
Freshwater-Saltwater Boundary Detection

Using Mobile Sensors

Part I: Drifter Deployment

Yu Ru and Sonia Martinez

Abstract— Due to a reduction in the supply of freshwater in
estuaries, saltwater can intrude deeply into river channels. We
focus on the freshwater-saltwater boundary detection problem,
and identify a point on the boundary that reflects the degree
of salinity intrusion via deploying mobile drifters with powered
propellers. Our approach consists of deploying two drifters to
explore the boundary in different directions and obtaining the
estimate of the point based on the estimates from these two
drifters. We show that the proposed algorithms can achieve an
arbitrarily accurate estimate under certain assumptions on the
salinity field.

I. INTRODUCTION

Due to a reduction in the supply of freshwater in estuaries,

saltwater can intrude deeply into river channels, which ad-

versely impacts inland biota. The degree of salinity intrusion

is usually identified by the relative location of the freshwater-

saltwater boundary with respect to the water mouth. More

precisely, a salinity threshold can be used to define the

freshwater-saltwater boundary. For example, the threshold

could be 2ppt (parts per thousand) since the 2ppt bottom

salinity position could be used as a habitat indicator for es-

tuarine populations as studied in [1]. Detecting the boundary

is a challenging task because there are also other factors that

could affect the boundary, such as tidal forcing, wind mixing,

and gravitational circulation [2]. Previously the freshwater-

saltwater boundary has been studied based on simplified 1-

D theoretical analysis [2], numerical analysis [3], or static

measurements [4]. However, none of these approaches is

capable of obtaining a relatively accurate boundary (that

might change slowly with time).

In this paper, we study tracking the freshwater-saltwater

boundary via mobile drifters with powered propellers that

can run against river flows. Instead of recovering the exact

boundary, the objective is to deploy the drifters automatically

to determine a point (on the boundary) which goes furthest

inland. This point can reflect the degree of salinity intrusion

into a river channel and can be used for the operation of

control structures (e.g., the Hiram M. Chittenden Locks in

Salmon Bay, Washington) to prevent salinity intrusion. We

propose boundary point detection, boundary exploration, and

boundary exploitation algorithms which adaptively explore

the boundary, and show that the proposed algorithms can

This work was supported in part by NSF Award CNS-0930946. The
authors are with Department of Mechanical and Aerospace Engineering,
University of California, San Diego, 9500 Gilman Dr, La Jolla CA, 92093,
{yuru2,soniamd}@ucsd.edu

achieve an arbitrarily accurate estimate under certain assump-

tions on the salinity field. Simulation results are consistent

with the theoretical analysis. Note that in this paper we

focus on the way-point based high level motion planning

of drifters, and adaptively sample the river environment

based on drifters’ locations to save energy consumption. In

the companion paper [5], we study the low level minimum

energy control to implement the way-point based navigation.

Boundary tracking/estimation problems have been studied

extensively, e.g., a survey [6] and some recent work [7]–

[12]. In [7], the authors proposed algorithms that allow

a mobile sensor network to track and distribute along a

dynamic boundary. In [8], a high-level adaptive control for

rapid imaging of samples in atomic force microscopy is

presented, which drastically reduces the area to be imaged.

In [9], the authors developed a framework for environmental

boundary tracking and estimation via elliptic approximations,

and reported the implementation in [12]. In [10], the authors

utilized a formation of four moving sensor platforms to

explore a noisy scalar field. In [11], the authors proposed

an algorithm to optimally approximate an environmental

boundary with a polygon. We depart from previous work

by focusing on the search of specific points on a given

salinity level set, which is sufficient for determining salinity

intrusion, and leads to more robust solutions with respect

to variations in the boundary shape. The proposed novel

adaptive sampling strategy does not require drifters to have

an initial estimate of the (shape of the) boundary (as required

in [7], [9], [11]) or stay on the boundary (as assumed in [7],

[11]), and can be used for sequential drifter deployment.

II. PROBLEM FORMULATION

For simplicity, we assume that the river banks are parallel

and the deployment base is on the freshwater side. Using the

Cartesian coordinate system, we define the centerline of the

river as the x-axis, and choose the y-axis to be perpendicular

to the x-axis and pass through the deployment base. Suppose

that the distance from the deployment base to the x-axis is
L
2 (note that L > 0 is chosen to be less than the width of the

river so that drifters can be operated safely). Then the studied

river environment can be described by the two dimensional

region D := {(x y)T ∈ R2 | − L
2 ≤ y ≤ L

2 }. Since we

focus on the high level planning of mobile drifters, we omit

the descriptions of velocity field and drifter dynamics (for

details, refer to [5]), and assume that drifters can run against

the river flow.

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 5756

The salinity field is a mapping1 S : D 7→ R
+
0 , assigning

S(x, y) to (x y)T , where R+
0 is the set of nonnegative

real numbers and S(x, y) is the salinity at location (x y)T .

