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Abstract— We consider the problem of data-based model
refinement, where we assume the availability of an initial
model, which may incorporate both physical laws and empirical
observations. With this initial model as a starting point, our
goal is to use additional measurements to refine the model. In
particular, components of the model that are poorly modeled
can be updated, thereby resulting in a higher fidelity model.
We consider two special cases, namely, system emulation and
subsystem identification. In the former case, the main system
is assumed to be uncertain and we seek an estimate of the
unknown subsystem that allows the overall model to approxi-

mate the true system. In this case, there is no expectation that
the constructed subsystem model approximates the unknown
subsystem. In the latter case, we assume that the main system
is accurately modeled and we seek an estimate of the unknown
subsystem that approximates the unknown subsystem.

I. INTRODUCTION

In the present paper we consider the problem of data-

based model refinement, where we assume the availability

of an initial model, which may incorporate both physical

laws and empirical observations. The components of the

initial model may have varying degrees of fidelity, reflecting

knowledge or ignorance of the relevant physics as well as

the availability of data. With this initial model as a starting

point, our goal is to use additional measurements to refine

the model. In particular, we wish to update the components

of the model that are poorly modeled, thereby resulting in a

higher fidelity model [1–5].

System identification is typically concerned with the con-

struction of a model of the entire system from measured

inputs to measured outputs. In contrast, our goal is to identify

only a subsystem of the model, where the remainder of the

model is not modified. One motivation for this objective is to

improve understanding of the physics of the poorly modeled

subsystem despite its low accessibility. Here, accessibility

refers to the availability of measurements or estimates of

the inputs and outputs of the unknown subsystem. This lack

of accessibility leads to a nonstandard system identification

problem.
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The present paper goes beyond [1–5] in two ways. First,

the model refinement algorithm described in Section II is

based on the extension of the retrospective cost adaptive

control (RCAC) algorithm described in [6]. The algorithm

in [6] requires knowledge of a limited number of Markov

parameters of the plant, and thus simplifies earlier versions

of RCAC described in [7–9]. Therefore, the algorithm in [6]

improves the model refinement technique described in [1,

4, 10]. Furthermore, the present paper encompasses multiple

versions of the model refinement problem, including system

emulation and subsystem identification. In the former case,

we seek an estimate of the unknown subsystem that allows

the overall model to approximate the true system. In this

case, there is no expectation that the constructed subsystem

model approximates the unknown subsystem. In contrast,

in the latter case, we seek an estimate of the unknown

subsystem that approximates the unknown subsystem.

II. PROBLEM FORMULATION

Consider the MIMO discrete-time main system

x(k + 1) = Ax(k) +Bu(k) +D1w(k), (1)

y(k) = Cx(k), (2)

y0(k) = E1x(k) + v(k), (3)

where x(k) ∈ R
n, y(k) ∈ R

ly , y0(k) ∈ R
ly0 , u(k) ∈ R

lu ,

w(k) ∈ R
lw , and k ≥ 0. The main system (1)–(3) is

interconnected with the unknown subsystem modeled by

u(k) = Gs(q)y(k), (4)

where q is the forward shift operator. The system (1)–(4)

represents the true system. We assume that the excitation

signal w(k) is known. v(k) denotes measurement noise.

Next, we assume a model of the main system of the form

x̂(k + 1) = Âx̂(k) + B̂û(k) + D̂1w(k), (5)

ŷ(k) = Ĉx̂(k), (6)

ŷ0(k) = Ê1x̂(k), (7)

where x̂(k) ∈ R
n̂, ŷ(k) ∈ R

lŷ , ŷ0(k) ∈ R
ly0 , û(k) ∈ R

lû .

