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Abstract— In this paper we investigate the observability
and reachability properties of a network system, running
a Laplacian based average consensus algorithm, when the
communication graph is a grid. More in detail, we characterize
the structure of the grid eigenvectors by means of suitable
decompositions of the graph. For each eigenvalue, based on its
multiplicity and on suitable symmetries of the corresponding
eigenvectors, we provide necessary and sufficient conditions to
characterize all and only the nodes from which the network sys-
tem is observable (reachable). We discuss the proposed criteria
and show, through suitable examples, how such criteria reduce
the complexity of the observability (respectively reachability)
analysis of the grid.

I. INTRODUCTION

Distributed computation in network control systems has
received great attention in the last years. One of the most
studied problems is average consensus. Given a network of
processors, the objective is to compute the average of the
initial states by performing local computation and exchang-
ing local information. A survey on these algorithms and their
performance may be found e.g. in [1] and references therein.
We are interested in studying reachability and observability
of a network system running average consensus, when only a
subset of nodes is controlled by an external input or measured
by an external sensor.

In this paper we will concentrate on a network system with
fixed undirected communication graph topology running a
Laplacian based average consensus algorithm. The dynam-
ical system arising from a consensus network with fixed
topology is a linear time-invariant system and the problem
of understanding if the network state may be reconstructed
is an observability problem. Observability and reachability
are dual problems in linear systems theory and can be
studied using the same tools. However, in the literature the
reachability (controllability) point of view is the one that has
received more attention.

The reachability (controllability) problem for a leader-
follower network was introduced in [2] for a single control
node. Intensive simulations were provided showing that it
is “unlikely” for a Laplacian based consensus network to
be completely controllable. In [3], see also [4], “necessary
and sufficient” conditions were provided to characterize the
reachability and observability of path and cycle graphs in
terms of simple rules from number theory. In [5] and [6],
see also [7], necessary conditions for controllability, based
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on suitable properties of the graph, have been provided. Other
contributions on the controllability of network systems can
be found in [8], [9], [10]. Observability has been studied for
the first time in [11], where necessary conditions for observ-
ability, as in the dual reachability setting investigated in [5]
and [6], were provided. A parallel research line investigates
a slightly different property called structural observability
[12]. Here, the objective is to choose the nonzero entries of
the consensus matrix (i.e. the state matrix of the resulting
network system) in order to obtain observability from a
given set of nodes. It is worth noting that observability and
reachability of a network system are necessary structural
properties in many network problems as estimation, intrusion
detection and formation problems, [12], [13], [14], [15].

In this paper we extend partial results provided in [16]
on the observability and reachability of grid graphs. In
[16] we analyzed simple grids, i.e. grids whose eigenvalues
have multiplicity one. Here we study arbitrary grids. The
contribution of the paper is twofold. First, we characterize
the structure of the Laplacian eigenvectors of a grid. Namely,
we show that, on the basis of a prime number factorization
of the grid dimensions, the eigenvector components present
symmetries related to suitable subgrid partitions of the main
grid. Also, in each subgrid, the eigenvector components show
different symmetries depending on the symmetries of the
path eigenvectors that generate the eigenspace.

Second, we provide necessary and sufficient conditions
that completely characterize the observability (reachability)
of grid graphs. More in detail, on the basis of the node labels,
suitable polynomial evaluations and eigenvector symmetries,
we are able to: (i) identify all and only the observable
(reachable) nodes of the graph, (ii) say if the graph is
observable (reachable) from a given set of nodes and (iii)
construct a set of observation (leader) nodes from which the
graph is observable (reachable).

The paper is organized as follows. In Section II we
introduce some preliminary definitions and properties of
undirected graphs, describe the network model used in the
paper and set up the observability and reachability problems.
In Section III we investigate suitable symmetries of the
path eigenvectors that are at the basis of the new results
on grid graphs. In Section IV we analyze the symmetries
in the structure of the grid graph eigenvectors and, on this
basis, we provide necessary and sufficient conditions for the
observability (reachability) of the graph. For space constrains
all proofs are omitted in this paper and will be provided in
a forthcoming document.