Given the salinity threshold Bth, the freshwater-saltwater

boundary is defined as a level set Boundary = {(x y)T ∈
D | S(x, y) = Bth}. Refer to [3] for illustrations of typical

boundaries.

Each drifter is equipped with an accurate position sensor

and an accurate salinity sensor, and is able to communicate

with the deployment base directly. The objective is to deploy

a set of drifters from the base and find a point pmin on the

boundary with the smallest x coordinate, i.e.,

pmin = argmin
(x y)T∈Boundary

x .

If there are multiple points on the boundary that minimize x,

we only need to find one because we are interested in xpmin

instead of pmin.

III. DRIFTER DEPLOYMENT

In this section, we study how to deploy two drifters to find

the point pmin. There are 3 stages in the drifter deployment:

I Drifter A is first deployed to explore one half of the

boundary and obtains its estimate;

II Drifter B is then deployed to explore the other half of

the boundary and obtains its estimate;

III The deployment base determines an estimate of pmin

based on the estimates from drifters A and B.

Salinity sensors are actively managed to take measurements

only at certain time and/or locations to save battery power.

A. Stage I

At Stage I, drifter A leaves the base and first reaches the

origin p01A (the low level motion control is studied in [5]).

Then it follows the flow along the centerline and samples

the river with a fixed sampling interval ∆T > 0. The

fixed interval sampling ends if there are two consecutive

salinity measurements at locations p1A and p2A such that

(S(p1A) − Bth) × (S(p2A) − Bth) ≤ 0. In the fixed interval

sampling period, a series of locations p01A , p02A , . . . , p0nA
and the corresponding salinity measurements S(p01A), S(p02A),
. . . , S(p0nA) are obtained. We construct a new series using

k0iA =
S(p0i+1

A
)−S(p0i

A)

‖p0i+1
A

−p0i
A
‖

for i = 1, 2, . . . , n − 1, where ‖ · ‖

is the 2-norm. Essentially k0iA reflects how salinity changes

with respect to distance. For simplicity, we suppose salinity

changes either linearly or exponentially2 with respect to

distance. The salinity change trend can be determined based

on the standard deviation of the above series, and will be used

when drifter A adaptively determines a boundary point.

Now drifter A explores the line segment p1Ap
2
A to deter-

mine a boundary point b1A using Algorithm 1. The prescribed

input variable ε is used to bound the estimation error. Steps

1-3 check if p1 or p2 satisfies |S(p) − Bth| ≤ ε; if true,

1Note that we assume the salinity field is static. However, our proposed
algorithms also work if the evolution of the salinity field is slow with respect
to the timescale of the boundary explorations.

2Salinity could change exponentially as studied in [2].

the algorithm terminates. Step 4 generates a point p3 that

lies on the line segment p1p2 using a function f(p1, p2) (see

Eqs. (1) and (2) below). Based on the salinity measurement at

p3, we update either p1 or p2, and then repeat the procedure

starting from Step 1. The function f(p1, p2) could be as

simple as p1+p2

2 . To achieve faster convergence, we could

choose f(p1, p2) based on the salinity change trend. More

specifically, if salinity changes linearly (or exponentially),

then use Eq. (1) (or Eq. (2)) as below

f(p1, p2) = p1 + (p2 − p1)
Bth − S(p1)

S(p2)− S(p1)
, (1)

f(p1, p2) = p1 + (p2 − p1)
lnBth − lnS(p1)

lnS(p2)− lnS(p1)
. (2)

Algorithm 1 Boundary Point Detection

Input: Salinity measurements at p1, p2 satisfying (S(p1)−
Bth)× (S(p2)−Bth) ≤ 0, and a positive threshold ε

Output: A boundary point p satisfying |S(p)−Bth| ≤ ε

1: if |S(p1)−Bth| ≤ ε (or |S(p2)−Bth| ≤ ε) then

2: Output p1 (or p2) and exit;

3: end if

4: Move to p3 = f(p1, p2), and take measurement S(p3);
5: if (S(p3)−Bth)× (S(p1)−Bth) > 0 then

6: Set p1 = p3;

7: else

8: Set p2 = p3;

9: end if

10: Go to Step 1.

After obtaining b1A, drifter A initializes pAmin (namely, its

estimate of pmin) using b1A. Then it moves to point p3A =
(xb1

A
yb1

A
+∆y1)

T , and takes the salinity measurement at p3A,

where ∆y1 is a positive constant. Depending on the salinity

measurement at p3A, there are two possibilities:

• S(p3A) 6= Bth: if S(p3A) < Bth (or S(p3A) > Bth), drifter

A moves downstream (or upstream), samples the river

with fixed sampling interval ∆T , and stops if there are

two consecutive salinity measurements at locations pA
and p4A such that (S(pA) − Bth) × (S(p4A) − Bth) ≤
0. Now drifter A explores pAp

4
A using Algorithm 1 to

obtain the boundary point b2A, as shown in Fig. 1;

• S(p3A) = Bth: then set b2A to be p3A.