The model of the main system is interconnected with the

subsystem model û(k) = Ĝs(q)ŷ(k). (8)

The goal is to estimate a subsystem model Ĝs(q) that

minimizes a cost function based on the performance variable

z(k)
△
= ŷ0(k)− y0(k) ∈ R

lz (9)

We estimate Ĝs(q) by retrospectively reconstructing the

signal û(k) that minimizes the performance at the current

time step. The reconstruction of û(k) uses minimal modeling
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information about the true system (1)–(3), namely, a limited

number of Markov parameters. We then use û(k) and ŷ(k)
to construct Ĝs(q). Figure 1 illustrates the model-refinement

architecture, which includes system emulation and subsystem

identification as special cases. Table II indicates the switch

positions for various model-refinement architectures.
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Fig. 1. Model-refinement architectures. The switches s0, s1 and s2 are
used to define different architectures.

Case s0 s1 s2 Remarks

1 0 0 1
System emulation without

subsystem excitation

2 0 1 0

System emulation without

subsystem excitation. If A,
B,C are known, this case

is subsystem identification

3 1 0 1
System emulation with

subsystem excitation

4 1 1 1

System emulation with

subsystem excitation. If A,
B,C are known, this case

is subsystem identification

Table II. Switch positions for various model-refinement architectures. A

switch in position 1 indicates the switch is closed, whereas a switch in

position 0 indicates it is open.

The goal of system emulation is to determine a subsystem

model Ĝs(q) such that the closed-loop frequency response

of the true system (from w to y0) matches the closed-

loop frequency response of the system model (from w to

ŷ0). Since the matrices A,B,C are unknown, the matrices

Â, B̂, Ĉ in the main system model are approximations of

A,B,C. The accuracy of this approximation determines

how well the constructed subsystem model approximates

the unknown subsystem. In the idealized case of subsystem

identification, where A,B,C are known exactly, we set

Â = A, B̂ = B, and Ĉ = C and use architectures 2 and

4 from Table II to obtain a subsystem model Ĝs(q) that

approximates the unknown subsystem Gs(q). However, the

less stringent objective of system emulation is to obtain a

model of the unknown subsystem such that the closed-loop

model approximates the true closed-loop system.

III. RETROSPECTIVE SURROGATE-COST-BASED SIGNAL

CONSTRUCTION

We begin by defining Markov parameters of the main

system model Ĝ(q). For i ≥ 1, let

Hi
△
= Ê1Â

i−1B̂. (10)

Therefore, H1 = Ê1B̂ and H2 = Ê1ÂB̂. Let r be a positive

integer. Then, for all k ≥ r,

x̂(k)=Ârx̂(k − r)+
r

∑

i=1

Âi−1B̂û(k−i)+
r

∑

i=1

Âi−1D̂1w(k−i),

(11)

and thus

z(k)=Ê1Â
rx̂(k−r)+

r
∑

i=1

Ê1Â
i−1D̂1w(k−i)−y0(k)+H̄Ū(k−1),

(12)

where H̄
△
=

[

H1 · · · Hr

]

∈ R
lz×rlû , and

Ū(k − 1)
△
=

[

ûT(k − 1) · · · ûT(k − r)
]T

.

Next, we rearrange the columns of H̄ and the components

of Ū(k− 1) and partition the resulting matrix and vector so

that H̄Ū(k − 1) = H′U ′(k − 1) +HU(k − 1), (13)

where H′ ∈ R
lz×(rlû−lU ), H ∈ R

lz×lU , U ′(k − 1) ∈
R

rlû−lU , and U(k− 1) ∈ R
lU . Then, we can rewrite (12) as

z(k) = S(k) +HU(k − 1), (14)

where

S(k)
△
=Ê1Â

rx̂(k−r)+
r

∑

i=1

Ê1Â
i−1D̂1w(k − i)−y0(k)+H

′U ′(k−1).

