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Abstract— This paper deals with the model predictive control
(MPC) of pulse-width modulated (PWM) systems. Hybrid
models that predict the switched behaviour of PWM systems
are investigated in order to formulate control objectives such
as minimising the non-linear distortion or the power losses as it
is typically desired in many power electronics applications. To
obtain tractable problems, the PWM system dynamics are ap-
proximated by hybrid models where the time is quantised. The
switching constraints are modelled employing binary variables.
Two MPC schemes with different receding horizon policies are
investigated to solve the resulting MILP or MIQP at each
sampling period. Applying the proposed multisampled hybrid
model predictive control scheme to a buck converter system, it is
shown that recomputing the optimal solution to the problem at
regular intervals during the switching period provides a better
rejection of disturbances.

I. INTRODUCTION

In model predictive control (MPC), the control objective is
formulated as a finite time horizon constrained optimisation
problem that needs to be solved at each sampling instant to
find the control action to apply to the plant. As solving this
optimisation problem is time consuming and requires appro-
priate hardware and software platforms, the application of
MPC has long been restricted to the control of complex slow
systems such as chemical plants [1]–[3]. The availability
of more powerful hardware and of optimisation algorithms
tailored to solve time invariant linearly constrained MPC
problems off-line has permitted to envisage the application
of MPC to much faster systems of reduced complexity
where it is important to deal with constraints to obtain a
satisfactory performance [4]–[6]. In particular, in the past
few years MPC has been applied to enhance the dynamic
performance of several power electronics systems. At the
lowest level power electronics systems are controlled by
appropriately manipulating semiconductor devices that can
be seen as ideal switches from the control point of view. Due
to their switched behaviour, power electronics systems are
inherently hybrid. The switches are often controlled through
pulse-width modulators (PWM) where the duty cycles are
the manipulated variables. Continuous time dynamics are
then obtained by employing model averaging techniques [7],
which often allow for formulating the control objective as a
linearly constrained MPC problem [8]. When the averaged
model is nonlinear, a hybrid MPC problem needs to be solved
[9], [10]. These types of problems quickly become intractable
as the number of binary variables increases. Although the
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MPC formulations based on an averaged model allow to
impose a satisfactory averaged dynamic behaviour, several
situations occur in which the model mismatch deteriorates
the system performance or even destabilises the system, or
where it would be desirable to model the switched trajectory
of the state and not only its averaged trajectory.

A hybrid model is employed in [11] to approximate the
switched behaviour of the state in a buck converter with
leading edge PWM. The trajectory of the state is predicted at
regular time intervals Tq between two sampling instants. The
approach is extended to more complex PWM systems in [12]
where a tractable hybrid MPC scheme is proposed to improve
the dynamic performance of AC-DC converters with resonant
filters and to reduce the distortion by minimising the ripple.
Improved dynamic performance is obtained, the achievable
reduction of distortion is however limited, mostly because a
one-norm cost criterion is employed for simplicity. The first
problem with the one-norm cost criterion is that it results in
a large number of constraints, which practically limits the
achievable accuracy. The second problem is that the one-
norm does not reflect the real objective, which is often to
minimise the RMS value of the ripple. These problems are
solved in [13], by introducing sampled data model predictive
control to formulate an optimisation problem that minimises
the integral of the quadratic tracking error. The problem is
made tractable by employing a piecewise affine approxima-
tion of the cost criterion, which results in solving an MIQP
at each sampling instant. The solution can be computed on-
line since the number of binary variables remains small for
the considered problems.