Once the second boundary point b2A is obtained, drifter

A compares xb2
A

with xpA
min

: if xb2
A
< xpA

min
, it updates pAmin

with b2A; otherwise, no update is necessary. Now drifter A

can repeat the procedure starting from the point b1A by first

moving to p5A = (xb2
A
yb2

A
+∆y2)

T where ∆y2 is a positive

constant, taking the salinity measurement at p5A, and then

taking further actions depending on S(p5A). ∆y2 can be

chosen adaptively:

• If xb2
A
> xb1

A
, drifter A is exploring a region of a local

maximum3, and ∆y2 could be larger than ∆y1;

3A point p on the freshwater-saltwater boundary is called a local
minimum (or maximum) if for any other point p′ on the boundary that
is sufficiently close to p, xp < xp′ (or xp > xp′) holds.

5757

• If xb2
A
= xb1

A
, ∆y2 could be the same as ∆y1;

• If xb2
A

< xb1
A

, drifter A is exploring a region of a

local minimum, and ∆y2 could be smaller than ∆y1

and depends on the ratio k2 =
y
b2
A
−y

b1
A

x
b1
A
−x

b2
A

.

Essentially, ∆y2 can be chosen to be g(b1A, b
2
A), a function

of b1A and b2A. In general, for i ≥ 2, ∆yi can be chosen to

be g(bi−1
A , biA). For easier implementation, we use

g(bi−1
A , biA) =

∆ymax if xbi
A
≥ xbi−1

A
,

∆ymin+∆ymax

2 if xbi
A
< xbi−1

A
and ki ≥ α ,

∆ymin if xbi
A
< xbi−1

A
and ki < α ,

where ∆ymin and ∆ymax are positive constants which are

discussed in Section IV-A, ki =
y
bi
A
−y

b
i−1
A

x
b
i−1
A

−x
bi
A

, and α is a

positive threshold. ∆y1 is chosen as ∆ymin+∆ymax

2 . Other

choices of the function g(bi−1
A , biA) can also be used given

that it is consistent with the intuition discussed earlier.

Algorithm 2 Boundary Exploration

Input: Two boundary points b0A, b
1
A, a counter i initialized

as 1, and a positive threshold ε

Output: pAmin, the estimate of pmin by drifter A

1: Initialize pAmin to be b1A;

2: if biA is on the line y = L
2 then

3: Send pAmin back to the deployment base, and exit;

4: end if

5: Compute ∆yi = g(bi−1
A , biA);

6: if ybi
A
< L

2 and ybi
A
+∆yi >

L
2 then

7: Set ∆yi =
L
2 − ybi

A
;

8: end if

9: Move from point biA to point p2i+1
A = (xbi

A
ybi

A
+∆yi)

T ,

and then take the salinity measurement at p2i+1
A ;

10: if S(p2i+1
A) 6= Bth then

11: Move downstream (or upstream) if S(p2i+1
A) < Bth

(or S(p2i+1
A) > Bth), sample the river with fixed

sampling interval ∆T , and stop if there are two

consecutive points pA and p2i+2
A satisfying (S(pA)−

Bth)× (S(p2i+2
A)−Bth) ≤ 0. Explore pAp

2i+2
A using

Algorithm 1 to obtain the boundary point bi+1
A ;

12: else

13: Set bi+1
A to be p2i+1

A ;

14: end if

15: Compare xbi+1
A

with xpA
min

: if xbi+1
A

< xpA
min

, update pAmin

with bi+1
A ;

16: if i = 1 then

17: Send points biA, b
i+1
A to the deployment base;

18: end if

19: Set i to be i+ 1, and go to Step 2.

Drifter A keeps exploring the boundary and updates its

estimate pAmin by repeating the above procedure, stops explo-

ration when it reaches a boundary point on the line y = L
2 . At

the end of the exploration, drifter A sends its estimate back

to the deployment base. Part of the exploration process is

shown in Fig. 1. The detailed exploration algorithm is given

in Algorithm 2. For drifter A, a virtual boundary point b0A

(which is the same as b1A) is introduced purely for the sake of

Step 5 when i is 1. Note that g(b0A, b
1
A) is defined to be ∆y1.

The counter i is used to label the points. Steps 6-8 guarantee

that the boundary point on the line y = L
2 is explored.

In the algorithm, communication with the deployment base

occurs twice: i) drifter A sends back b1A and b2A once b2A is

determined, which will be used at Stage II when deploying

drifter B; ii) drifter A sends back its estimate of pmin at

the end of the exploration algorithm, which will be used to

compute the estimate of pmin.

Note that the estimate might not be very accurate since

drifter A might miss the exact local minimum due to the cho-

sen ∆y. If there exist three consecutive boundary points biA,

bi+1
A and bi+2

A such that xbi
A
> xbi+1

A
and xbi+2

A
> xbi+1

A
, then

there must be a local minimum on the boundary between biA
and bi+2

A . By exploring the region of the boundary between

biA and bi+2
A , we can obtain a refined estimate of a local

minimum. Detailed procedures are given in Algorithm 3.