Notation: We let N, N0, the R>0 and R≥0 denote the
natural numbers, the non-negative integer numbers, positive
real numbers and the non-negative real numbers, respectively.
We denote 0d, d ∈ N, the vector of dimension d with
zero components and 0d1×d2 , d1, d2 ∈ N, the matrix with
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d1 rows and d2 columns with zero entries. For i ∈ N
we let ei be the i-th element of the canonical basis, e.g.
e1 = [1 0 . . . 0]T . For a matrix A ∈ Rd1×d2 we denote
[A]ij the (i, j)th element and [A]i the ith column of A. For
a vector v ∈ Rd we denote (v)i the ith component of v
so that v = [(v)1 . . . (v)d]

T . Also, we denote Π ∈ Rd×d
the permutation matrix reversing all the components of v
so that Πv = [(v)d . . . (v)1]T (the j-th column of Π is
[Π]j = en−j+1).

II. PRELIMINARIES AND PROBLEM SET-UP

In this section we present some preliminary terminology
on graph theory, introduce the network model, set up the
observability problem and provide some standard results on
observability of linear systems that will be useful to prove
the main results of the paper.

A. Preliminaries on graph theory
Let G = (I, E) be a static undirected graph with set of

nodes I = {1, . . . , n} and set of edges E ⊂ I × I . We
denote Ni the set of neighbors of agent i, that is, Ni = {j ∈
I | (i, j) ∈ E}, and di =

∑
j∈Ni 1 the degree of node i. The

maximum degree of the graph is defined as ∆ = maxi∈I di.
The degree matrix D of the graph G is the diagonal matrix
defined as [D]ii = di. The adjacency matrix A ∈ Rn×n
associated to the graph G is defined as

[A]ij =

{
1 if (i, j) ∈ E
0 otherwise.

The Laplacian L of G is defined as L = D − A. The
Laplacian is a symmetric positive semidefinite matrix with
k eigenvalues in 0, where k is the number of connected
components of G. If the graph is connected the eigenvector
associated to the eigenvalue 0 is the vector 1 = [1 . . . 1]T .

Next, we introduce the notion of cartesian product of
graphs. Let G = (I, E) and G′ = (I ′, E′) be two undirected
graphs. The cartesian product G�G′ is a graph with vertex
set I × I ′ (i.e. the cartesian product of the two vertex sets)
and edge set defined as follows. Nodes [i, i′] ∈ I × I ′ and
[k, k′] ∈ I × I ′ are adjacent in G�G′ if either i = k and
(i′, k′) ∈ E′ or i′ = k′ and (i, k) ∈ E. The cartesian product
is commutative and associative. Thus, a d ∈ N dimensional
product graph,

∏d
`=1G`, is constructed by combining the

above definition with the associative property.
We introduce the special graphs that will be of interest in

the rest of the paper. A path graph is a graph in which there
are only nodes of degree two except for two nodes of degree
one. The nodes of degree one are called external nodes, while
the other are called internal nodes. From now on, without loss
of generality, we will label the external nodes with 1 and n,
and the internal nodes so that the edge set is E = {(i, i +
1) | i ∈ {1, . . . , n− 1}}. Since it will be extensively used in
the rest of the paper, we provide the explicit expression of
the path Laplacian, Ln,

Ln =


1 -1 0 . . . 0

-1 2 -1 . . . 0
...

. . .
0 -1 2 -1
0 0 -1 1

 (1)

A d-dimensional grid graph is the cartesian product of
d paths (of possibly different length). In a grid graphs the
nodes have degree from d up to 2d. We call the nodes with
degree d corner nodes. Corner nodes are obtained from the
product of external nodes in the paths.