(15)

For example, H̄ =
[

H1 H2 H3

]

,

H′ =
[

H1 H2

]

, U ′(k − 1) =

[

û(k − 1)
û(k − 2)

]

,

and H = H3, U(k− 1) = û(k− 3). Next, we rewrite (14)

with a delay of kj time steps, where 0 ≤ k1 ≤ k2 ≤ · · · ≤
ks, in the form

z(k − kj) = Sj(k − kj) +HjUj(k − kj − 1), (16)

where (15) becomes

Sj(k − kj)
△
= Ê1Â

rx̂(k − kj − r)

+

r
∑

i=1

Ê1Â
i−1D̂1w(k−kj−i)− y0(k−kj) +H′

jU
′

j(k−kj−1)

and (13) becomes

H̄Ū(k−kj−1)=H′

jU
′

j(k−kj−1) +HjUj(k−kj−1), (17)

where H′
j ∈ R

lz×(rlû−lUj
), Hj ∈ R

lz×lUj , U ′
j(k−kj −1) ∈

R
rlû−lUj , and Uj(k − kj − 1) ∈ R

lUj . Now, by stacking

z(k−k1), . . . , z(k−ks), we define the extended performance

Z(k)
△
=

[

zT(k − k1) · · · zT(k − ks)
]T

∈ R
slz . (18)

Therefore,
Z(k)

△
= S̃(k) + H̃Ũ(k − 1), (19)
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where S̃(k)
△
=

[

ST(k − k1) · · · ST(k − ks)
]T

∈ R
slz ,

H̃ ∈ R
slz×lŨ , and Ũ(k − 1) ∈ R

lŨ . The vector Ũ(k − 1) is

formed by stacking U1(k−k1−1), . . . , Us(k−ks−1) and re-

moving repetitions of components. For example, with k1 = 0

and k2 = 1, stacking U1(k−1) =

[

û(k − 1)
û(k − 2)

]

and U2(k−

2) = û(k − 2) results in Ũ(k − 1) =

[

û(k − 1)
û(k − 2)

]

. The

coefficient matrix H̃ consists of the entries of H1, . . . ,Hs

arranged according to the structure of Ũ(k−1). Furthermore,

we assume that the last entry of Ũ(k − 1) is a component

of û(k − r).

Next, we define the surrogate performance

ẑ(k − kj)
△
= Sj(k − kj) +HjU

∗

j (k − kj − 1), (20)

where the actual past subsystem outputs Uj(k − kj − 1) in

(16) are replaced by the surrogate subsystem outputs U∗
j (k−

kj−1). The extended surrogate performance for (20), which

is defined as

Ẑ(k)
△
=

[

ẑT(k − k1) · · · ẑT(k − ks)
]T

∈ R
slz , (21)

is given by
Ẑ(k) = S̃(k) + H̃Ũ∗(k − 1), (22)

where the components of Ũ∗(k − 1) ∈ R
lŨ are components

of U∗
1 (k− k1 − 1), . . . , U∗

s (k− ks − 1) ordered in the same

way as the components of Ũ(k − 1). Subtracting (19) from

(22) yields

Ẑ(k) = Z(k)− H̃Ũ(k − 1) + H̃Ũ∗(k − 1). (23)

Finally, we define the retrospective cost function

J(Ũ∗(k − 1), k)
△
= ẐT(k)R(k)Ẑ(k), (24)

where R(k) ∈ R
slz×slz is a positive-definite performance

weighting. The goal is to determine refined subsystem out-

puts Ũ∗(k−1) that would have provided better performance

than the subsystem outputs U(k) that were applied to the

system. The refined subsystem outputs values Ũ∗(k− 1) are

subsequently used to update the subsystem estimate.

A. Cost Function Optimization with Adaptive Regularization

To ensure that (24) has a global minimizer, we consider

the regularized cost

J̄(Ũ∗(k − 1), k)
△
=ẐT(k)R(k)Ẑ(k)

+ η(k)Ũ∗T(k − 1)Ũ∗(k − 1), (25)

where η(k) = η̄zT(k)z(k) and η̄ ≥ 0. Substituting (23) into

(25) yields

J̄(Ũ∗(k − 1), k) =Ũ∗(k − 1)TA(k)Ũ∗(k − 1)

+ B(k)Ũ∗(k − 1) + C(k), (26)

where
A(k)

△
= H̃TR(k)H̃ + η(k)IlŨ , (27)

B(k)
△
= 2H̃TR(k)[Z(k)− H̃Ũ(k − 1)], (28)