This paper proposes the multisampled hybrid model pre-
dictive control as a solution to improve the closed-loop
system performance of PWM systems where it is possible
to sample faster than the maximum admissible switching
rate. The switched trajectory of the state is approximated
by a hybrid model, extending the modelling approaches
developed in [12], [13] to more general PWM schemes.
In these approaches, the switching period is divided into
Nq regular time intervals of duration Tq =

Tp

Nq
. The value

of the state is predicted at the end of each interval. In
the multisampled hybrid MPC approach, the plant output
is sampled and the plant input updated at each of these
time intervals, which requires having switching constraints
to prevent exceeding the admissible switching frequency.
The motivation for a sampling rate higher than the possible
rate of update of the PWM is that this allows to deal
faster with disturbances and to reduce the effect of model
mismatch by performing corrections of the control input
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when a deviation from the predicted switched behaviour
is observed. An MPC problem that minimises a quadratic
cost criterion is formulated. The switching constraints are
integrated to the optimisation problem to enforce the desired
PWM behaviour and constraints. This results in an MIQP
that needs to be solved at each sampling instant following the
same approach as in [13]. The difficulty is that the problem
to be solved is time varying with the period Tp because the
sampling rate is higher than the switching frequency.

The remainder of this paper is organised as follows.
Section II derives an approximated hybrid control model that
features the state ripple and includes the PWM switching
constraints as binary variables. Section III formulates an
MPC problem based on the approximated hybrid control
model. It allows to formulate objectives featuring minimisa-
tion of converter losses and nonlinear distortion. Section IV
introduces several receding horizon control concepts suitable
for the control of PWM systems. Section V applies and
compares the proposed concepts to the control of a buck
converter. Section VI concludes.

II. CONTROL MODEL

A. Continuous time dynamics and switching constraints
The considered PWM dynamic systems are described as

ẋ(t) = F0 x(t) + Gw w(t)

+

Nb∑
i=1

[si(t)Fi x(t) + si(t)Gi v(t)]
(1a)

si(t) ∈ {0, 1} (1b)

lim
Nq→∞

Nq∑
k=1

∣∣∣∣si(k TpNq

)
− si

(
k Tp − Tp

Nq

)∣∣∣∣
1

≤ 2 (1c)

where Nb is the number of binary variables associated with
the switches, x ∈ Rnx is the state vector, v ∈ Rnv and
w ∈ Rnw are vectors of exogenous inputs, and F ∈ Rnx×nx ,
G ∈ Rnx×nv , and Gw ∈ Rnx×nw are constant matrices.
(1b) indicates the binary nature of the switching functions
si, while (1c) constrains them to maximum two transitions
per switching period Tp. (1) describes a wide range of power
electronics system dynamics.

B. Discrete-time approximation of dynamics
Formulating an MPC problem that features the hybrid

dynamics (1) generally yields an intractable problem. A
simplified discrete-time model is required for the MPC
problem formulation. The switching period is divided into
Nq intervals of duration Tq =

Tp

Nq
over which the state

evolution is approximated by the discrete time dynamics

xk+1 = A0 xk +Bw wk +

Nb∑
i=1

[si,k Ai xk + si,k Bi vk]

(2a)

A0 = eF0 Tq Ai = Fi Tq Bi =

∫ Tq

0

eF0τ dτ Gi

Bw =

∫ Tq

0

eFiτ dτ Gw ∀i ∈ {1, . . . , Nb}
(2b)

where the subscript k denotes the time index, and the si take
values in the interval [0, 1]. si,k = d indicates that the switch
i is in on-state for a fraction d of the interval Tq (see Fig. 1).

C. PWM switching constraints
The binary and switching constraints (1b) and (1c) need

to incorporated into the model (2) in order to describe the
PWM dynamic behaviour

si,k ∈


[0, 1] : ¬

(
δ+i,k ∧ δ

−
i,k

)
{0} : ¬δ0i,k ∧ δ

+
i,k ∧ δ

−
i,k

{1} : δ0i,k ∧ δ
+
i,k ∧ δ

−
i,k

(3a)

where three binary variables per switch are required. δ+i,k
(δ−i,k) is true if the switch i has already been turned on
(respectively off) once during the current switching period.
δ0i,k indicates the state of the switch at the beginning of
the switching period. The boolean conditions (3a) inhibit
multiple switching on and off during a switching period.
Constraints (3a) can be rewritten as inequalities involving
binary variables and the manipulated switched function. The
binary variables δi,k are updated after each time interval Tq
as follows

δ0i,k+1 =


1 : δbk ∧ δ

+
i,k ∧ ¬δ

−
i,k ∧ si,k = 1

0 : δbk ∧ ¬δ
+
i,k ∧ δ

−
i,k ∧ si,k = 0

δ0i,k otherwise
(3b)

where δbk is true only at the last sample of the switching
period. δ0i,k will only change its value if a switch was turned
on but not off or vice versa during the previous switching
period.