Algorithm 3 Boundary Exploitation

Input: Three points p1, p2 and p3 satisfying xp1 > xp2 ,

xp3 > xp2 , and yp1 < yp2 < yp3 , pstart initialized as p3,

and positive thresholds ε, ξ

Output: A point p satisfying |yp − yp∗ | ≤ ξ, where p∗ is a

local minimum (on the boundary between p1 and p3)

1: If |yp1 − yp3 | ≤ ξ, output p2 and exit;

2: Choose α ∈ (0, 1) randomly such that yp 6= yp2 , where

p = αp1 + (1− α)p3;

3: Move to point p from pstart, and take salinity measure-

ment S(p);
4: if S(p) 6= Bth then

5: Move downstream (or upstream) if S(p) < Bth (or

S(p) > Bth), sample the river with fixed sampling

interval ∆T , and stop if there are two consecutive

points p′ and p′′ satisfying (S(p′)−Bth)× (S(p′′)−
Bth) ≤ 0. Explore p′p′′ using Algorithm 1 to obtain

the boundary point b
p
A;

6: else

7: Set b
p
A to be p;

8: end if

9: Set pstart to be b
p
A;

10: if xb
p
A
> xp2 then

11: If ybp
A
> yp2 (or ybp

A
< yp2), update p3 (or p1) with

b
p
A;

12: else if xb
p
A
< xp2 then

13: If ybp
A
> yp2 (or ybp

A
< yp2), update p1 (or p3) with

p2, and p2 with b
p
A;

14: else

15: Go to Step 2;

16: end if

17: Go to Step 1.

In Algorithm 3, the input variable pstart tracks the location

of drifter A, and the output is a point p which approximates

a local minimum p∗ with a prescribed precision ξ. Note that

p∗ must lie in the region bounded by points p1 and p3. Step 1

checks if p2 is accurate enough; if true, the algorithm exits.

5758

Step 2 generates a point p which has yp different from yp2 ,

and Steps 4-8 determine a boundary point b
p
A which lies on

the line y = yp. Step 9 updates pstart. Steps 10-13 update the

three points p1, p2, p3 based on the relative location of b
p
A;

for example, if xb
p
A
< xp2 and ybp

A
> yp2 , the local minimum

lies between p2 and p3, and therefore, we update p1 with p2

and p2 with b
p
A to guarantee that the local minimum still lies

between p1 and p3.

Remark 1 If there exist three consecutive boundary points

biA, bi+1
A and bi+2

A such that xbi
A

> xbi+1
A

and xbi+1
A

=

xb
i+2
A

, then one can explore another boundary point bi+3
A ;

since xbi+2
A

< xbi+3
A

(this is guaranteed if ∆ymax is chosen

carefully; for detailed discussion, refer to Section IV-A),

there must be a local minimum on the boundary between biA
and bi+3

A , and the local minimum can be refined by setting

p1, p2, p3 in Algorithm 3 to be biA, bi+1
A and bi+3

A . �

B. Stages II and III

Once the deployment base receives the points b1A and b2A
from drifter A, drifter B can be deployed to explore the other

half of the boundary at Stage II. Drifter B treats b2A as b0B and

b1A as b1B , moves to point b1B from the deployment base, and

then explore the boundary points in a way similar to drifter

A but with descending y coordinates. Algorithms 2 and 3 can

be slightly modified for drifter B to explore the boundary and

refine its estimate. At Stage III, once the deployment base

receives pAmin and pBmin, xestimate, its estimate of the smallest

x, is min(xpA
min
, xpB

min
). Note that there is no direct interaction

between drifters A and B.

C. Extension

Note that we could also deploy only one drifter to achieve

the same estimate instead of using two drifters. If we want

to achieve a highly accurate estimate of pmin with less time,

multiple drifters can be deployed in the following way: i)

first we deploy drifters A and B using Algorithm 2, ii) then

whenever a new region of a local minimum is detected,

we deploy a drifter to get a refined estimate using the

exploitation Algorithm 3, and iii) when the deployment base

receives all the estimates, it can determine an estimate of the

point pmin. To alleviate the dependency on the deployment

base and deal with dynamic boundaries, drifters need be able

to communicate with each other. Then our approach could be

combined with connectivity maintenance methods and min

consensus algorithms to deploy multiple drifters to get an

estimate of pmin.

IV. ANALYSIS AND SIMULATION

A. Convergence and Accuracy

Theorem 1 If the salinity field S is continuously differen-

tiable and:

1) For any y satisfying |y| ≤ L
2 , S(x, y) as a function of

x is strictly increasing, which implies that for any point

p with yp = y, ∂S
∂x

|p ≥ 0, and ∂S
∂x

|p = 0 holds only for

a finite set of points;

p1A p2A

p3A p4A

p5Ap
5
A

b1A

b2A

b3A

b4A

b5A

b6A

Fig. 1. Drifter A exploring the boundary.