C(k)
△
= ZT(k)R(k)Z(k)− 2ZT(k)R(k)H̃Ũ(k − 1)

+ ŨT(k − 1)H̃TR(k)H̃Ũ(k − 1). (29)

If either H̃ has full column rank or η(k) > 0, then A(k) is

positive definite. In this case, J̄(Ũ∗(k−1), k) has the unique

global minimizer

Ũ∗(k − 1) = −
1

2
A−1(k)B(k). (30)

B. Subsystem Modeling

The subsystem output û(k) is given by the exactly proper

time-series model of order nc given by

û(k)=

nc
∑

i=1

Mi(k)û(k−i)+
nc
∑

i=0

Ni(k)ŷ(k−i)+
nc
∑

i=0

Oi(k)w(k−i),

(31)

where, for all i = 1, . . . , nc, Mi(k) ∈ R
lû×lû , Ni(k) ∈

R
lû×lŷ and Oi(k) ∈ R

lû×lw . The subsystem output (31)

can be expressed as û(k) = θ(k)φ(k − 1), where θ(k) ∈
R

lû×nc(lû+lŷ+lw) is

θ(k)
△
= [M1(k) · · · Mnc

(k)

N1(k) · · · Nnc
(k) O1(k) · · · Onc

(k)] , and
φ(k − 1)

△
=
[

ûT(k − 1) · · · ûT(k − nc)

ŷT(k − 1) · · · ŷT(k − nc) ŵT(k − 1) · · · ŵT(k − nc) ]T

∈ R
nc(lû+lŷ+lw). (32)

Note if s2 = 0 then w(k) and Oi are removed from û(k),
θ(k), and φ(k − 1).

C. Recursive Least Squares Update

Let d be a positive integer such that Ũ∗(k − 1) contains

u∗(k − d). We define the cumulative cost function

JR(θ(k))
△
=

k
∑

i=1

λk−i||u∗(k − d)− φT(k − d− 1)θT(k)||2,

where φ(k − d) is given by (32) and λ(k) ∈ (0, 1] is the

forgetting factor. Minimizing the cumulative cost function

yields retrospective cost optimization (RCO)

θT(k) = θT(k − 1) + P (k − 1)φ(k − d− 1)

· [φT(k − d)P (k − 1)φ(k − d− 1) + λ(k)]−1

· (u∗(k − d)− φT(k − d− 1)θT(k − 1)). (33)

The error covariance is updated by

P (k) =λ−1(k)P (k − 1)− λ−1(k)P (k − 1)φ(k − d− 1)

· [φT(k − d− 1)P (k − 1)φ(k − d) + λ(k)]−1

· φT(k − d− 1)P (k − 1). (34)

We initialize the error covariance matrix as P (0) = βI ,

where β > 0.

IV. NUMERICAL EXAMPLES

We now consider numerical examples with various model-

refinement architectures to illustrate the effect of noise and

model uncertainty on the emulation of the closed-loop system

and, where applicable, the identification of the unknown

subsystem. For all examples in this section, RCO is turned

on after 100 steps. The level of measurement noise varies

for each example, where v = N (µv , σ
2
v) means that the
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output noise signal v is Gaussian white noise with mean µv

and variance σ2
v . We define SNR

△
=

σ2

ȳ0

σ2
v

, where σ2
ȳ0

is the

variance of the output signal ȳ0. The case number in each

example refers to the positions of the switches in Figure 1 as

described in Table II. For all examples, the subsystem model

parameters θ(k) are initialized at zero. For convenience, let

G(q) represent the main system, let Gcl(q) represent the

closed-loop system from w to ȳ0, and let Gs(q) represent

the unknown subsystem.

We consider the spring-mass-damper system shown in

Figure 2. For i = 1, 2, 3, let qi be the position of ith mass,

and let mi be the mass of the ith block. For i = 1, 2, 3, 4,

let ki be the stiffness of the ith spring, and let ci be the

damping coefficient of the ith damper. Finally, let w be the

force applied to the second block.

m1 m2

m3

c3 c4

c1 c2

k2k1

k3 k4

q1 q2

q3

w

Unknown Subsystem

Fig. 2. Spring-mass-damper system with main system and unknown
subsystem.

