
Local Stability of High Order Power Control in Cellular Networks

Benjamin C. Heinrich, University of Stuttgart
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Abstract— We address three major control challenges present
in power control of wireless cellular networks: time-delays,
interference and the binary control feedback. The power control
is distributed and based on measurements of the Signal-to-
Interference Ratio (SIR). This implies that the users are coupled
through the mutual interference.

In this paper we show that the interference feedback plays
a fundamental role for system stability and behavior. The
interference is captured by the so-called feasibility matrix,
which contains the interference couplings weighted with SIR-
requirements. First, we consider a simplified system and derive
a Nyquist stability criterion which separates the system dynam-
ics from the eigenvalues of the feasibility matrix. This criterion
is also used to derive bounds on the rate of convergence. Second,
we investigate oscillations caused by the binary feedback
using harmonic balance techniques. Here, we obtain a similar
separation result. Using the structure of the feasibility matrix
we derive bounds on the eigenvalue location, which can be
seen as a robustness result to disturbances. In an example we
illustrate the stability results and predict and observe oscillation
modes that are caused by the interference feedback.

I. INTRODUCTION

Power control is an important component in radio resource

management of cellular networks. We consider the uplink in

a CDMA (Code Division Multiple Access) cellular network.

The users share spectrum, which creates interference and

effects the Quality of Service (QoS) of the mobile users.

The QoS is dependent on the Signal-to-Interference Ratio

(SIR), which can be measured in the base station. In the

uplink power control loop, the base station tracks a target

SIR. Interference and radio conditions change rapidly, which

means that the transmission powers of the mobiles must be

updated on a fast time scale in order for the system to track

the target SIR.

Due to the distributed nature of the network and con-

straints on the information exchange, only local measure-

ments are used for control. Although the control algorithms

are distributed, the SIR-measurements contain global infor-

mation and create a nonlinear feedback between the users.

The measurements are typically noisy and therefore filters are

used. Filtering, control signaling and propagation introduce

time-delays in the system.

There is a large literature on power control of wireless

networks, see e.g [2], [4], [13], [14], to mention a few.

Using different methods they consider SIR-based control

algorithms. High order system models have been studied

using control theoretic tools in e.g. [1], [6], [7], [8], [9],

[10] and [11]. In particular, the Nyquist criterion was used
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in [6], but the interference feedback was not considered.

The multivariate Nyquist criterion was used in [1] to prove

stability of the Foschini-Miljanic algorithm for any time-

delay of the interfering powers. Furthermore, in [8], the

effects of binary feedback were studied using describing

functions. However, the effects of interference feedback was

left as an open question.

In Section II of this paper, we will use a model containing

higher order dynamics and interference coupling between

the users. Stability is addressed in Section III, where we

will use a linearization approach to obtain local stability

results for the coupled system using a Nyquist criterion.

The criterion uses the eigenvalues of the feasibility matrix,

similarly to how the eigenvalues of the graph Laplacian

were used in [3] to prove stability of cooperative control of

vehicle formations. We use structure of the feasibility matrix

to obtain information of the eigenvalue location, which can

be used as a robustness result.

In Section IV, we consider describing functions in a multi-

variate setting to predict the oscillatory behavior introduced

by the binary feedback. In particular, we predict and ob-

serve oscillations due to the mutual interference that cannot

be predicted by user-decoupled analysis. With interference

feedback the oscillation modes often have a larger amplitude

and period, which is worse from a stability perspective. The

results are illustrated by a simulation in Section V.

II. SYSTEM MODEL

We study uplink communication in a wireless cellular

network where mobile stations (MS) transmit to base stations

(BS). For a connection between a MS and a BS, we denote

the target receiver of the transmitting mobile i by receiver i.
The network model is general and may for example consist

of one or several BS:s, where each BS may serve one or

several MS:s.

The power control loop aims at tracking a reference QoS-

value by transmitting control commands to the mobiles. The

mobiles then update their transmission powers accordingly.