The variable δ+i,k that captures the transition to on-state is
defined as

δ+i,k+1 =



1 :
(
δ0i,k ∧ ¬δbk ∧ δ

−
i,k ∧ si,k > 0

)
∨
[
¬δ0i,k ∧ ¬δbk ∧

(
δ+i,k ∨ si,k > 0

)]
0 :
[
δ0i,k ∧

(
δbk ∨ ¬δ

−
i,k ∨ si,k = 0

)]
∨
[
¬δ0i,k ∧

(
δbk ∨

(
¬δ+i,k ∧ si,k = 0

))]
(3c)

The initial switch state δ0i,k allows to decide which of
the raising and falling transition is coming first. δbk allows
to reinitialise the binary variables at the beginning of the
switching period. The variable δ−i,k that constrains the tran-
sition to off-state is similarly defined as

δ−i,k+1 =



1 :
[
δ0i,k ∧ ¬δbk ∧

(
δ−i,k ∨ si,k < 1

)]
∨
(
¬δ0i,k ∧ ¬δbk ∧ δ

+
i,k ∧ si,k < 1

)
0 :
[
δ0i,k ∧

(
δbk ∨ ¬δ

−
i,k ∧ si,k = 1

)]
∨
[
¬δ0i,k ∧

(
δbk ∨ ¬δ

+
i,k ∨ si,k = 1

)] (3d)

The hybrid model defined by dynamics (2) and switching
constraints (3) approximates the switched behaviour of the
system as depicted in Fig. 1. The integral of the real input
and of the continuous time signal formed by the zero order
hold approximation are equal.
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Fig. 1. PWM system input (top) and output (bottom). Continuous time
signals of the real system (solid thin) and discrete-time approximations with
a quantisation time Tq (circles).

III. MPC PROBLEM FORMULATION

The finite time constrained optimal control problem is
formulated as follows:

min

k+N∑
l=k+1

J(xl, ul−1) (4a)

s.t. dynamics (2) (4b)
switching contraints (3) (4c)
xk = x̄k (4d)
xl ∈ X , vl ∈ U ∀l ∈ {k, . . . , k +N} (4e)

Due to the binary variables (3), the resulting optimisation
problem requires solving a mixed integer program (MIP). As
the hybrid system model (2) predicts the switched behaviour
of the system, (4) allows to formulate a control objective
related to the switched behaviour of the PWM system, such
as for example minimising the nonlinear tracking distortion
or minimising the losses. To keep the problem tractable, it
is desirable to have a convex cost function J(xl, ul−1) that
captures these properties and a linear model in (2).

IV. MPC SCHEMES FOR PWM SYSTEMS

The control model developed above features the switching
constraints of the PWM system. Each switch control signal
is constrained to make at most two transitions per switching
period. In digital control, the sampling frequency must be
synchronised with the PWM frequency in order to update
the switch control signal parameters as fast as possible.
Using an averaged model, it does not make sense to sample
and update the control input of PWM systems faster than
twice the PWM frequency due to the switching constraints.
Moreover, it complicates the control as it is difficult to
filter the ripple component without cutting dramatically the
closed-loop bandwidth. Still, this has been done in order to
increase the bandwidth of PI controllers by mimicking analog

controllers [14]. Employing the hybrid model presented in
the previous section, it is not necessary to remove the state
ripple as it is predicted by the control model.

A. MPC with averaged model

If Nq = 1, all the binary constraints vanish. The hybrid
model becomes linearly constrained and equivalent to an
averaged model. The MPC problem results in an LP or QP
that can be solved efficiently. In turn, the control objective
can no longer feature the switched behaviour of the system.
Depending on the switching constraints, the same situation
occurs with Nq = 2.