B. Observability and reachability in a network of agents
running average consensus

We consider a collection of agents labeled by a set of
identifiers I = {1, . . . , n}, where n ∈ N is the number of
agents. We assume that the agents communicate according
to a time-invariant undirected communication graph G =
(I, E), where E = {(i, j) ∈ I × I | i and j communicate}.
The agents run a consensus algorithm based on a Laplacian
control law (see e.g. [1] for a survey). The dynamics of the
agents evolve in continuous time (t ∈ R≥0) and are given
by

ẋi(t) = −
∑
j∈Ni

(xi(t)− xj(t)), i ∈ {1, . . . , n}.

Using a compact notation the dynamics may be written as

ẋ(t) = −Lx(t), t ∈ R≥0,

where x = [(x)1 . . . (x)n]T = [x1 . . . xn]T is the vector of
the agents’ states and L is the graph Laplacian.

Remark 2.1 (Discrete time system): The observability
analysis performed in the paper can be easily extended to
suitable discrete time versions of the above continuous time
model, see, e.g., [4].

Next, we describe the scenario that motivates our observ-
ability analysis. We imagine that an external processor (not
running the consensus algorithm) collects information from
some nodes in the network. We call these nodes observation
nodes. In particular, we assume that the external processor
may read the state of each observation node. Equivalently,
we can think of one or more observation nodes, running
the consensus algorithm, that have to reconstruct the state
of the network by processing only their own state. We can
model these two scenarios with the following mathematical
framework. For each observation node i ∈ I , we have the
following output

yi(t) = xi(t).

Therefore the output matrix is Ci =
[
eTi
]
.

If the set of observation nodes Io in the network has cardi-
nality greater than one, say Io = {i1, . . . , ip} ⊂ {1, . . . , n},
then the output is yIo(t) =

[
xi1(t) xi2(t) . . . xip(t)

]T
.

Therefore, the output matrix is CIo =
[
ei1 . . . eip

]T
.

It is a well known result in linear systems theory that the
observability properties of the pair (L,CIo) correspond to the
controllability properties of the pair (LT , CTIo) = (L,CTIo).
The associated dual network system is

ẋ(t) = −Lx(t) + CTIou(t), (2)

where u ∈ Rp is the input vector. It follows easily that
each component (u)ν fully controls the dynamics of the iν-th
node, so that this turns to be the model of a leader-follower
network. Thus, our results apply also to the controllability
problem in a leader-follower network, where the observation
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nodes correspond to the leader nodes. For the sake of space,
from now on we will concentrate on the observability.

Remark 2.2: Straightforward results from linear system
theory can be also used to prove that the controllability
problem studied in [5] and [6] and the dual observability
problem studied in [11] can be equivalently formulated in
our set up. �

C. Standard results on observability of linear systems

The observability problem consists of looking for nonzero
values of x(0) that produce an identically zero output y(t).

An important result on the reachability (observability) of
time-invariant linear systems is the Popov-Belevich-Hautus
(PBH) lemma, e.g. [18].

Combining the PBH lemma with the fact that the state
matrix is symmetric (and therefore diagonalizable) the fol-
lowing corollary may be proven.

Corollary 2.3: Let Xno be the unobservable subspace
associated to the pair (L,C), where L is a symmetric matrix.
Then Xno is spanned by vectors vl satisfying, for λ ∈ R,

Cvl = 0p

Lvl = λvl.
In the rest of the paper we will call unobservable eigen-

values and eigenvectors the eigenvalues and eigenvectors for
which (2.3) is satisfied.

III. SYMMETRIES OF THE PATH LAPLACIAN
EIGENVECTORS

In this section we provide results on the structure and
symmetries of the Laplacian eigenvectors of a path graph
that will be used to study the observability of grid graphs
via suitable, symmetry based, subgrid partition. Next lemma
characterizes the symmetry of the path Laplacian eigenvec-
tors.

Lemma 3.1 (Symmetry of the path Laplacian eigenvectors):
Any eigenvector v of the Laplacian of a path graph satisfies
either v = Πv or v = −Πv, where Π is the usual
permutation matrix.