The discretized equations of motion of the main system

are x(k + 1) = Ax(k) +Bu(k) +D1w(k), (35)

y(k) = Cx(k), (36)

y0(k) = E1x(k) + ν(k), (37)

where x(k) =
[

q1(k) q2(k) q4(k) q5(k)
]T

,

A=











1 0 Ts 0
0 1 0 Ts

−Ts(k1+k2)
m1

Tsk2

m1
1− Ts(c1+c2)

m1

Tsc2
m1

Tsk2

m2

−Ts(k2+k4)
m2

Tsc2
m2

1− Ts(c2+c4)
m2











,

D1=









0
0
0
1









, B=









0
0
0
Ts

m2









, C=









1
0
0
0









T

, E1=









0
Tsk4

m3

0
Tsc4
m3









T

.

The discretized equations of motion of the unknown subsys-

tem are

xs(k + 1) = Asxs(k) +Bsy(k), (38)

u(k) = Csx(k), (39)

where

xs(k)=

[

q3(k)
q6(k)

]

, As=

[

1 Ts

−Ts(k3+k4)
m3

1− Ts(c3+c4)
m3

]

,

Bs=

[

0
1

]

, Cs=

[

Tsk4

m2

Tsc4
m2

]

.

Furthermore, Ts = 0.25, m1 = 4, m2 = 2, m3 = 10,

k1 = 12, k2 = 2, k3 = 4, k4 = 6, c1 = 4, c2 = 2, c3 = 5,

and c4 = 3.

Example 4.1: (Case 1, A,B,C unknown, SNR = 100).

Since A, B, and C are unknown, we choose Â, B̂, and Ĉ
such that Ĝ(q) is stable and minimum phase, but otherwise

arbitrarily. More specifically, we choose

Â =

[

−0.039 −0.029
0.023 0.0023

]

, B̂ =

[

0.003
0.098

]

,

Ĉ =
[

2.5 −0.78
]

. (40)

Moreover, µw = 0 and σ2
w = 5. For this example we take

nc = 20, η̄ = 0, β = 0.01, and H̃ = H1, which is the first

Markov parameter of Ĝ(q). The parameters of the model

refinement algorithm are chosen such that z(k) is minimized.

Figure 3 shows that the estimated frequency response of the

closed-loop system Ĝcl(q) approximates the closed-loop fre-

quency response of the true system Gcl(q). Next, we run this

example with three different SNR values for 5000 time steps.

Figure 4 shows that, as the SNR increases, the frequency

response of Ĝcl provides an improved approximation of the

frequency response of Gcl.

P
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k
)
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at

e
θ(
k
)

M
ag

n
it

u
d
e

(d
B

)
P

h
as

e
(d

eg
)

Angle (rad/sample)

Gcl

Ĝcl

0 π/4 π/2 3π/4 π

0 π/4 π/2 3π/4 π

0 0.5 1 1.5 2 ×104

0 0.5 1 1.5 2 ×104

-1000

-500

0

-100

-50

0

-0.2

0

0.2

-0.2

0

0.2

Fig. 3. The RCO algorithm is turned on at k = 100 steps. The closed-loop

frequency response of Ĝcl is indistinguishable from the frequency response
of Gcl.

Example 4.2: (Case 3, A,B,C unknown, SNR = 100).

The architecture for this example is different from the

architecture of Case 1 only in that the unknown subsystem
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Fig. 4. As the SNR increases, the accuracy of the frequency response of

Ĝcl improves.

Gs(q) has the additional input w, and hence

xs(k + 1) = Asxs(k) +Bs [y(k) w(k)]
T
,

where,
Bs=

[

0 0
1 Ts/m3

]

.