B. MPC with intersampling

By intersampling, it is meant that the hybrid model
predicts the switched behaviour of the system between the
instants at which the plant output is sampled and the PWM
input is updated. The sampling period Ts is therefore equal
to the switching period Tp or twice the switching period
when both transitions can be controlled. Based on the state
measured at time k, the future sequence of states is predicted
at Nq equidistant instants in each switching period. This
results in a discretisation period that is a fraction Nq of the
switching period, Tq =

Tp

Nq
.

Fig. 1 illustrates the case where the switching period Tp is
divided in Nq = 8 periods of duration Tq. The constrained
control input and the state are predicted at each interval of
duration Tq featured by a circle, the PWM system input and
output are sampled and updated only twice per switching
period at the time intervals featured by the plain black disks.

C. Multisampled Hybrid MPC

By multisampled hybrid MPC, it is meant that the hybrid
model predicts the switched behaviour of the system within
a switching period. The conceptual difference with the in-
tersampling approach is that the plant output, respectively
the PWM input are sampled, respectively updated at each
of these instants. The sampling period Ts is therefore equal
to the time quantisation period Tq. For the same control
objective, the hybrid model and the MPC problem are the
same for intersampling and multisampling. The computed
control inputs are therefore identical at the same time in-
stances. As the control input is computed more often in
the multisampling case, a (slightly) different input sequence
is expected. The reason is that the horizon is shifted by a
quantity that varies between Tq and Tp − Tq, such that the
optimisation is recomputed with slightly different constraints
and with a different state sequence. In absence of modelling
errors and of disturbances this difference should however be
little, especially if the horizon is sufficiently long.

In presence of disturbances, the system is expected to react
faster, as much as allowed by the switching contraints. In
presence of modelling errors, the multisampling mechanism
is also expected to readjust the optimal control sequence to
correct the system behaviour. These features obviously come
at the expense of more computational power to allow solving
the optimisation problem at higher sampling rates.
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In Fig. 1 the PWM system input and output are sampled
and updated at each of the instants featured by a circle or a
plain black disk.

TABLE I
COMPARISON OF INTERSAMPLING AND MULTISAMPLING PARAMETERS

AND PROPERTIES.

Intersampling Multisampling
switching period Tp Tp
number of intersamples q q

sampling period Ts = Tp or Tp

2
Ts =

Tp

q

prediction step size Tq =
Tp

q
Tq =

Tp

q

system update beginning/middle of at each prediction
switching period step

system dynamics time-invariant time-varying

V. CASE STUDY

In a case study, the approaches formalised in the above
are compared to each other. As an example PWM system
a buck converter is chosen. Buck converters belong to the
class of DCDC converters. They are used to convert an
unregulated input voltage to a desired lower output voltage.
The schematic of the buck converter topology is given in Fig.
2. The system states are the inductor current iL, the output

L

io

iL

Vin vCC

1

0

Fig. 2. Schematic of a buck converter.

capacitor voltage uC and the output current io. The output
current io cannot be influenced by the controller.

A. System dynamics

When the switch is in position 1, i.e. s(t) = 1, the voltage
across the inductor is positive, iL increases. For s(t) = 0,
the voltage across the inductor is negative, so iL decreases.
The output capacitor C accounts for the current ripple such
that a constant output current can be achieved. Thus, a small
ripple in the output voltage results.

In the standard PWM framework given in equation (1)
with Nb = 1 the respective vectors and matrices are:

F0 =

(
0 1

C
1
L 0

)
, F1 = 0, Gw =

(
− 1
C

0

)
, G1 =

(
0
1
L

)
,

x =

(
uC
iL

)
, v = Vin, w = io.

B. Control problem formulations

The system shall be controlled using leading edge PWM
and three different MPC schemes: MPC using an averaged
model, intersampling and multisampling. A quadratic cost

function that penalises the deviation of the state from a
given reference value is chosen, yielding an optimal tracking
problem.

