � �� � *�P(#
¦��� � k�¥
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which is in form of a linear  time-invariant state equation. 

 At the time of failure, �/#
¦ , estimated parameter will be 

equal to  �(�
 $¡¢£ , which means $�P(#
¦��/#
¦� � �(�
 $¡¢£ . 

Therefore by finding the solution to the linear time-invariant 

equation in hand, at the time instant �/#
¦ , we get 

�(�
 $¡¢£ � �P(#
¦ 0�/#
¦1 � *i§#
¦<i�P(#
¦��� � k� q *i§#
¦<¨¥
i§#
¦

¨vi��
� *i§#
¦<i�P(#
¦��� � k�¥ � � *i§#
¦<i� � *

Since ''U!
r � ��%
t �� , by simple mathematical 

manipulations, we will have  

''U!
r �
���� ���� � ©��(�
 $¡¢£ � k�¥�� � ©��P(�
 ��� � k�¥�¤�^����*�^

By replacing *  and ¥  by �� � m�KY � k�l�l��K�  and l�#;r� respectively, the desired result will be obtained.

The theorem can be proven for the additive fault case by 

following the same argument as that of the multiplicative 

case. 

At each time instant, after calculating the TTF for all of the 

system parameters, one should take the minimum of time to 

failure for all of the parameters, to get the overall TTF for the 

system. This is because the system will be unsafe even if only 

one of its parameters reaches its limit. 

V. SIMULATION RESULTS

In this section, a three-tank water system [12] is used to 

verify the proposed fault diagnosis and prediction schemes. 

Fig. 1 depicts this system consisting of three tanks connected 

to each other with input pumps on tank 1 and tank 2 and one 

water outlet on tank 2.  

The three-tank system dynamics are described by ��� � �� � �	����
 ����� � 	�����
where � � \��
 �4
 ��]� is the state vector and �	����
 �����
is the known nonlinear dynamics of the system [12] given by �	����
 ����� �

ª«
««
««
««
«¬

�( ,�M�W�%+&	����� � ������®n+^����� � �����^������5 � �����$�( ,�M�W�%+&	�4��� � ������®n+^�4��� � �����^�M4W®n+�4��� � �4���- � �4���$�( ,�M�W�%+&	����� � ������®n+^����� � �����^�M�W�%+&	����� � �4����®n+^����� � �4���^- � �����°̄
°°
°°
°°
°±

where T  is the sampling time chosen to be 0.01 seconds, Q � 8�8���$.4 is the cross section  of the tanks, W � � ��8<�$.4  is the cross section of the connecting pipes, M� � �
 M4 � 8�²
$and M� � � are the outflow coefficients, and + � ³�²$.´�4 is the standard gravity. Moreover 	����� �\�8<� µ¶·�8�¸�'�$�8<4 ¹�µ�8�²�'�$�8<��º� ¹�µ�8���'�]�
represents the modeling uncertainty.  

Fig. 1: Schematic view of the three-tank system 

This system is subjected to additive faults which are given 

in terms of leakage in tank 1 and tank 2 and multiplicative 

actuator faults which can occur in pump 1 and pump 2. In this 

simulation we assume that either an additive or the 

multiplicative fault can occur at time z� � 25 sec. The 

additive and multiplicative fault functions are described by 

�	����� � »8�8���	� � ;<�����i<iX��®n+�����8�8�²n	� � ;<��4��i<iX��®n+�4���8 ¼ , 
�/��� � ½�88	� � ;<�����i<iX��������8	� � ;<�����i<iX���4��� ¾

The FD estimator in (2) is used to detect the faults, where QR � 8�88�Y��� . The first OLAD output is given by 'P(��� � �P(����l��y����� � ��� , where �P( � �¿�4  is the 

estimated parameter while l� � �¿  is a vector of sigmoid 

functions. The second OLAD output is given by �PR��� ��PR����l4	����
 ����� , where �PR � �¿��  is the estimated 

parameters while l4 � �¿ is a vector of sigmoid functions. 

Moreover y�, ��, y4, and �4 are selected randomly and the 

update law parameters are k� � 8��
 m� � �8<À  and k4 �8��
 m4 � �8<À respectively for the first and second OLADs. 

The detection threshold, _, is selected to be 0.05 while the 

identification threshold, �, is chosen to be 0.01. 

Fig. 2 shows the norm of the detection residual and the FD 

threshold when a multiplicative fault occurs. It is clearly seen 

that the residual remains below the detection threshold prior 

the occurrence of fault. After the fault occurs, the norm of 

residual starts to increase and it finally exceeds the threshold 

at a detection time z � n����  sec. At this point the first 

OLAD is activated and its update law will estimate the fault 

function. About 6 seconds after the detection of the fault, the 

FD residual falls below the threshold due to the OLAD 

function approximation property. This means that the OLAD 

has successfully estimated the fault function. As observed in 

Fig. 3, the norm of input residual K�wK  crosses the 

identification threshold in the interval of '� � n$sec after the 

detection, indicating that the fault is of type multiplicative. 

Fig. 4 shows the norm of the detection residual along with 

the detection threshold when additive faults are present. The 

residual reaches the detection threshold at time z � nÁ���
sec. At this point a fault is declared active and the first OLAD 

is turned on, but since the fault is additive it cannot estimate 

the fault function. As seen in Fig. 5, norm of the input residual 
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K�wK  remains below � � 8�8�  within 2 seconds after the 

detection of fault. Therefore in this case the fault is identified 

as additive. Upon identifying the fault type, FD estimator uses 

the second OLAD alone to estimate the additive fault 

function, consequently, the FD residual converges to zero. 

Fig. 2:  Norm of FD residual when the fault is multiplicative. 

Fig. 3: Norm of input residual,$K�wK, when the fault is multiplicative. 

Fig. 4:  Norm of FD residual when the fault is additive. 

Fig. 5: Norm of input residual,$K�wK, when the fault is additive 

TTF is determined for each of the multiplicative actuator 

faults as shown in Fig. 6 and Fig. 7. The initial estimates of 

TTF are not accurate due to the random selection of weights 

in the parameter update law. The time of failure is determined 

to be at 30.07seconds and 28.30 seconds, for the fault in the 

first and second inputs respectively. TTF estimation results 

for the additive fault case are not presented here.

Fig. 6: TTF determination due to multiplicative fault in input 1. 

Fig. 7: TTF determination due to multiplicative fault in input 2 

This example indicates that the proposed method of fault 

detection works for both additive and multiplicative fault 

types, the type of fault can be identified using the proposed 

method of fault type identification, and furthermore time to 

failure can be determined using Theorem 4. 

VI. CONCLUSIONS

In this paper, a model-based fault detection scheme that 

detects both additive and multiplicative fault types and 

identifies fault type and TTF determination. Identification of 

fault type will help the process of finding the fault location for 

repairing and maintenance purposes. TTF estimation will in 

turn improve system availability. The proposed scheme does 

not need any a priori data or offline training and so it is 

generic and can be applied to a wide range of systems with a 

mathematical model available.  
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