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Abstract— The advanced traveler information provides real-
time information about estimated time of arrival for the bus to
the commuters. The bus transmits its location information to the
base station frequently and then base station uses this available
location information and advanced prediction algorithms to
estimate the time of arrival for rest of the stops on the itinerary.
This frequent communication between the bus and base station
adds a recurring cost to the implementation and management
of such a system. In this paper we wish to study performance of
the system wherein the bus transmits its information only when
it is pulled by base station. Algorithms that determine when
to request information are developed for the two scenarios:
one where motion on each link on the road network is modeled
with a single common statistical model, and another where each
link on the road has an individual model for vehicle motion.
The second scenario can generate more accurate predictions
of vehicle motion, but the algorithms for determining when
to request information from the vehicles are more complex.
The resulting algorithms are evaluated using Monte Carlo
simulations to illustrate the performance of the approaches.

I. INTRODUCTION

One of the main reasons people avoid public transport is
due to perceived wait time, caused by uncertainty in the time
of arrival of the bus. Recently, there has been an increased
interest in encouraging the use of public transport [1], to
reduce oil consumption and traffic. Currently, transit author-
ities make the time of arrival information available to the
commuters via printed schedules that are posted on the bus
stops and other information dissemination mechanisms such
as website, mobile phones, schedule pamphlets, etc. The
problem with these methods is that the schedules are static
and are not updated as the bus traverses its trip and faces new
traffic conditions. The main function of an advanced traveler
information system is to update dynamically the arrival time
of the bus [2], [3], [4].

For an ATIS, each transit vehicle has a GPS receiver and
a transmitter that transmits the location information of the
vehicle to the base station [5], [6]. The base station then
uses this location information and advanced algorithms to
estimate the time of arrival (ETA) for rest of the stops on
the itinerary [7], [8], [9], [10], [11]. A block diagram of the
existing ATIS is shown in the Fig. 1(a).

As shown in the block diagram the predictor uses the
location information of the bus to predict the estimated time
of arrival for the subsequent stops on the route. Existing
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Fig. 1. Figure showing the block diagram of the ATIS system. The predictor
and corrector are the predict and update steps of the conventional filter. ETA
are the algorithms that are used to estimate the expected time of arrival for
the future stops on the itinerary. (a) Existing System (b) Proposed System.

methods employ protocols of transmissions that are fixed a
priori. Most of the existing system transmits the location
information either every kth time instant or after every m
meters [12], [13]. The problem with these protocols is that
are not adaptive, and they do not account for the traffic
condition and the time of journey. For example if the
bus is running when there is less traffic on the road, the
number of communications to the base station can be reduced
significantly. This frequent communication is one of the main
hurdles for implementation of such systems, especially in de-
veloping countries. Another point is that the communication
cost is not just one-time cost but a recursive one. In fact one
transit authority (TriMet in Portland, Oregon) that did not
account for the communication cost in its planning had to
scale back the deployment due to the cost [1]. Alternative
approaches that propose wire line communications have
limitations because there is little flexibility in changing routes
or bus stops, and can run into significant maintenance costs
because of the distributed deployment of hardware.

In our previous work [14], we have developed stochastic
models of bus motion in urban traffic, along with nonlinear
estimation algorithms that allow the bus to use route maps
along with traffic models and real-time position measure-
ments such as GPS to estimate the bus state. Subsequently,
in [15], we developed algorithms that select times at which
the bus can decide to communicate its estimate to the
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base station, in order to keep the divergence between the
information contained at the base station and the information
at the bus small while limiting communications. These
algorithms correspond to push protocols, as the recipient of
new information (the bus) determines the times at which to
share this information with the base station.

In this paper, we consider a different approach, where the
base station decides when information needs to be commu-
nicated; we refer to such operation as pull protocols. We
propose and analyze pull protocols for collecting information
to predict the bus schedule based on communicated mea-
surements collected by the bus. We use a hybrid dynamical
model of vehicle motion presented in [14], together with
nonlinear estimation algorithms to estimate the bus states.
Based on the predicted gain in information quality, the base
station determines whether an update is needed and selects
the times to communicate.

The rest of this paper is organized as follows: Section II
presents background results, including models of vehicle
motion on links and state estimation algorithms. Section III
describes the problem of selecting which times the base
station requests reports from the bus. In sections IV and V,
we present our proposed algorithms for determining request
times for reports, and section V has an illustrative simulation
example. Section VII has concluding remarks.