In the rest of the paper we will denote S+ (respectively
S−) the set of vectors satisfying v = Πv (respectively v =
−Πv). An important property of S+ and S− is that each one
is the orthogonal complement of the other, i.e. (S+)⊥ = S−.

Next lemma relates the eigenstructure of a given path P
to the eigenstructure of any path with length multiple of the
length of P .

Lemma 3.2 (Laplacian eigenstructure of Pn and Pkn):
Let λ1, . . . , λn be the eigenvalues of the Laplacian Ln of
length n and v1, . . . , vn the corresponding eigenvectors.
Then any path of length kn, for some k ∈ N, with Laplacian
matrix Lkn satisfies:

(i) λ1, . . . , λn are eigenvalues of Lkn;
(ii) each eigenvector wi ∈ Rkn of Lkn associated to λi,

i ∈ {1, . . . , n}, has the form

wi =


vi

Πvi
vi
...

 .

Exploiting the result in the above lemma by using
the result in Lemma 3.1, it follows easily that wi =[
vT vT vT . . .

]T
for v = Πv (and thus wi = Πwi)

and wi =
[
vT −vT vT . . .

]T
for v = −Πv (and thus

wi = −Πwi).

IV. OBSERVABILITY OF GRID GRAPHS

In this section we give the main results of the paper on
the observability (reachability) of grid graphs.

First, we introduce some useful notation. Given a d-
dimensional grid graph G = P1� . . . Pd, we denote i =
[(i)1, . . . , (i)d] a node of G, where the component (i)κ
identifies the position of the node on the κth path. Also, given
a Laplacian eigenvector of G, w ∈ Rn1...nd , we say “the
component [(i)1, . . . , (i)d] of w” meaning “the component
(i)1 · (n1 ·n2 · . . . ·nd) + (i)2 · (n2 · . . . ·nd) . . .+ (i)d of w”.

For the sake of clarity we provide the analysis and results
for two dimensional grids (d = 2). The results for higher
dimensions are based on similar arguments and are omitted
for the sake of space.

A. Laplacian eigenstructure of cartesian-product graphs
An important property of graphs obtained as the cartesian

product of other graphs is that the Laplacian can be obtained
from the Laplacian of their constitutive graphs by using the
Kronecker sum of two matrices, see [17]. Given two matrices
A ∈ Rd×d and B ∈ Rl×l, with [A]ij := aij , their Kronecker
product A⊗B ∈ Rdl×dl is defined as

A⊗B =


a11B a12B . . . a1dB
a21B a22B . . . a2dB
... · · ·

...
ad1B a12B . . . addB

 ,
and their Kronecker sum as

A⊕B = A⊗ Il + Id ⊗B.
Given the cartesian product of the graphs G1, . . . , Gd
with Laplacian matrices L1, . . . , Ld, the Laplacian L� of
G1 � . . . �Gd is given by L� = L1 ⊕ . . . ⊕ Ld. This
structure on the Laplacian induces a structure also on its
eigenvalues and eigenvectors. We state it in the next lemma,
see [17].

Lemma 4.1: (Laplacian eigenstructure of cartesian prod-
uct graphs) Let G1, . . . , Gd be d ∈ N undirected graphs
and G = G1� . . .�Gd their cartesian product. Let
λκ1 , . . . , λ

κ
nκ be the Laplacian eigenvalues of the graphs Gκ

and vκ1 , . . . , v
κ
nκ the corresponding eigenvectors for κ ∈

{1, . . . , d}. The Laplacian eigenvalues and their correspond-
ing eigenvectors of G are