The QoS-measure used is the SIR, denoted by γ̄, and for

receiver i it is given by

γ̄i
∆
=

signali
interferencei

=
ḡiip̄i

σ̄i +
∑

j 6=i ḡij p̄j
, (1)

where the received signal power from transmitter i is its

power p̄i attenuated by the channel gain ḡii. The received

interference is given by the noise level experienced at the

receiver, σ̄i, and the interference from other mobiles, given

by
∑

j 6=i ḡij p̄j , where ḡij is the channel attenuation between

transmitter j and receiver i.
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Fig. 1: Block diagram of the complete system model.

Measurements are made in logarithmic scale and we will

frequently use logarithmic variables. Logarithmic variables

are denoted without bar, while variables in linear scale are

denoted with a bar, for example pi[t] = 10 log10(p̄i[t]).

The measurements of the signal and interference are noisy

and filters are applied to improve performance. For user i we

denote the signal filter by fS,i(q) and the interference filter

by fI,i(q), where q is the time-shift operator1 defined by

qpi[t] = pi[t+1]. The SIR is computed and compared to the

SIR-target, γ†i . This gives the control error in logarithmic

scale as

ei[t]
∆
= γ†i − γi[t]

= γ†i − fS,i(q)(gii + pi[t]) + fI,i(q)Ii(p[t]),

where Ii(p) = 10 log10(σ̄i+
∑

j 6=i ḡij p̄j) = 10 log10(Īi(p̄))

and p = [p1, . . . , pn]
T = 10 log10(p̄). In the BS a proper

controller, bi(q) = bi(q)
ai(q)

is applied, where ai(q) is a

stable polynomial, i.e. all zeros lie inside the unit circle.

Furthermore, we here also model δb,i delays in the BS by

q−δb,i . A binary control command

ci[t]
∆
= sign(bi(q)q

−δb,iei[t])

is then computed and transmitted to the MS.

Mobile i updates its transmission powers through a con-

troller mi(q), which we assume to be on the form βi

q−1 . This

implies that the power update in the mobile is causal and

on the form p̄i[t+ 1] = p̄i[t] + βici[t]. Delays in the mobile

are modeled by q−δm . Additionally, propagation delays are

added to the control, signal and interference channels. A

block diagram of the complete system model is shown in

Figure 1, where we have used the following notation for

operators

1The time-shift operator will be useful to write the high order difference
equations that arise when delays and high order filters and controllers
are modeled. We use the time-shift operator to stress the time domain
interpretation. Sometimes we will instead use z, when we consider the z-
transform and instead stress the frequency domain interpretation.

B = diag(bi) Base station controller

M = diag(mi) Mobile station controller

FI = diag(fI,i) Interference filter

FS = diag(fS,i) Signal filter

DB = diag(q−δb,i) Delay in base station

DM = diag(q−δm,i) Delay in mobile station

DP = diag(q−δp,i) Propagation delay

D = DB ·DP ·DM ·DP Total round trip delay

= diag(q−δi)

δi = δb,i + δm,i + 2δp,i

I = [I1, . . . , In]
T Interference,

where Ii(p) = Ii(p̄) = 10 log10(σ̄i +
∑

j 6=i ḡij p̄j). For

signals we will use

γ = [γ1, . . . , γn]
T SIR

γ
† = [γ†1, . . . , γ

†
n]

T SIR-target

p = [p1, . . . , pn]
T Transmission powers

σ = [σ1, . . . , σn]
T Receiver noise

g = [g11, . . . , gnn]
T Channel attenuation

e = [e1, . . . , en]
T Control error

c = [c1, . . . , cn]
T Binary control command

u = [u1, . . . , un]
T Control command.

For analysis purpose we will simplify the model by removing

the sign-operator. This will be referred to as the simplified

model. A similar model was derived in [6].