II. BACKGROUND

In this section we present the model that is used to define
the dynamics of bus on the road and the estimation algorithm
that will be used for tracking the motion of the bus, based
on our previous modeling efforts [14]. We assume the route
of the bus is known a priori and is divided into links l =
1, . . . ,N. Each link will be modeled with different dynamic
model that governs the evolution of the continuous state,
described later. Specifically, the model at time k on link l(k)
in state space form is:

x(k+1) = Fl(k)x(k)+Wl(k)(k) (1)
y(k) = hl(k)(x(k))+Vl(k)(k) (2)
l(k) = g1(x(k)) (3)

where suffix l(k) ∈ {1, . . . ,N} indicates the currently active
link, Fl(k) is a matrix indicating linear dynamics, hl(k) is a
nonlinear measurement equation, and g1 is an integer valued
map that identifies the current link at time k. The noise
processes Wl(k)(k) and Vl(k)(k) are link dependent white
Gaussian noise with zero mean and variance Ql(k)(k) and
Rl(k)(k), respectively.

A. Model

The proposed model assumes that each link has different
average velocity. We model the velocity of the vehicle by
Ornstein-Uhlenbeck process, which is specified as

dVt = λ (Vt −V0)+σdWt (4)

dWt is the differential of the Brownian motion. In (4), Vt is
the velocity at time t, −λ > 0 is the rate of convergence to

average speed, and V0 is the average velocity of the link.
The state of the vehicle on the link consists of its position
along the trajectory and the vehicle speed. Discretizing the
continuous dynamics with time step h yields the stochastic
motion model for the link as:

x(k+1) = F(h)
l(k)x(k)+B(h)

l(k)ul(k)+W(h)(k) (5)

where F(h)
l(k) = eF̃l(k)h, B(h)

l(k) =
∫ h

0 eF̃sB̃ds, h is the sampling

interval, and W(h)
l(k)(k) is white Gaussian noise with zero mean

and variance Q(h)
l(k). The expressions for F(h)

l(k),B
(h)
l(k) and Q(h)

l(k)
are given below.

F(h)
l(k) = eF̃l(k)h = I2×2 + F̃l(k)

(eλl(k)h−1)
λl(k)

B(h)
l(k) =

∫ h

0
eF̃m(t)sB̃ds =

 1
λ 2

l(k)
(eλl(k)h−1)− h

λl(k)

1
λl(k)

(eλl(k)h−1)



Q(h)
l(k)(1,1) =

h
λ 2

l(k)
+

1
λ 3

l(k)

(
e2λl(k)h−1

2
−2(eλl(k)h−1)

)

Q(h)
l(k)(1,2) = Q(h)

l(k)(2,1) =
1

λ 2
l(k)

(
e2λl(k)h−1

2
− (eλl(k)h−1)

)

Q(h)
l(k)(2,2) =

e2λl(k)h−1
2λl(k)

Q(h)
l(k) =

[
Q(h)

l(k)(1,1) Q(h)
l(k)(1,2)

Q(h)
l(k)(2,1) Q(h)

l(k)(2,2)

]
×σ

2

where F̃m(t) =

[
0 1
0 λm(t)

]
, B̃ =

[
0
1

]
, l(k) indicates the

link number (l(k) ∈ {1, . . . ,N}), ul(k) =−λl(k)V0l(k) (V0l(k) is
the average velocity of the l(k)th link) and λl(k) is the rate
constant for link l(k)).

The above model describes the dynamics on a link. As the
state transitions from one link location to another, different
discrete dynamics are applied, leading to a stochastic hybrid
model with state-dependent switching. Additional details on
the model above can be found in [14], [16].

B. Estimation Algorithm

In [14], we explored alternative estimation algorithms for
determining the current state of the bus given periodic reports
of GPS measurements from the bus. In this paper, we use a
modification of the Extended Kalman filter (EKF) proposed
in [14] for the system given in (1)) in order to generate
estimates of the current bus state. The extension uses a
two-step prediction approach to accommodate the switching
between links, as described below:

Assume that at step k− 1, the EKF updated estimate is
x(k− 1|k− 1) and its updated covariance P(k− 1|k− 1).
The first step is to compute the expected time remaining
to switch links, τs, by predicting the updated estimate using
the process model corresponding to the link exit time, then
using the model for the next link to predict until the next
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sampling time. We approximate the predicted link exit time
using the straightforward constant velocity approximation,
accurate when the state is close to the exit of the link:

τs =
C− x1(k−1|x−1)

x2(k−1|k−1)

where C is the location of the switching corner, and
x(k−1|k−1) = [ x1(k−1|k−1) x2(k−1|k−1) ]T . Then,
if τs ≥ h, the prediction algorithm uses the current link
model and generates a standard EKF prediction. In the
case where τs < h, the prediction uses a two-step process,
where prediction from t = kh to kh + τs uses the model
from the first link, and prediction from kh+ τs to (k+ 1)h
uses the model from the subsequent link, where the discrete
model matrices are adjusted appropriately to the size of the
prediction intervals. The update of the EKF remains the
same. The relevant equations are summarized below.

Prediction Equations

f unction[x(k|k−1),P(k|k−1)] =
Predict{x(k−1|k−1),P(k−1|k−1)}

One step prediction equations (Away from corner):

x(k|k−1) = F(h)
l(k)x(k−1|k−1)

P(k|k−1) = F(h)
l(k)P(k|k−1)F(h)T

l(k) +Q(h)
l(k)

Two step prediction equations (Close to the corner)

x(τs|k−1) = F(τs)
l(k)x(k−1|k−1)

P(τs|k−1) = F(τs)
l(k)P(k|k−1)(F(τs))T

l(k)+Qτs
l(k)

x(k|k−1) = F(h−τs)
l(k)+1x(τs|k−1)

P(k|k− 1) = F(h−τs)
l(k)+1P(τs|k− 1)(F(h−τs))T

l(k)+1 +

Q(h−τs)
l(k)+1

Update Equations:

f unction[x(k|k),P(k|k)] =
U pdate{x(k|k−1),P(k|k−1),y(k)}

l̂(k) = g(x(k|k−1)
H = ∂

∂x hl̂(k)(x(k|k−1))
innv(k) = y(k)−hl̂(k)(x(k|k−1))
S(k) = HP(k|k−1)HT +R(k)
K(k) = P(k|k−1)HT S−1(k)
x(k|k) = x(k|k−1)+K(k)innv(k)
P(k|k) = (I−K(k)H)P(k|k−1)

III. PROBLEM STATEMENT

As shown in Fig.1(a), the bus collects the GPS information
and transmits it to the base station. The base station then
uses the received observation along with an estimation algo-
rithm such as the modified Extended Kalman Filter above
to estimate the current location of the bus. This location
information is then used by the ETA algorithms to predict
the time of arrivals for rest of the stops on the itinerary.
In this paper, we use the architecture proposed in [15] as
in Fig.1(b). The architecture moves the estimation algorithm
from the base station to the bus while retaining a copy of the

predictor at the base station. The predictor at the base station
is used to update commuters as to expected bus arrivals. We
assume the bus is collecting periodic location measurements
and using them to update its state estimate. We want to
define the problem of when these state estimates should be
communicated to the base station, trading off frequency of
communication for accuracy of prediction.

Let PG(k) be the conditional distribution of the bus state
given the information available at the base station at time
k, and PL(k) be the conditional distribution of the bus state
given all the measurements available at the bus. If j was
the last communication time from the bus, then PG(k) =
p(x(k)|Y[0, j]), i.e., conditional distribution of state x at time
k given the measurements from time 0 to j ( j ≤ k), and
PL(k) = p(x(k)|Y[0,k]). Since we are using a modified EKF
estimator as described above, we approximate the conditional
distributions PG(k) and PL(k) by Gaussian distributions,
resepresented as N (xG(k),PG(k)), and N (xL(k),PL(k))
respectively.

Let u(k) be the time-varying control signal that indicates
the times at which the bus is requested to communicate its
estimate:

u(k) =

{
0 No Transmission;
1 Transmission;

If u(k) = 1, the base station pulls the most recent information
from the bus and PG(k) is updated as PG(k) = PL(k). The
goal of the problem is to keep the difference between
PG(k) and PL(k) small while using limited communications.
Further, since base station does have not have access to the
information available at bus (in between communications),
the pull protocols schedules the transmission solely based on
PG(k). In particular, we shall use the trace of the covariance
of PG(k) as the cost function.