λi1 + λi2 + . . .+ λid and vi1 ⊗ vi2 ⊗ . . .⊗ vid ,

for i1 ∈ {1, . . . , n1}, . . . , id ∈ {1, . . . , nd}. �
Next, we define a simple cartesian product graph.
Definition 4.2 (Simple cartesian-product graphs): Let G

and G′ be two undirected graphs and let {λ1, . . . , λk} and
{λ′1, . . . , λ′κ} be the sets of distinct eigenvalues among all
the Laplacian eigenvalues of respectively G and G′. We
say that the graph G� = G�G′ is simple if the set
{λi + λ′α | i ∈ {1, . . . , k}, α ∈ {1, . . . , κ}} contains only
distinct eigenvalues. �
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B. Symmetries of the grid eigenvectors

Next, we provide tools to recognize symmetries in the grid
eigenvectors, based on the graph structure, which will play
a key role in the observability analysis.

Without loss of generality, let λ = λ1,1 + λ1,2 = . . . =
λµ,1+λµ,2 be an eigenvalue of geometric multiplicity µ ∈ N,
with λ1,1, . . . , λµ,1 (respectively λ1,2, . . . , λµ,2) eigenval-
ues of P1 (respectively P2) and corresponding eigenvec-
tors v1, . . . vµ (respectively w1, . . . , wµ). The corresponding
eigenspace Vλ is given by

Vλ = {v ∈ Rn1·n2 |v =

µ∑
i=1

αi(vi ⊗ wi), αi ∈ R}. (3)

Before stating the main results of this section, we need to
introduce some useful notation. Given a path Pn of length
n ∈ N, for {i, j} ⊂ {1, . . . , n}, i < j, we denote Pi:j the
sub-path of Pn with node set {i, . . . , j} (e.g., P2:4 is the
sub-path with node set {2,3,4}). Let G = Pl·n1

�Pm·n2
with

Pl·n1 of dimension l · n1 and Pm·n2 of dimension m · n2.
We call Gij = P((i−1)n1+1):(in1)�P((j−1)n2+1):(jn2), for i ∈
{1, . . . , l} and j ∈ {1, . . . ,m}, an n1×n2 subgrid of G, see
Figure 1.

l

...

1 G11 G12 G1m

G`1 G`2 G`m

1 2 . . . m

Fig. 1: Partition of a grid into subgrids

Let v ∈ Rl·n1·m·n2 be a vector of G, we call the
subvector of v associated to Gij the vector vij ∈ Rn1·n2 with
components (vij)[ν, `], ν ∈ {1, . . . , n1} and ` ∈ {1, . . . , n2},
given by (vij)[ν, `] = (v)[(i-1)n1+ν, (j-1)n2+`].

Informally, the subvector vij of v is constructed by select-
ing the components of v that fall into the subgrid Gij .

Next, given a grid G = Pn1
�Pn2

, with Pn1
and Pn2

paths
of length n1 and n2 respectively, we introduce two useful
operators that flip the components of a vector v associated
to a grid G. Formally, consider the matrices

(Πn1
⊗ In2

) =



0n2×n2 0n2×n2 . . . 0n2×n2 In2

0n2×n2
0n2×n2

. . . In2
0n2×n2

. .
.

0n2×n2
In2

. . . 0n2×n2
0n2×n2

In2 0n2×n2 . . . 0n2×n2 0n2×n2



and

(In1
⊗Πn2

) =



Πn2 0n2×n2 . . . 0n2×n2 0n2×n2

0n2×n2
Πn2

. . . 0n2×n2
0n2×n2

. . .

0n2×n2
0n2×n2

. . . Πn2
0n2×n2

0n2×n2 0n2×n2 . . . 0n2×n2 Πn2


.