2) For any point p on the boundary, if ∂S
∂x

|p = 0, then

|
∂S
∂y
∂S
∂x

|p is bounded;

3) For any point p on the boundary, ∂S
∂y

|p = 0 holds only

for a finite set of points, in which ∂S
∂x

|p > 0,

then the following results hold:

a) Algorithms 1 and 2 stop after a finite number of steps;

b) If there is any local minimum lying strictly inside the

region D, there exists ∆ymax > 0 (used in Algorithm 2)

such that Algorithm 3 must be invoked to refine the local

minimum, and stops after a finite number of steps;

c) ∀η > 0, there exists ε > 0 (used in Algorithms 1,

2 and 3), and ξ > 0 (used in Algorithm 3), such that

|xestimate−xpmin
| ≤ η, where xestimate = min(xpA

min
, xpB

min
),

and pAmin and pBmin are obtained by drifters A and B using

Algorithms 1-3.

Proof: Due to condition 1), given the salinity threshold Bth,

for any y satisfying |y| ≤ L
2 , there is only one x that satisfies

S(x, y) = Bth. Therefore, the boundary can be represented

as x = h(y) for some function h. Note that h is continuously

differentiable because ∂S
∂x

and ∂S
∂y

exist and are continuous,

and dx
dy

= −
∂S
∂y
∂S
∂x

is well defined because of condition 2),

which guarantees that for any point p on the boundary, xp

is finite. Due to condition 3), the boundary is not a vertical

line, and can be partitioned into a finite number of regions

Ω = {R1, . . . , Rn−1} based on the sign of the function ∂S
∂y

as follows:

• First find P (Ω), i.e., the set of points intersecting with

the lines |y| = L
2 and points (on the boundary and

strictly inside the region D) satisfying ∂S
∂y

= 0;

• Then sort points in P (Ω) into p1, p2, . . . , pn according

to ascending y coordinates, where n ≥ 2 (note that

yp1
= −L

2 and ypn
= L

2);

• Region Ri is the region of the boundary between points

pi and pi+1, where i = 1, 2, . . . , n− 1.

Based on this partition, we define

K = min
i=1,2,...,n−1

|ypi+1
− ypi

| ,

which is a positive constant due to condition 3). Since drifter

B starts its boundary exploration from b1A (namely, the first

boundary point determined by drifter A) and uses the same

algorithms as drifter A, the exploration process using drifters

A and B is equivalent to deploying only drifter A to explore

5759

the whole boundary from y = −L
2 to y = L

2 . Therefore, we

may not explicitly distinguish drifter B from drifter A in the

following analysis. Now we are ready to prove the results.

a) Algorithm 1 explores p1p2 (which is parallel to the x

axis) to determine a boundary point b = (xb yb)
T where

yb = yp1 . Since S(xb, yb) = Bth and the salinity field is

continuous, for any ε > 0, there exists δ > 0 such that for

any |x− xb| ≤ δ, |S(x, yb)−S(xb, yb)| ≤ ε. With f(p1, p2)

being p1+p2

2 or functions given in Eqs. (1) and (2), |xp3−xb|
keeps decreasing; eventually |xp3−xb| ≤ δ and the algorithm

stops. Algorithm 2 eventually stops since drifter A explores

boundary points with ascending y coordinates until reaching

y = L
2 and the step size is always larger than or equal to

∆ymin > 0.

b) Suppose there is at least one local minimum lying

strictly inside the region D. Choose

0 < ∆ymax ≤
K

2
. (3)

It can be verified that, via contradiction, there must be at

least two points that are explored in any region Ri for i =
1, 2, . . . , n − 1 by either drifter A or B using Algorithm 2,

which implies that there are at least four points explored in

any two adjacent regions Ri and Ri+1 for i = 1, 2, . . . , n−2.

Note that for any local minimum point p∗ lying strictly

inside the region D, ∂S
∂y

|p∗ = 0, i.e., p∗ must belong to

P (Ω) \ {p1, pn}; therefore, there must exist i such that

point p∗ lies between the regions Ri and Ri+1. In these

two regions, there must be at least four points explored. We

choose two points pA, pB satisfying ypA
< ypB

from the

region Ri such that |ypA
− yp∗ | and |ypB

− yp∗ | are smaller

than other explored points in region Ri. Without loss of

generality, we assume that for any point p′ in region Ri,
∂S
∂y

|p′ > 0, and then we have xpB
< xpA

. Similarly, we

choose two points pC , pD satisfying ypC
< ypD

from the

region Ri+1 such that |ypC
−yp∗ | and |ypD

−yp∗ | are smaller

than other explored points in region Ri+1. Since for any

point p′ in region Ri+1, ∂S
∂y

|p′ < 0, we have xpC
< xpD

.