Consider the simplified model with B(q) = I , M(q) =
1

q−1I and no delays. This renders the classical Distributed

Power Control (DPC) algorithm from [4], which in linear

scale can be written as

p̄i[t+ 1] =
γ̄†i
γ̄i[t]

p̄i[t], ∀i. (2)

In the simplified system model, I is the only nonlinear

block. We will separate this nonlinear interference block

from the dynamics, leading to the input-output form in

Figure 2a, following the derivation in [6]. We do so by

introducing the new input γ
†† ∆

= F−1
I (γ† − FSDpg), and

pool the system dynamics into one block, H , given by

H
∆
= (I +DMBFS)

−1DMBFI . (3)

We only consider decentralized algorithms using local

information, which implies that all dynamics blocks are di-

agonal, in particular H . Assuming that the system dynamics

are homogeneous we can write H = hI , where

h
∆
=

mbfI

qδ +mbfS
. (4)
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Fig. 2: a) The simplified system on input-output form. b) The

linearized simplified system.

III. STABILITY ANALYSIS

In this section we perform a local stability analysis of

the system. We start by considering the steady state of the

simplified system. Then we linearize the system around the

equilibrium point and perform Nyquist stability analysis.

Definition 1: Let

Γ̄† ∆
= diag

(

γ̄†i
ḡii

)

and F̄[i,j]
∆
=

{

0 for i = j
ḡij for i 6= j.

Then, the feasibility matrix is defined by Γ̄†F̄ .

We assume Γ̄†F̄ to be irreducible, see e.g. [5].

Proposition 1: Assume that fI(1) = fS(1) = 1. Then the

steady-state powers of the higher order system are the same

as for the DPC-algorithm in (2). A sufficient condition for

unique positive equilibrium powers is given by ρ(Γ̄†F̄ ) < 1,

where ρ(·) denotes the spectral radius, and the equilibrium

powers, p̄ss, are given by

p̄ss = (I − Γ̄†F̄ )−1Γ̄†
σ̄.

Proof: Consider the system at steady state. We have

pss = lim
z→1

diag

(

m(z)b(z)fI(z)

zδ +m(z)b(z)fS(z)

)

(γ†† + I(pss)).

By the integrator term and the assumption that fI(1) =
fS(1) = 1 this reduces to the equation

pss = γ
† − g + I(pss).

This can be written in linear scale as

p̄ss = Γ̄†(F̄ p̄ss + σ̄) ⇔ p̄ss = (I − Γ̄†F̄ )−1Γ̄†
σ̄.

The assumption ρ(Γ̄†F̄ ) < 1 ensures the existence of the

inverse matrix. All elements of Γ̄†, F̄ and σ̄ are nonnegative

and, since the inverse expression can be rewritten as a

convergent series expansion of Γ̄†F̄ , the same condition is

sufficient to guarantee nonnegative powers.

We now linearize the system around the equilibrium point.

The linearized interference is denoted ∇I and given by

∇I[i,j](p̄ss) =

{

0 for i = j
ḡij p̄j,ss/Īi(p̄ss) for i 6= j

, (5)

where Īi(p̄ss) is the equilibrium interference and noise. The

linearized system is shown in Figure 2b.

A. Nyquist Stability Analysis

The following lemma will be useful for the stability

analysis and gives intuition on how the choice of SIR-target

affects stability. Let λ(·) denote the eigenvalues of a matrix.

Lemma 1: The linearized interference ∇I evaluated at

p̄ = p̄ss and the feasibility matrix Γ̄†F̄ share the same

eigenvalues, i.e. λ(∇I) = λ(Γ̄†F̄ ).