Given a vector v ∈ Rn1·n2 associated to the grid G, with
components (v)[ν, `], ν ∈ {1, . . . , n1} and ` ∈ {1, . . . , n2},
let v1 = (Πn1 ⊗ In2)v and v2 = (In1 ⊗Πn2)v. The vectors
v1 and v2 are related to v by

(v1)[ν, `] = (v)[n1−ν+1, `],

and
(v2)[ν, `] = (v)[ν, n2−`+1],

for ν ∈ {1, . . . , n1} and ` ∈ {1, . . . , n2}. Finally, the
composition of the two operators satisfies (Πn1

⊗In2
)(In1

⊗
Πn2) = (Πn1 ⊗Πn2). Thus, when applied to a vector v, the
composed operator flips both components. That is, denoting
v3 = (Πn1 ⊗Πn2)v, we have

(v3)[ν, `] = (v)[n1−ν+1, n2−`+1],

for ν ∈ {1, . . . , n1} and ` ∈ {1, . . . , n2}.
Lemma 4.3: Let G0 = Pn1

�Pn2
with Pn1

and Pn2
paths

of length respectively n1 and n2. Any eigenvalue λ of the
Laplacian L0 of G0 is an eigenvalue of the Laplacian L of
G = Pl·n1�Pm·n2 for any l ∈ N and m ∈ N.

We are now ready to characterize the eigenvector symme-
tries by suitable subgrid partitions.

Theorem 4.4: Let G0 = Pn1�Pn2 be a grid of dimension
n1 × n2 with Pn1

and Pn2
paths of dimension respectively

n1 and n2. Take any grid G = Pl·n1�Pm·n2 of dimension
ln1 ×mn2 and let Gij , i ∈ {1, . . . , l} and j ∈ {1, . . . ,m},
be a partition into subgrids of dimension n1 × n2.

Then for each eigenvalue (possibly non-simple) common
to L and L0, any associated eigevector v of L can be
decomposed into subvectors vij relative to the subgrids Gij
where

vij = (Πn1
⊗ In2

)(i−1)(In1
⊗Πn2

)(j−1)v0

for i ∈ {1, . . . , n1} and j ∈ {1, . . . , n2}, where v0 is an
eigenvector of L0 associated to λ.

The above theorem has a nice and intuitive graphical
interpretation, as shown in Figure 2. Given a grid G and
an eigenvector v associated to an eigenvalue λ, we can
associate a symbol to each node depending on the value
of the eigenvector component. Next, we partition the grid G
into subgrids of dimension n1×n2. Given the symbols in the
subgrid G11, the symbols in a subgrid Gi,j , for i ∈ {1, . . . , l}
and j ∈ {2, . . . ,m}, are obtained by a reflection of the
subgrid Gi,j−1 with respect to the horizontal axis, while
the symbols in a subgrid Gi,j , for i ∈ {2, . . . , l} and
j ∈ {1, . . . ,m}, are obtained by a reflection of the subrgid
Gi−1,j with respect of the vertical axis.

Next, we analyze the eigenvector components of a subgrid
whose dimensions are prime, or equivalently the components
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Fig. 2: Graphical interpretation of Theorem 4.4

of eigenvectors associated to eigenvalues that are not eigen-
values of smaller subgrids.

Proposition 4.5: Let G0 = Pn1
�Pn2

be a grid of dimen-
sion n1×n2. For any eigenvalue λ, let Vλ be the associated
eigenspace, with structure as in equation (3). Then, each
eigenvector of the basis, (vi ⊗ wi), satisfies one of the four
relations:

(vi ⊗ wi) = (Π⊗ I)(vi ⊗ wi) = (I ⊗Π)(vi ⊗ wi)
(vi ⊗ wi) = (Π⊗ I)(vi ⊗ wi) = −(I ⊗Π)(vi ⊗ wi)
(vi ⊗ wi) = −(Π⊗ I)(vi ⊗ wi) = (I ⊗Π)(vi ⊗ wi)
(vi ⊗ wi) = −(Π⊗ I)(vi ⊗ wi) = −(I ⊗Π)(vi ⊗ wi).
In the following we denote the set of vectors satisfying

each one of the four relations in the proposition respectively
as S++, S+−, S−+ and S−−.

The result in Proposition 4.5 can be easily explained
by using a graphical interpretation. We associate a symbol
to each node depending on the value of the eigenvector
component. Also, we denote with the same symbol but
different colors, nodes that have components of opposite
sign. Each of the four cases in the proposition correspond to
a scheme in Figure 3.