Furthermore, we let µw = 0 and σ2
w = 5. Since A,B,C are

unknown, we choose Â, B̂, Ĉ as in (40). For this example we

take nc = 20, η̄ = 0, β = 0.01, and H̃ = H1. Figure 5 shows

that, as the SNR increases, the accuracy of the frequency

response of Ĝcl improves.

M
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d

e
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P
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e

(d
eg
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Angle (rad/sample)
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SNR=1
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0 π/4 π/2 3π/4 π

-1000

-500

0

-100

-50

0

Fig. 5. As the SNR increases, the frequency response of Ĝcl more closely
approximates the frequency response of Gcl.

Example 4.3: (Case 2, A, B and C known). First, we in-

vestigate the effect of the amount of data on the identification

of Gcl and Gs using Case 2 architecture when A, B, and C
are known. For this example, µw = 0, σ2

w = 10 and there

is no noise. Furthermore, we let nc = 12, η̄ = 0, β = 0.01,

and H̃ = H3. Figures 6 and 7 show that as the amount

of data increases, the accuracy of the frequency responses

of Ĝcl and Ĝs improve. Note that the frequency response

of Ĝs cannot approximate Gs above 0.75 radians/sample

because the transfer function that multiplies Gs in Gcl rolls

off above this frequency. Next, we investigate the effect of

SNR on Case 2 architecture when A, B, and C are known.

The parameters are the same as in the previous example.

Figures 8 and 9 show that as the SNR increases, the accuracy

of the frequency responses of Ĝcl and Ĝs improve.
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Fig. 6. As the amount of data increases, the frequency response of Ĝcl

more closely approximates the frequency response of Gcl.
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Fig. 7. As the amount of data increases, the frequency response of Ĝs

more closely approximates the frequency response of Gs.
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Fig. 8. As the SNR increases, the frequency response of Ĝcl more closely
approximates the frequency response of Gcl.
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Fig. 9. As the SNR increases, the frequency response of Ĝs more closely
approximates the frequency response of Gs.
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Example 4.4: (Case 2, A uncertain, B and C known,

SNR=100). In this example we investigate the effect of

uncertainty in A. Uncertainty in A is introduced by scaling

the damping coefficient c2 by an unknown scale factor α.

Thus, Â is obtained by replacing c2 in A by αc2. For

this example, µw = 0 and σ2
w = 5. Furthermore, we let

nc = 12, η̄ = 0, β = 0.01, and H̃ = H3. Figures 10 and

11 show that as the uncertainty in A decreases (that is, α
approaches 1), the frequency responses of Ĝcl and Ĝs more

closely approximate the frequency responses of Gcl and Gs,

respectively.
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Fig. 10. Estimate of Gcl with uncertain ĉ2 = αc2. As α approaches

1, the frequency response of Ĝcl more closely approximates the frequency
response of Gcl.
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Fig. 11. Estimate of Gs with uncertain ĉ2 = αc2. As α approaches

1, the frequency response of Ĝs more closely approximates the frequency
response of Gs.

V. CONCLUSIONS

This paper focused on the problem of model refinement,

where data are used to improve the accuracy of a subsystem

model connected by feedback to a given main system model.

In particular, the objective is system emulation, where the

goal is to estimate a subsystem model in order to pro-

vide a combined system model that has improved accuracy

relative to the main system alone. The inputs and outputs

of the unknown subsystem are not assumed to be accessi-

ble, and thus standard system identification techniques are

not applicable. We applied retrospective cost optimization,

which reconstructs the input to the main system from the

unknown subsystem. The main system may be well known

or uncertain. In the latter case, there is no expectation that

the estimated subsystem model approximates the unknown

subsystem. However, if the main system is known exactly,

then the estimated subsystem may provide a useful estimate

of the unknown subsystem. Several numerical examples were

used to illustrate the approach. The performance of the

algorithm was assessed in terms of the closeness of the

frequency response plots. The ultimate goal of this work

is to provide a tool that engineers and scientists can use

to improve the accuracy of large-scale models and estimate

unknown subsystems that are difficult to model due to the

inaccessibility of their inputs and outputs.
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