The problem for scheduling transmission for pull protocols
is given as:

min
γ∈ΓM

T

∑
k=1

trace(PG(k)) s.t.
T

∑
k=1

u(k)≤M (6)

with
PG(k) = Predict{PG(k−1)} i f u(k) = 0;

= PL(k) i f u(k) = 1. .

where ΓM =
(T

M

)
is the set of admissible policies for M

resources. Note that the base station does not have access
to PL(k) unless there is communication. We assume that
the local estimator on the bus has achieved a steady-state
updated estimate of the error covariance Lsl of the link. For
linear observation models, this steady state covariance can be
computed a priori. We model the covariance dynamics at the
base station when there is no update from the bus using the
linear dynamics model of the link. The optimization problem
in (6) becomes a deterministic optimization problem over the
evolution of the predicted covariance matrix, with simple
dynamics given by:

PG(k) =

{
Lsl if u(k) = 1

F(h)
l(k)PG(k−1)(F(h)

l(k))
T +Q(h)

l(k) otherwise
(7)
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At communication times, the conditional mean and covari-
ance of the local nonlinear estimator of the bus is commu-
nicated to the base station.

IV. POLICY FOR A SINGLE LINK MODEL

Consider the problem when the bus travels according to
a common dynamical model on all links, so there are no
switching dynamics. The evolution of the covariance at the
base station will be given as:

PG(k) =

{
Ls if u(k) = 1
F(h)PG(k−1)(F(h))T +Q(h) otherwise

(8)

We solve this via dynamic programming. Let V (Lu,M,T ) is
the optimal solution with M available resources, T time hori-
zon, and Lu is the starting covariance matrix. Let γopt be the
corresponding optimal policy for the following optimization
problem.

V (Lu,M,T ) = min
γ∈ΓM

T

∑
k=1

tr(PG(k)) s.t.
T

∑
k=1

u(k)≤M (9)

where PG(1) = Lu (unknown covariance matrix) , u(k) ∈
{0,1} and PG(k) is updated with the steady state covariance
Ls if the information is pulled as in (8).

A. Starting with steady state covariance

A basic building block is to consider the above problem
when Lu = Ls. For this case, we have a simple characteriza-
tion of the optimal policy:

(a)

(b)

Fig. 2. Changes in the cost function with respect to time. In between
communications the cost function is generally increasing and reduces to a
specific value on communications. (a) Cost function with communications
at time 0 . (b) Cost function with no communications at time 0.

Theorem: For the problem given in (9) with PG(1) = Ls,
the best communication policy is to divide the total time
period T into M+1 windows such that there a1 windows of
size b1 and a2 windows of size b2, where

a1 = T − (M+1)×
⌊

T
M+1

⌋
; a2 = M+1−a1

b1 =

⌊
T

M+1

⌋
+1; b2 =

⌊
T

M+1

⌋
This result is a consequence of the prediction error dy-

namics starting from the filter steady state covariance. This
guarantees the following inequality:

trace(PG(k+1))≥ trace(PG(k))

Hence, it is more efficient to sample as uniformly as possible.
The detailed proof of the theorem is omitted here. Interested
readers are referred to [16] for more details.

We illustrate this result with an example. Let us assume
that T = 27,M = 4. Consequently

a1 = 27−5×
⌊

27
5

⌋
= 2; a2 = M+1−a1 = 3

b1 =

⌊
27
5

⌋
+1 = 6; b2 =

⌊
27
5

⌋
= 5

So there are two windows of length six and three windows
of length five. Let us denote P[1−K] =∑

K
i=1 trace(PG(i)). The

total cost for the numerical problem above with the proposed
transmission policy will be given as:

Vγopt = 2×P[1−6]+3×P[1−5]

Let γ = [i1, i2, . . . , iM], where ii denotes a communication
time. Note that decision vector is not unique, as there are
different combinations of i1, i2, . . . , iM that produce the above
given windows. For the example above, we choose i1 =
5, i2 = 10, i3 = 15, i4 = 21.

To illustrate that the above policy is optimal, consider a
new decision vector given as γ = [i1, i2, i3, i4 +1] so that we
decrease the length of the last window from 6 to 5, while
increasing the length of the next-to-last window from 6 to 7.
Now we show that Vγ is greater than Vγopt .

Vγ = P[1−7]+4×P[1−5]

= P[1−6]+4×P[1−5]+ trace(PG(7))

≥ P[1−6]+4×P[1−5]+ trace(PG(6))

≥ 2P[1−6]+3×P[1−5] =Vγopt

Similar inequalities are easily shown for any other policy
that does not use the optimal window lengths.