(a) symmetry class S++ (b) symmetry class S+−

(c) symmetry class S−+ (d) symmetry class S−−

Fig. 3: Graphical interpretation of Proposition 4.5

This proposition has an important impact on the sym-
metries of general eigenvectors belonging to the same

eigenspace, when the dimensions n1 and n2 are prime num-
bers (and thus for each subgrid of a general grid). Clearly,
any eigenvector of Vλ can be written as a linear combination
of the basis vectors, and thus, using the proposition, by the
sum of at most four vectors each one having one of the
four symmetries. Thus, in order to identify the symmetries
of a general vector, we just need to identify nodes with the
same symbol and color in different classes. If basis vectors
of at least three different classes are present, by inspection
in Figure 3, no symmetries are present. On the contrary,
if all basis vectors belong to the same class, then also the
linear combination does. Interesting symmetries arise from
the linear combination of basis vectors belonging to two of
the four classes. Namely, a general eigenvector v satisfies:
• v(ν,`) = v(n1−ν+1,`) if the two classes share the first

symbol (e.g., S++ and S+−);
• v(ν,`) = v(ν,n2−`+1) if the two classes share the second

symbol (e.g., S++ and S−+);
• v(ν,`) = v(n1−ν+1,n2−`+1) if the two classes do not

share any symbol (e.g., S++ and S−−);

C. Observability analysis
In this section we provide necessary and sufficient condi-

tion to characterize all and only the nodes from which the
network system is observable. First, we need a well known
result in linear systems theory, see, e.g., [18].

Lemma 4.6: If a state matrix A ∈ Rn×n, n ∈ N, has an
eigenvalue with geometric multiplicity µ > p, then for any
C ∈ Rp×n the pair (A,C) is unobservable. �
The previous lemma applied to the grid Laplacian says that,
in case the grid is non simple with maximum eigenvalue
multiplicity µ, then the grid is not observable from a set of
observation nodes of cardinality less than µ.

Using Corollary 2.3, it follows straight that we can study
the observability properties of the grid separately for each
eigenvalue. Namely, to guarantee observability, we need to
show that for each eigenvalue of the grid Laplacian L, there
does not exists any eigenvector satisfying the condition in
(2.3), i.e. having zero in some components.

If λ is simple, the corresponding eigenspace Vλ in (3)
is given by Vλ = {v ∈ Rn1·n2 |v = α1(v1 ⊗ w1), α1 ∈ R}.
Thus, finding the zeros of any eigenvector in Vλ is equivalent
to finding the zeros of the eigenvectors v1 and w1 and
replicate them according to the Kronecker product structure.
Clearly, with this observation in hand, the analysis of any
simple eigenvalue can be performed by using the tools for
simple grid graphs developed in [16].

For eigenvalues with multiplicity greater than one, next
two considerations are important. First, not all the eigenvec-
tors of λ have the structure of a Kronecker product. Second,
consistently with Lemma 4.6, it is always possible to find
an eigenvector v ∈ Vλ with an arbitrary component equal
to zero, for a suitable choice of the coefficients αi in (3).
Thus, the observability analysis does not depend only on the
zero components of the path eigenvectors, but also on the
symmetries in the grid eigenvector components. That is, for
the eigenvalue under investigation, we want to answer to the
following question. If we find an eigenvector with zero in an
arbitrary component `, what are the other components that
are zero in the chosen eigenvector? We provide the analysis
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for non-simple eigenvalues of multiplicity two, leaving the
generalization to a discussion.

On the basis of the eigenvector symmetries identified
in Theorem 4.4, we can study the observability of a sub-
grid with prime dimensions. In particular, we concentrate
our analysis on the sector of components [ν, `] with ν ∈
{1, . . . , n1−1

2 } and ` ∈ {1, . . . , n2−1
2 }.