If xpB
< xpC

, then pA, pB , pC invokes Algorithm 3 to

refine the local minimum p∗; if xpB
= xpC

, then pA, pB ,

pD invokes Algorithm 3 to refine the local minimum p∗; if

xpB
> xpC

, then pB , pC , pD invokes Algorithm 3 to refine

the local minimum p∗. In summary, for any local minimum

strictly inside the region D, Algorithm 3 must have been

invoked to refine the local minimum.

It can be verified, via contradiction, that there is only one

local minimum and no local maximum on the boundary be-

tween p1 and p3 when Algorithm 3 is invoked. The existence

of only one local minimum guarantees that |yp1 − yp3 | in

Algorithm 3 keeps decreasing, and eventually |yp1−yp3 | ≤ ξ

holds, which guarantees the termination of Algorithm 3.

c) There are two cases for a point pmin depending on its

y coordinate: i) ypmin
equals to L

2 or −L
2 , and ii) |ypmin

| <
L
2 . For both cases and any η > 0, we show that a point p

satisfying |xp − xpmin
| ≤ η must be found given properly

chosen ε and ξ.

If ypmin
= L

2 in case i), pmin is the point pn in the

partition, and must be explored by drifter A (refer to Steps 6-

8 in Algorithm 2). Suppose the two points p1 and p2 (that

invoke Algorithm 1) satisfy xp1 < xp2 . Since S(x, L
2) for

x ∈ [xp1 , xp2] is continuous and strictly increasing, S(x, L
2)

is a one-to-one mapping from [xp1 , xp2] to [S(p1), S(p2)].
Therefore, x = S−1(z) for z ∈ [S(p1), S(p2)], the inverse

mapping of S(x, L
2), exists and is continuous. Then for

any η > 0, there exists εn > 0 such that as long as

|S(pnestimate) − Bth| ≤ εn where pnestimate is the output of

Algorithm 1, |S−1(S(pnestimate)) − S−1(Bth)| = |xpn
estimate

−

xpn
| ≤ η because S−1(Bth) = xpn

. Similarly, if ypmin
= −L

2
in case i), pmin is the point p1, and must be explored by

drifter B. For any η > 0, there exists ε1 > 0 such that as

long as |S(p1estimate) − Bth| ≤ ε1, |xp1
estimate

− xp1
| ≤ η. In

both scenarios, ξ can be chosen to be an arbitrary positive

constant.

In case ii), |ypmin
| < L

2 . Then we only need to consider

local minima that lie strictly inside the region D. As shown

in b), every local minimum must be refined via Algorithm 3

by either drifter A or B.

Suppose pmin is a local minimum pi for i ∈ {2, 3, . . . , n−
1}. Since in condition 3) ∂S

∂y
|pi

= 0 requires that ∂S
∂x

|pi
> 0,

we can choose δ such that for any point p on the boundary

that satisfies |yp − ypi
| ≤ δ, ∂S

∂x
|p > 0 because the boundary

is continuous. For such p, |dx
dy
| = | −

∂S
∂y
∂S
∂x

| ≤ Cp where Cp

depends on the point p. Let ∆x = xp − xpi
and ∆y = yp −

ypi
. Then we have

∣

∣

∣

∆x
∆y

∣

∣

∣
=

|
∫

yp
ypi

dx
dy

dy|

|∆y| ≤

∫ max(yp,ypi
)

min(yp,ypi
)

| dx
dy

|dy

|∆y|

≤ maxp′ Cp′ , where p′ is on the boundary between p and

pi. The maximum of Cp′ (denoted as Ci) exists because the

boundary is continuously differentiable and the part of the

boundary between p and pi is closed. Given η > 0, there

exists ξi = min(η
2Ci

, δ) such that for any p on the boundary

that satisfies |yp − ypi
| ≤ ξi, we have |xp − xpi

| ≤ Ci|yp −
ypi

| ≤ η
2 . In Algorithm 3, p1 and p3 will eventually fall

into the ξi neighborhood of the local minimum pi because

|yp1 − yp3 | keeps decreasing and pi always lies between p1

and p3. Let the output of Algorithm 3 be piestimate. Let p be

a point on the boundary such that yp = ypi
estimate

. Then given

ξi, we have |yp−ypi
| = |ypi

estimate
−ypi

| ≤ ξi, |xp−xpi
| ≤ η

2 .

Since piestimate must be obtained by applying Algorithm 1,

given η > 0, there exists εi > 0 such that for any piestimate

satisfying |S(piestimate) − Bth| ≤ εi, |xpi
estimate

− xp| ≤
η
2 as

argued in case i). In summary, given η > 0, there exists ξi
and εi such that |xpi

estimate
−xpi

| = |xpi
estimate

−xp+xp−xpi
| ≤ η.