The following properties of the optimal solution are easily
established, where Lb ≥ La means Lb − La is a positive
semidefinite matrix:

If La ≤ Lb then V (La,M,T )≤V (Lb,M,T )

If Ta ≤ Tb then V (L,M,Ta)≤V (L,M,Tb)

If Ma ≤Mb then V (L,Ma,T )≥V (L,Mb,T )

B. Starting with any given covariance

The result from last subsection IV-A can be easily ex-
tended to a link with any unknown starting covariance matrix,
using dynamic programming.

Theorem: For the problem given in (9) with PG(1) = Lu,
the optimal policy is given by

γopt =
[

topt χopt
]

where etopt is the optimal time of the first measurement, ob-
tained as the solution of the following optimization problem:

mint∈{1,...,T}

{
t

∑
i=1

tr(PG(i))+V (Ls,M−1,T − t)

}
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and χopt is the the optimum policy for the second term in the
above given minimization, for the interval starting at topt with
covariance Ls. The optimum value of the one link problem
will be given by

V (Lu,m,T ) =

{
topt

∑
t=1

trace(PG(t))+V (Ls,m−1,T − topt)

}
The above theorem reduces the optimization problem to a

line search plus the solution of the previous problem when
the initial covariance was Ls.

V. PULL PROTOCOL FOR HYBRID MULTILINK SYSTEMS

In this section we develop algorithms for requesting in-
formatio in multilink systems with different models for each
link. Define the following variables that will be used in
development of the solution.

Cn: Indicates the cost-to-go function at the nth link.
Mn: Indicates the resources available at the nth link to
plan for the remaining itinerary.
Kn: Indicates the number of time steps between the
switching time to link n and the time that the last
communication took place.

The pull protocol problem given in (6) can be rewritten
for link-by-link as given below:

min
γ∈ΓM

N

∑
l=1

Tl

∑
k=1

trace(PG(k))

s.t.
N

∑
l=1

Tl

∑
k=1

u(k)≤M

where Tl is the time spent by the bus on the lth link. Note
that, in general, Tl will be random, based on the stochastic
model used for motion in link l. To define an approximate
optimization problem, we compute estimates of Tl by prop-
agating the current state estimate xG(k) and observing the
times at which the predicted trajectory changes links. Also
note that ΓM =

[
Γ1

m1
. . . ΓN

mN

]
with ∑

N
l=1 ml =M, where

Γl
ml

is the set of policies for the lth link that has ml resources.
Since we are using the formulation above, it not only reduces
the computation cost but also allows us to use the results
from earlier sections.

Consider the last link N. We compute the cost-to-go
associated with measurements at the last link, CN(KN ,MN),
as the solution of the problem with initial covariance given
by LsN−1 , propagated using the model for link N−1, for KN
steps, with TN periods to go on link N. This optimal cost
is computed for feasible pairs of integers KN ,MN using the
results of the previous subsection. We continue the solution
via dynamic programming for previous links as follows.
Assume we have computed Ck(Kk,Mk) for k > n. Then,

Cn(Kn,Mn) =

min
γ∈Γl

m,m

{
Tn

∑
k=1

tr(PG(k))+Cn+1(Kn+1,Mn−m)

}
s.t.

Tn

∑
k=1

u(k)≤ m,

Kn+1 = Tn +1−max{k : u(k) = 1,1≤ k ≤ T} (10)

where m indicates the resources allocated to nth link, PG(1)
is computed by predicting Lsn−1 forward by Kn steps using
the model of link n−1, and PG(k) is updated as in (7).

The recursion is valid for any link except the currently
active link. In case of the currently active link, (10) is still
valid with a minor caveat about the way PG(1) is computed
since this covariance is the initial covariance in the problem
and is already known.

The above recursion is approximate in that the times Tn
were computed by propagating the mean of the state. In
order to provide an adaptive algorithm that uses the real-time
information provided by the bus, whenever new information
is pulled from the bus, the current information at the base
station is updated, including a new mean state estimate. This
new average state estimate is used to recompute the expected
travel times on each link, and to resolve the problem in (10).

Note that the cost-to-go function in (10) not only depends
on Kn and Mn but also depends on time spent on the link
Tn. One has to compute cost-to-go matrix (C) for all the
future links every time a transmission takes place as there
will be new predicted Tn. Thus, much effort will be spent
computing costs for transitions that are far in future and
are hardly accurate. As an alternative, we can assume that
vehicle will be traveling with the average velocity of each
link for future links. Therefore, the times on each link will
be approximated as Tl =

d(Ll)
V0Ll

where d(Ll) is the length of
the link and V0Ll is the average velocity on the link. In this
case, the new information will only be used to compute the
time spent on current link.