Proof: Using (1) we can write

Īi(p̄ss) =
ḡiip̄i,ss

γ̄†i
,

which, plugged into (5), yields

∇I[i,j](p̄ss) =

{

0 for i = j
ḡij
ḡii

p̄j,ss

p̄i,ss
γ̄†i for i 6= j

. (6)

Keeping in mind that

Γ̄†F̄[i,j] =

{

0 for i = j
ḡij
ḡii
γ̄†i for i 6= j,

we may rewrite (6) as

∇I(p̄ss) = diag(p̄ss)
−1Γ̄†F̄diag(p̄ss),

showing that ∇I is similar to Γ̄†F̄ . They hence share the

same eigenvalues.

We are now ready to state the main stability result con-

cerning the simplified system, which separates the system

dynamics from the network and SIR-target.

Theorem 1: Assume that all users have the same pooled

stable transfer function h(z). For i = 1, . . . , n, where n
is the number of users, let Φ

(

−λi(Γ̄
†F̄ )−1 + h(z)

)

be the

counter-clockwise phase rotation of h(z) about λi(Γ̄
†F̄ )−1

when z sweeps the unit circle counter-clockwisely. Then the

linearized system is stable if and only if

∑

i

Φ

(

−
1

λi(Γ̄†F̄ )
+ h(z)

)

= 0. (7)

Since cancellations of clockwise and counter-clockwise en-

circlements are rare for the considered systems, we will

frequently use the sufficient condition

Φ
(

−λi(Γ̄
†F̄ )−1 + h(z)

)

= 0 ∀i.

Proof: Starting from the determinant condition in the

multivariate Nyquist criterion, we use the diagonal structure

and the assumption of equal dynamics for all users to sim-

plify the condition involving the eigenvalues of the linearized

interference. Application of Lemma 1 then gives the result.

Φ(det(I − h(z)∇I)) =
∑

i

Φ(1− h(z)λi(Γ̄
†F̄ ))

=
∑

i

Φ

(

−
1

λi(Γ̄†F̄ )
+ h(z)

)

The system is stable if the above expression is equal to zero

and hence the expression in (7) follows.

Consider again the DPC-algorithm in (2), where B(z) =
I , M(z) = 1

z−1I and there are no delays. The Nyquist plot

of the system dynamics block, h(z), is shown in Figure 3a.

The Nyquist curve is in this case the unit circle. By the

Perron-Frobenius theorem for nonnegative matrices we know

that the inverse eigenvalues of the feasibility matrix will lie

outside the unit disc, since |λi| < ρ(Γ̄†F̄ ) < 1, ∀i, given that
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Fig. 3: Nyquist plot of the DPC- and the delayed DPC-

algorithm. The inverse eigenvalues are located in the shaded

region.

the system is feasible. This verifies the well-known fact that

feasibility implies stability for the DPC-algorithm.

Now consider instead the DPC-algorithm with one delay

and the gain β = 0.5. The Nyquist plot of h(z) is plotted in

Figure 3b. We see that the Nyquist curve is not contained in

the unit disc, hence, according to Theorem 1, it is necessary

to check whether the curve encircles any inverse eigenvalue

of the feasibility matrix. Furthermore, given that h(z) has an

integrator term, the Nyquist curve will cross the real axis at

z = 1. Since for a feasible system 1
ρ(Γ̄†F̄ )

> 1, the largest

eigenvalue will not influence stability. The location of the

other eigenvalues is, however, critical.

B. Spectrum of the feasibility matrix

We can use more structure of the feasibility matrix to ob-

tain more information about the location of the eigenvalues.

Definition 2: A matrix M ∈ R
n×n is said to be nonnega-

tive generalized stochastic if its elements fulfill mij ≥ 0 and
∑n

j=1mij = s, for i = 1, . . . , n.

Proposition 2: Assume that Γ̄†F̄ is nonnegative and irre-

ducible. Then there exist scaling multipliers D = diag(xi),
where x is the positive eigenvector corresponding to

λmax(Γ̄
†F̄ ) = ρ(Γ̄†F̄ ), so that M = D−1Γ̄†F̄D is a

nonnegative generalized stochastic matrix with the row sums

equal to ρ(Γ̄†F̄ ).