Suppose Plmin(Ω) ⊆ P (Ω) is the set of local minima

(which could include p1 and pn in the partition). For any

pi ∈ Plmin(Ω), there exists ξi and εi such that the output

of Algorithm 3 piestimate satisfies |xpi
estimate

− xpi
| ≤ η, i.e.,

xpi
− η ≤ xpi

estimate
≤ xpi

+ η. Let ξ = minpi∈Plmin(Ω) ξi
and ε = minpi∈Plmin(Ω) εi, then the estimate xestimate =
minpi∈Plmin(Ω) xpi

estimate
. Since xpmin

= minpi∈Plmin(Ω) xpi
,

xpmin
− η ≤ xestimate ≤ xpmin

+ η. Thus, c) holds. �

Remark 2 The assumption that the salinity field is continu-

ously differentiable is commonly made (e.g., [3]). Assump-

tion 1) is reasonable in practical applications if tidal forcing

5760

TABLE I

ESTIMATION ERROR WITH VARYING PARAMETERS

PARAM Value Slinear, hsin Sexp, hsin Slinear, hpoly Sexp, hpoly

Alg. 3
off 7.07e−3 7.07e−3 0.193 0.193
on 2.56e−4 4.71e−4 1.49e−2 4.13e−4

ε

1e−2 2.56e−4 4.71e−4 1.49e−2 4.13e−4
1e−4 1.14e−7 1.43e−4 1.06e−4 5.19e−5
1e−6 1.02e−7 1.54e−8 5.36e−7 1.70e−8
1e−8 1.75e−7 3.88e−7 1.03e−7 1.34e−9

ξ

1e−2 2.56e−4 4.71e−4 1.49e−2 4.13e−4
1e−4 2.29e−3 7.07e−3 7.78e−3 1.37e−3
1e−6 7.07e−3 1.30e−4 2.25e−4 1.11e−2
1e−8 9.03e−4 1.82e−5 4.13e−2 9.79e−4

[

∆ymin
∆ymax

]T
(1 2)

(1 1.5)
2.56e−4 4.71e−4 1.49e−2 4.13e−4

(1 4)
(1 4)

1.24e−3 7.07e−3 1.96e−3 9.97e−3

(3 4)
(2 4)

1.42e−14 8.14e−4 2.91e−4 5.61e−5

α

0.1 9.98e−3 3.96e−3 3.47e−2 7.45e−3
0.3 1.95e−3 5.56e−4 7.63e−4 1.25e−3
0.5 2.56e−4 4.71e−4 1.49e−2 4.13e−4
0.7 8.09e−4 4.67e−3 7.06e−3 1.37e−2
0.9 4.23e−4 7.50e−5 5.00e−5 6.95e−3

NA = 1e−4

0 3.19e−10 1.52e−8 3.48e−8 7.03e−7
1 6.03e−4 7.79e−4 1.66e−4 7.93e−4
2 4.37e−4 1.63e−4 3.07e−4 2.40e−4
3 2.10e−4 2.88e−4 3.79e−4 2.15e−5

NA = 1e−2

0 2.43e−7 3.70e−8 3.70e−10 3.62e−6
1 0.0728 0.0849 0.0891 0.0601
2 0.0603 0.0470 0.0410 0.0341
3 0.0420 0.0290 0.0433 0.0491

is weak, and Assumption 2) holds for well mixed estuaries.

Assumption 3) is imposed purely for the sake of proof, and

we would like to relax it in our future work. �

B. Simulations

We use L = 40 and x ∈ [0, 400] for the region D. Then

we generate four types of salinity fields by choosing the

salinity field as i) Slinear(x, y) = M1(x − h(y)), and ii)

Sexp(x, y) = eM2(x−h(y)), and by choosing the function h(y)
as i) hsin(y) = As sinwsy, and ii) hpoly(y) = ay5 + by4 +
cy3+dy2+ey+f which has a unique global minimum. The

parameters M1,M2, As, ws, a, b, . . . , f are chosen so that for

x ∈ [0, 400] and |y| ≤ 20 the salinity is between 0 and 33
(note that salinity ranges from 0 to 33ppt in estuaries). The

salinity threshold is set to be 10. It can be verified that the

conditions in Theorem 1 are all satisfied. For hsin(y),
K
2 in

Eq. (3) can be calculated as 2.146, while for hpoly(y),
K
2 can

be calculated as 1.513. We use ε = ξ = 1e−2, ∆ymin = 1,

∆ymax = 2 for the salinity field with hsin, ∆ymax = 1.5
for the salinity field with hpoly, and α = 0.5 as the default

parameters. Here, ∆ymax is chosen to satisfy Eq. (3).