VI. SIMULATION EXAMPLE

In this section we illustrate the performance of the above
algorithms as compared with alternative approaches using
simulated examples. In this example we take a linear system
of three links as shown in Fig. 3. The dynamics of each
link is modeled with process model from section II, with
following parameters: L1: V0 = 1500,λ =−1,σ2 = 300; L2:
V0 = 2000,λ =−1,σ2 = 450; L3: V0 = 1750,λ =−1.5,σ2 =
350. The distances are measured in feet and time in minutes.
We use parameters that are closer to those expected in
urban traffic. In Fig. 3, each street has a different elevation
([θL1 ,θL2 ,θL3 ] = [π

4 ,0,
π

3 ]rads) with respect to the reference
coordinate system and the measurements are made via a GPS
receiver. The GPS is assumed to have variance of 5002 along
x and y directions. In addition, we assume that the average
velocity in each link is unknown, and must be estimated
as part of the state variable x(k) based on the observations
of actual position based on progress against traffic. The
observation equation is given as:

y(k) = H(k)x(k)+M(k)+v(k)

where H(k) =

[
cosθl(k) 0 0
sinθl(k) 0 0

]
, and M(k) =[

xc
l(k)−dl(k)cosθl(k)

yc
l(k)−dl(k)sinθl(k)

]
, dl(k) is the sum of link lengths

prior to the current link. These equations can be easily
derived using geometry [16].

Fig. 4 shows the transmission schedule for the periodic
transmission and for the case when transmissions are sched-
uled using the proposed algorithms in this paper, while the
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tracking results are given in Fig. 5. We ran 200 Monte Carlo
simulations and compared the results. Note that transmission
schedule for the pull protocols in this paper is developed at
the base station which does not have direct access to the
measurements. Consequently, the schedule used in these re-
sults is based on the most recent bus state estimate at the last
transmission. For analytical simplicity, we assume that when
a transmission takes place, the base station error covariance
will be updated with the steady state error covariance of
the underlying link. The results clearly show that the pull
protocols can adapt better to the changing environment as
compared to periodic transmission of information. Under
normal conditions and single traffic link, a periodic schedule
yields best results, as shown in our results, and our proposed
protocols also yield the same results.

The gain in accuracy with the proposed communication
protocols will be more pronounced in traffic conditions
when the algorithms can use transmitted information for re-
planning. We have not simulated replanning, as the resulting
transmission schedules will be sample-path dependent.

(b)
Fig. 3. Examples Set up. L1,L2 and L3 are the links. A, B and C are
the corners with coordinates (xc

1,y
c
1), (x

c
2,y

c
2), and (xc

3,y
c
3), respectively. The

arrow indicates the direction of travel.
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Fig. 4. Transmission Schedule for periodic reporting (top) and planned
transmission schedule adapted to different link models (bottom)
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Fig. 5. Error in Position (left) and velocity (right) for periodic (green) and
optimized (red)

VII. CONCLUSION

In this paper, we present an algorithm to schedule requests
by a base station for transmissions of state estimates from

Type Mean x mean v tr(Variance) Avg. KL Dist.

KF 207.1365 23.712 0.6847×105 -
Periodic 240.379 20.1899 1.8599×105 1.3275

Optimized 230.9324 21.6225 2.2830×105 1.1616

TABLE I
RMS ERROR IN EXPERIMENT FOR THE DIFFERENT ALGORITHMS

buses to support an advanced advanced traveler information
system. The algorithm is based on a stochastic hybrid system
model of bus motion, and uses approximate dynamic pro-
gramming techniques to formulate an optimization problem
for determining a communication schedule. The schedule is
recomputed when new information arrives from the bus, as
the updated state estimates change the estimated time that is
spent on each link of a route. Our simulation results estab-
lish that the schedules computed by our algorithm achieve
superior performance to periodic reporting schedules.

We are currently conducting further experiments to evalu-
ate the adaptive performance of the algorithm in comparison
with other communication protocols. Other future research
directions include integration of information from multiple
buses in order to refine the models used in prediction of
traffic dynamics on each link, and incorporation of models
for bus stops as part of the routes.
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