Next lemma provides useful properties of the eigenvector
components in a subgrid with prime length dimensions.

Lemma 4.7: Let G0 = Pn1�Pn2 be a grid of dimension
n1 × n2. Then, any Laplacian eigenvector u = v ⊗w of the
grid, with v and w respectively eigenvectors of Pn1

and Pn2

associated to eigenvalues λv and λw, has components u[ν,`],
ν ∈ {1, . . . , n1} and ` ∈ {1, . . . , n2} satisfying

(i) u[ν,`] = pν(λv) ·p`(λw) ·(v)1 ·(w)1, where pr(s) is the
polynomial of degree (r− 1) defined as p2(s) = 1− s
for r = 2 and, denoting p1(s) = 1, by the recursion

pr(s) = (2− s)pr−1(s)− pr−2(s) (4)

for r ≥ 3;
(ii) if n1 and n2 prime, then pν(λv) 6= 0 and p`(λw) 6= 0

for any ν ∈ {1, . . . , n1−1
2 } and ` ∈ {1, . . . , n2−1

2 }.
Next theorem gives necessary and sufficient conditions for

two eigenvector components to be both zero in a subgrid with
prime dimensions.

Theorem 4.8: Let G0 = Pn1�Pn2 be a grid of dimension
n1 × n2 with n1 and n2 prime. Let λ = λ1,1 + λ1,2 =
λ2,1 + λ2,2 be an eigenvalue of multiplicity two, with λ1,1
and λ2,1 (λ1,2 and λ2,2) eigenvalues of Pn1 (Pn2 ). Let Vλ be
the associated eigenspace. Then there exists an eigenvector
v ∈ Vλ with zero components [ν1, `1] and [ν2, `2], ν1, ν2 ∈
{1, . . . , n1−1

2 } and `1, `2 ∈ {1, . . . , n2−1
2 }, if and only if

pν2(s)

pν1(s)

∣∣∣
s=λ1,1

· p`2(s)

p`1(s)

∣∣∣
s=λ1,2

=
pν2(s)

pν1(s)

∣∣∣
s=λ2,1

· p`2(s)

p`1(s)

∣∣∣
s=λ2,2

,

(5)
where pr(s) is the polynomial of degree r − 1 defined by
the recursion in equation (4).

Next, we show a graphical interpretation of the of the
observability results obtained by combining the results of
Theorem 4.4, Proposition 4.5 and Theorem 4.8. We present it
through an example. In Figure 4 we show a two dimensional
grid of length 4 × 6. It can be easily tested that this grid
has two non-simple eigenvalues of multiplicity two, namely
λ1 = 2 and λ2 = 3. We partition the grid into subgrids
of dimensions 2 × 2 and 2 × 3. The eigenvalue λ1 = 2
(respectively λ2 = 3) is an eigenvalue of multiplicity two
in the subgrid 2 × 2 (2 × 3). The eigenvectors generating
Vλ1

(Vλ2
) belong to S+− and S−+ (S++ and S−−), which

gives the symmetries in Figure 4 (a) according to Proposi-
tion 4.5 and subsequent discussion. Replicating the subgrid
symbols according to Theorem 4.4 we get the structure in
Figure 4 (b). Given a set of observation nodes, the grid is
observable if and only if the nodes do not have any symbol
in common. If, for example, the observation nodes share the
top symbol, then the eigenvalue λ = 2 (of the subgrid 2×2)
is unobservable.

V. CONCLUSIONS

In this paper we have characterized the observability (by
duality the reachability) of grid graphs in terms of suitable

(a) subgrids 2x2 & 2x3 (b) subgrid partition

Fig. 4: Graphical interpretation of the observability analysis.

graph decompositions, symmetries in the structure of the grid
eigenvectors and simple rules from number theory. In partic-
ular, we have shown what are all and only the unobservable
set of nodes and provided simple routines to choose a set of
observation nodes that guarantee observability.
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