We first examine the effect of Algorithm 3 on the es-

timate. As shown in Table I, the estimation error |xpmin
−

min(xA
pmin

, xB
pmin

)| decreases dramatically when Algorithm 3

is used. If we decrease ε in Algorithm 1, the estimation

error decreases dramatically, as observed in the row “ε”. In

contrast, if we decrease ξ in Algorithm 3, the estimation error

does not change much, as observed in the row “ξ”. In the

row “(∆ymin ∆ymax)”, the first of the pair “(1 2), (1 1.5)”
is used for the first two salinity fields, and the second is

used for the last two salinity fields. The results show that

even when Eq. (3) is violated, the estimation error could

still be very small. This observation makes our approach

promising for practical applications. If we increase α in

the function g(bi−1
A , biA), the algorithm will explore more

boundary points, which decreases the estimation error.

To examine the accuracy of the estimate with noisy salinity

measurements, we generate four types of noises: i) type 0,

i.e., no noise, ii) type 1, i.e., uniform in [−NA, NA] where

NA > 0, iii) type 2, i.e., Gaussian with mean 0, stand

deviation NA

3 , and being limited to [−NA, NA], and iv) type

3, i.e., Gaussian with mean 0 and stand deviation NA

3 . We

change ε to be 1e−6. The estimation errors for NA = 1e−4
and NA = 1e−2 are listed in Table I. In all cases, the

algorithms stop but run longer; estimation errors increase

if the noise magnitude increases, and have the same order as

the noise magnitude. In general, type 1 noises tend to cause

relative larger estimation errors.

V. CONCLUSION

In this paper, we studied drifter deployment to determine

a point on the freshwater-saltwater boundary that minimizes

its x coordinate, and proposed boundary point detection,

boundary exploration, and boundary exploitation algorithms

which adaptively explore the boundary and can achieve an

arbitrarily accurate estimate under certain assumptions on

the salinity field. In practical applications, there are several

challenges: i) the measurements from position sensors could

also have noise and the drifters are subject to (usually

unknown) disturbances in river environments, ii) sensors,

actuators, and communication devices could fail, and iii)

the salinity field can change with the depth of the river and

time (which implies that the boundary can be dynamically

changing). Dealing with these issues will be part of our future

work.

REFERENCES

[1] A. D. Jassby, W. J. Kimmerer, S. G. Monismith, C. Armor, J. E.
Cloern, T. M. Powell, J. R. Schubel, and T. J. Vendlinski, “Isohaline
position as a habitat indicator for estuarine populations,” Ecological

Applications, vol. 5, pp. 272–289, Feb. 1995.
[2] R. Brockway, D. Bowers, A. Hoguane, V. Dove, and V. Vassele, “A

note on salt intrusion in funnel-shaped estuaries: Application to the
incomati estuary, mozambique,” Estuarine, Coastal and Shelf Science,
vol. 66, pp. 1–5, Jan. 2006.

[3] M. Fossati and I. Piedra-Cueva, “Numerical modelling of residual flow
and salinity in the rı́o de La Plata,” Applied Mathematical Modelling,
vol. 32, pp. 1066–1086, 2008.

[4] R. J. Uncles and J. A. Stephens, “The freshwater-saltwater interface
and its relationship to the turbidity maximum in the tamar estuary,
United Kingdom,” Estuarie, vol. 16, pp. 126–141, Mar. 1993.

[5] Y. Ru and S. Martinez, “Freshwater-saltwater boundary detection using
mobile sensors — Part II: Drifter movement,” to appear at IEEE Conf.

on Decision and Control, Dec. 2011.
[6] Y. Chen, K. Moore, and Z. Song, “Diffusion boundary determination

and zone control via actuator-sensor networks (MAS-net) – challenges
and opportunities,” in Proc. of SPIE Conf. on Intelligent Computing:

Theory and Applications II, Apr. 2004.
[7] Y. Cao and R. Fierro, “Dynamic boundary tracking using dynamic

sensor nets,” in Proc. of the 45th IEEE Conf. on Decision and Control,
Dec. 2006, pp. 703–708.

[8] S. B. Andersson, “Curve tracking for rapid imaging in afm,” Ieee

Transactions On Nanobioscience, vol. 6, pp. 354–361, Dec. 2007.
[9] Z. Jin and A. L. Bertozzi, “Environmental boundary tracking and

estimation using multiple autonomous vehicles,” in Proc. of the 46th

IEEE Conf. on Decision and Control, Dec. 2007, pp. 4918–4923.
[10] F. Zhang, E. Fiorelli, and N. E. Leonard, “Exploring scalar fields using

multiple sensor platforms: Tracking level curves,” in Proc. of the 46th

IEEE Conf. on Decision and Control, Dec. 2007, pp. 3579–3584.
[11] S. Susca, S. Martı́nez, and F. Bullo, “Monitoring environmental

boundaries with a robotic sensor network,” IEEE Transactions on

Control Systems Technology, vol. 16, pp. 288–296, Mar. 2008.
[12] A. Joshi, T. Ashley, Y. R. Huang, and A. L. Bertozzi, “Experimental

validation of cooperative environmental boundary tracking with on-
board sensors,” in Proc. of 2009 American Control Conference, Jun.
2009, pp. 2630–2635.

5761