Proof: By the Perron-Frobenius theorem the largest

eigenvalue of a nonnegative irreducible matrix is positive

and real. Furthermore, the corresponding eigenvector, x, can

be taken to be positive. We have

Γ̄†F̄x = ρ(Γ̄†F̄ )x

⇔ Γ̄†F̄D1 = ρ(Γ̄†F̄ )D1

⇔ D−1Γ̄†F̄D1 = ρ(Γ̄†F̄ )1,

where 1 = [1, . . . , 1]T and D = diag(xi). This proves that

M = D−1Γ̄†F̄D is generalized stochastic with row sum

ρ(Γ̄†F̄ ).

Proposition 3: Stability of the simplified system is equiv-

alent to stability of the scaled system, where the block ∇I

is replaced with M = D−1Γ̄†F̄D.
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Fig. 4: Example of the locations of the eigenvalues and the

inverse eigenvalues of the feasibility matrix.

Proof: We introduce scaling multipliers D = diag(di),
di > 0 into the simplified linearized system in Figure 2b,

where Ĥ
∆
= DHD−1 = H and ∇Î

∆
= D−1∇ID. The

scalings cancel in the diagonal dynamics block, but remain

in the linearized interference block, ∇I. Since D is non-

singular, the linearized interference in the scaled variable

space, D−1∇ID, is similar to ∇I and hence has the same

eigenvalues. Applying Lemma 1 we have that λ(M) =
λ(D−1∇ID) = λ(∇I) = λ(Γ̄†F̄ ). Theorem 1 then proves

the statement.

Hence, we can without loss of generality consider non-

negative generalized stochastic matrices, M
∆
= Γ̄†F̄ , with

the spectrum λ(M) = {ρ(M), λ2, . . . , λn}. Note that the

structure with zero-valued diagonal elements is conserved.

A nonnegative generalized stochastic matrix can always be

written on the form (see e.g. [12])

M = B + 1v
T , (8)

where B is a generalized stochastic matrix with row sum r ≤
ρ(M) and the spectrum λ(B) = {r, λ2, . . . , λn}, while 1v

T

has spectrum λ(1vT ) = {ρ(M) − r, 0 . . . , 0}. This implies

that we can use the matrix B to obtain additional information

about the spectrum of Γ̄†F̄ . The main tool will be Gershgorin

discs in combination with choice of v.

Proposition 4: Let Γ̄†F̄ be nonnegative generalized

stochastic with elements mij ≥ 0, mii = 0, ∀i. Then

λmax(Γ̄
†F̄ ) = ρ(Γ̄†F̄ ), which is equal to the row sums, and

the other eigenvalues are located within the disc centered

around −ρ(Γ̄†F̄ )
n−1 with radius r̂, given by

r̂ = ρ(|B|) ≤ min

{

max
i

∑

j 6=i

∣

∣

∣

∣

mij −
ρ(Γ̄†F̄ )

n− 1

∣

∣

∣

∣

,

max
j

∑

i 6=j

∣

∣

∣

∣

mij −
ρ(Γ̄†F̄ )

n− 1

∣

∣

∣

∣

}

,

where

B[i,j] =

{

−ρ(Γ̄†F̄ )
n−1 for i = j

mij −
ρ(Γ̄†F̄ )
n−1 for i 6= j

,
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and where | · | is the componentwise absolute value.

Proof: Consider the choice vi =
ρ(Γ̄†F̄ )
n−1 , ∀i. This gives

the same center point −ρ(Γ̄†F̄ )
n−1 for all Gershgorin discs. The

absolute row and column sums give the radius. By taking

a similarity transformation using the positive eigenvector

corresponding to ρ(|B|), the maximum row sum will be

minimized and equal to ρ(|B|).
Consider the following example

Γ̄†F̄ = M̃, where M̃[ij]
∆
=

{

0 for i = j,
l for i 6= j.