As leading edge PWM is applied, where turning a switch
on is only allowed at the beginning of the switching period,
the constraints for the hybrid model (3) simplify greatly as
one can set δ0i,k to zero and δ+i,k to one ∀k.

si,k ∈

{
[0, 1] : ¬δ−i,k
{0} : δ−i,k

(5a)

δ−i,k+1 =

{
1 : si,k < 1 ∧ ¬δbk
0 : si,k = 1 ∨ δbk

(5b)

The translation of (5a) to the according inequalities is:

δ−i,k ≤ 1− si,k ≤ 1 (5c)

1) Averaging: In the state space averaged modelling ap-
proach, the system dynamics are averaged over a switching
period, the state ripples are not taken into account. The
sampling rate is equal to the switching frequency. The
resulting control model is

ẋ(t) = F0x(t) +G1vd(t) +Gww(t) (6)

where d(t) is the fraction of the current switching period
during which the switch is in position one. d(t) is usually
referred to as duty cycle. Here, it is the system’s only control
input.

To be able to implement MPC, the system has to be
discretised. As the system dynamics are averaged over one
switching period, the natural discretisation frequency is equal
to the switching frequency. The only constraint on the system
input is dk ∈ [0, 1]. Let Aavg, Bavg, and Bw,avg denote
the discretised system matrices. The MPC tracking problem
using an averaged model and a state reference xref can be
written as

min
N∑
k=1

‖xk − xref‖2Q (7a)

s.t. xk+1 = Aavgxk +Bavgvdk +Bw,avgwk (7b)
dk ∈ [0, 1] (7c)

where Q =

(
1 0
0 10

)
a positive semidefinite matrix. This

optimisation problem has to be solved once per switching
period.

2) Intersampling: The number of prediction steps per
switching period q is 5, yielding a discretisaton frequency
for the PWA approximated system of fq = 5fp. Let Aq,
Bq, and Bw,q denote the discretised system matrices of the
PWA model. The bilinearity in the general formulation (2)
with Nb = 1 is zero, i.e. Fi = 0, and the external input
vk = v = Vin is constant and scalar. Furthermore, the system
here is only sampled and updated at the beginning of each
switching period. Thus, the evolution of inputs, states and
binaries during switching period k can be written in vector
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form:

Xk =
(
x1k

T
x2k

T
. . . xqk

T
)T

(8a)

Si,k =
(
s0i,k s1i,k . . . sq−1i,k

)T
(8b)

∆−k and Wk are defined analogously. Thus, the general MPC
problem stated in (4) simplifies significantly, and the MPC
tracking problem for the intersampling scheme using leading
edge PWM can be written as

min

N∑
k=1

‖Xk −Xref‖2Q̃ (9a)

s.t. Xk+1 = ÃqXk(q) + B̃qvSk + B̃w,qWk (9b)

∆−k (j) =

{
0 : j = 1 ∨ Sk(j − 1) = 1

1 : Sk(j) < 1
(9c)

∆−k ≤ 1q×1 − Sk ≤ 1q×1 (9d)

where q is the number of intersampling instants, nx is the di-
mension of the vector x. Xref =

(
xTref . . . xTref

)T ∈ Rqnx ,
xref and Q are as in the averaging approach, Q̃ is an nxq×
nxq-matrix with Q on its diagonal. The state update matrices

are Ãq =


Aq

A2
q

...
Aqq

, B̃q =


Bq 0 . . . 0
AqBq Bq . . . 0

...
. . .

...
Aq−1q Bq Aq−2q Bq . . . Bq

,

and B̃w,q analogously to B̃q. This optimisation problem also
has to be solved only once per switching period.

3) Multisampling: For fair comparison, the number of
prediction steps per switching period is q = 5 as in
the intersampling approach. Again, the MPC cost function
penalises the deviation of the rippling state xk from a given
constant reference value. The optimisation problem is

min

N∑
k=1

‖xk − xref‖2Q (10a)

s.t. xk+1 = Aq xk +Bqv sk +Bw,q wk (10b)

δ−k+1 =

{
1 : sk < 1 ∧ ¬δbk
0 : sk = 1 ∨ δbk

(10c)

δ−k ≤ 1− sk ≤ 1 (10d)

where xref and Q are as in the averaging approach. The
system update rate is q-times higher than in the approaches
above. Thus, q optimisation problems have to be solved per
switching period.