(9)

The radius r̂ from Proposition 4 is now zero, which implies

that B, given in (8), has the eigenvalue −ρ(Γ̄†F̄ )
n−1 with

multiplicity n. We have that ρ(Γ̄†F̄ ) = (n − 1)l and hence

Γ̄†F̄ has the spectrum

λ(Γ̄†F̄ ) =
{

(n− 1)l,−l, . . . ,−l
}

.

We can see that the elements l and the dimension n de-

termines the value of ρ(Γ̄†F̄ ). Increasing l implies that the

inverse eigenvalue of multiplicity n− 1 comes closer to the

Nyquist curve, which may be problematic when considering

stability using Theorem 1.

Proposition 5: Any nonnegative generalized stochastic

matrix with zero diagonal, Γ̄†F̄ , can be written as the sum

Γ̄†F̄ = M̃ +Θ,

where M̃ is given in (9) and

Θ[i,j]
∆
=

{

0 for i = j
θij for i 6= j

,

where θij ≥ −l and
∑

j 6=i θij = 0, ∀i. Moreover, we have

that λmax(Γ̄
†F̄ ) = ρ(Γ̄†F̄ ) = ρ(M̃) = (n − 1)l. The other

eigenvalues of Γ̄†F̄ are located in the disc centered at −l
with radius r̂ = min{‖Θ‖1, ‖Θ

T ‖1}.

Proof: To show the decomposition, choose l =
1

n−1

∑

j 6=imij and θij = mij − l. Since Γ̄†F̄ is nonnegative

generalized stochastic, the eigenvector corresponding to the

largest eigenvalue is 1 = [1, . . . , 1]T and we have

ρ(Γ̄†F̄ )1 = Γ̄†F̄1 = (M̃ +Θ)1 = (n− 1)l1.

Proposition 4 states that the other eigenvalues are located in

a disc centered around −l with the radius

r̂ = min
{

max
i

∑

j 6=i

|θij + l − l|,max
j

∑

i6=j

|θij + l − l|
}

= min{‖Θ‖1, ‖Θ
T ‖1}

An illustration of the location of the eigenvalues and inverse

eigenvalues for an example is given in Figure 4.

IV. DESCRIBING FUNCTION ANALYSIS

We now return to the complete system model as introduced

in Figure 1. When the binary feedback is considered, the

equilibrium solution is necessarily oscillating and harmonic

balance techniques may be used to predict the period and

G(z)

sign

r

uc

+

(a)

G(z)

Ψ

r

uc

+

(b)

Fig. 5: a) The sign-function separated from the rest of the

system. b) The sign-function replaced with the describing

function.

amplitude. In [8] the effects of the binary control commands

were investigated for interference decoupled users. However,

the effect of the interference feedback was left as an open

question. Under the assumption that the amplitude of the

oscillation is relatively small, we may consider the linearized

system as in Section III. We base our analysis on the results

of [8] and extend them to the multivariate case, for which

the effects of the interference can be studied.

The linearized system model with the sign-function can

be rewritten to the form in Figure 5a. The nonlinear sign-

function is then separated from the rest of the system model,

which is pooled into the new block G, given by

G
∆
= DBM(FI∇I− FS).

By assuming that G(z) suppresses all higher order harmon-

ics, we may use a first order harmonic balance equation to

predict the limit cycle. We assume ui to be on the form

ui[t] = Ui sin

(

2π

N
(t+ φi)

)

, i ∈ {1, 2, . . . , n}

where n is the system’s dimension and N ∈ N is the period

length of one oscillation. The first discrete-time Fourier

coefficient of ui[t] is

ûi

(

j
2π

N

)

=
1

N

N−1
∑

t=0

ui[t]e
−j 2π

N
t =

Ui

2
ej(

2π
N

φi−
π
2 ).