C. Simulation results

The three control schemes are now implemented and
their respective tracking performances are compared in a
system that experiences a load jump. At the beginning of
the simulation, the system is at steady state with a reference
output voltage of 32V and an output current of 200mA.
After 250µs the load current jumps by 30% to 260mA. The
circuit parameters are summarised in table II.

TABLE II
BUCK CONVERTER PARAMETERS

Circuit parameter Abbreviation Value
switching frequency fp 20kHz
inductor size L 10mH
capacitor size C 1µF
input voltage Vin 100V
output current io 200mA / 260mA
reference voltage vC,ref 32V
reference current iL,ref 200mA / 260mA

A horizon of three switching periods is chosen for all
schemes. Using the state-space averaged or the intersampling
approach, this yields a control horizon of N = 3, in the
multisampling scheme N = 3q = 15, as there are 5
prediction steps per switching period and the problem cannot
be written in compact matrix form.

1) Averaging: In Fig. 3 the simulation results using the
state-space averaged approach are displayed. The states are
measured at the beginning of a switching period. There-
fore, only the minimum value and not the average of iL
is measured. Thus, the controller tries to increase iL. By
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Fig. 3. Simulation results for the averaging approach. Top plot: duty cycle
in zero-order-hold fashion. Bottom plots: inductor current and capacitor
voltage. Dashed lines: reference values. Solid lines: simulation results. The
solid vertical line marks the time of the load jump of 30%.

increasing iL at a constant load current, however, the output
capacitor is charged, which leads to a higher output voltage.
The controller has two conflicting objectives: increasing iL
at constant load and at the same time decreasing uC. This
results in a substantial off-set in the output voltage. After
the disturbance, the system takes several switching periods
to settle at the new steady state.

2) Intersampling: Fig. 4 shows the simulation results for
the intersampling approach. The performance of the con-
troller using this more accurate model is clearly superior to
the averaged approach. Good reference tracking is achieved.
The reaction to the disturbance is considerably faster than
in averaging. As in averaging it takes one switching period
before the disturbance is detected. Then, however, the system
settles at the new steady state within three switching periods.
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Fig. 4. Simulation results for the intersampling control approach. Top
plot: manipulated variable in zero-order-hold fashion. Bottom plots: inductor
current and capacitor voltage. Dashed lines: reference values. Solid lines:
simulation results. The solid vertical line marks the time of the load jump
of 30%.

3) Multisampling: The multisampling simulation results
are given in Fig. 5. As expected, as long as no disturbance is
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Fig. 5. Simulation results for the multisampling control approach. Top
plot: manipulated variable in zero-order-hold fashion. Bottom plots: inductor
current and capacitor voltage. Dashed lines: reference values. Solid lines:
simulation results. The solid vertical line marks the time of the load jump
of 30%.

present, the system yields the same steady state results as in
the intersampling approach. After the disturbance, the system
recovers faster than in the other approaches. As the state
update is performed five times more often, the disturbance
is detected sooner, thus the controller can react better and is
able to enter the new steady state after one sampling period.

VI. CONCLUSION

Different MPC schemes dedicated to the control of
PWM systems have been investigated. The receding horizon

schemes are different in the way the plant output is sampled
and the PWM system input is updated. A hybrid model
that allows to model most PWM system constraints as
binary variable is employed. The time is discretised and the
switched behaviour is predicted at regular intervals in the
switching period. This extend previous results in the field in
two ways. The proposed formulation allows to incorporate
most PWM schemes. It is proposed to sample at the same
rate as the time discretisation interval to better deal with
disturbances and model mismatch. The optimisation problem
is time varying, with the same period as the switching
period and results in either an MILP or an MIQP. By setting
the discretisation interval to the switching period, the well
known averaged model is obtained. The effectiveness of the
proposed hybrid multisampled MPC scheme is demonstrated
by simulation on a simple case study.
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