Following the derivations of [8], the first discrete-time

Fourier coefficient of the output ci[t] is given by

ĉi

(

j
2π

N

)

=
1

N

N−1
∑

t=0

sign

(

Ui sin

(

2π

N
(t+ φi)

))

e−j 2π
N

t

=
1

N

N−1
∑

t′=0

sign
(

sin
(2π

N
(t′ + εi)

))

e−j 2π
N

(t′−⌊φi⌋)

=
2

N
ej

2π
N

⌊φi⌋

N
2 −1
∑

t′=0

e−j 2π
N

t′

=
2

N sin
(

π
N

)ej(
π
N

−π
2 + 2π

N
⌊φi⌋),

where t′ = t + ⌊φi⌋, εi = φi − ⌊φi⌋ and ⌊·⌋ is the floor

function. The relation between ⌊φi⌋, φi and εi can be seen

in Figure 6 and is due to that only ⌊φi⌋ has influence on

sign(ui[t]) and that thus εi cannot be observed. Note that

we have assumed N to be an even number, so that N/2− 1
is an integer. Uneven period lengths in a stable oscillation
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Fig. 6: Sign-function applied to a time-discrete sinus. Small

changes of ε will have no effect on sign(u[t]).

can be viewed as alternating even periods. In Section V we

will see that alternating periods can be observed.

Define Ψ(U,N) = diagi(Ψi(Ui, N)) as the describing

function, where

Ψi(Ui, N)
∆
=
ĉi
ûi

=
4

UiN sin
(

π
N

)ej(
π
N

− 2π
N

εi).

We can now write the system as an interconnection, see

Figure 5b. The first order harmonic balance equation is given

by

û = G(ej
2π
N )ĉ = G(ej

2π
N )Ψ(U,N)û.

This is equivalent to

(I −G(ej
2π
N )Ψ(U,N))û = 0,

where û = [û1, . . . , ûn]
T and 0 = [0, . . . , 0]T . The non-

trivial solutions are hence given by

det(I −G(ej
2π
N )Ψ(U,N)) = 0.

Assume that FI = FS = F = diag(f). We can then write

G = DBMF(∇I − I) = g(∇I − I), where g
∆
= q−δbmf.

Now let Ψ
∆
= ψ̃D̃, where

ψ̃ =
4ej

π
N

N sin
(

π
N

) , and D̃ = diag
(e−j 2π

N
εi

Ui

)

.

The harmonic balance equation can then be written as

det(I −G(ej
2π
N )Ψ(U,N)) = gψ̃det

(

1

gψ̃
I − (∇I− I)D̃

)

= 0.

Assuming gψ̃ 6= 0, this is equivalent to

n
∏

i=1

λi

(

1

gψ̃
I − (∇I− I)D̃

)

= 0

⇔
1

gψ̃
− λi((∇I− I)D̃) = 0, for some i.

Hence, the harmonic balance equation is fulfilled if

1

λi((∇I− I)D̃)
= gψ̃ for some i. (10)

This expression can be simplified by assuming that Ui = U
and εi = 1/2 for all i. We then get D̃ = d̃I and using

0 10 20 30 40 50
20

21

22

23

24

t

p
i
(
t
)

Fig. 7: Transients of the simplified system and the com-

plete system for the example. One user of each system is

highlighted, the others are dotted. We see that the simplified

system converges to the equilibrium point, while the system

with binary feedback converges to a limit cycle of period 8.

Lemma 1, we can rewrite (10) to

1

λi(Γ̄†F̄ )
=

g(ej
2π
N )ψ(U,N)

1 + g(ej
2π
N )ψ(U,N)

, (11)

where ψ(U,N)
∆
= 4

UN sin( π
N

) . Note that this has a similar

structure to the Nyquist criterion in the previous section.

Since N is an integer the curve consists of discrete points

and exact matching of the inverse eigenvalues only happen

in special cases. It must be kept in mind that the analysis is

based on approximations and when the equation is close to

equality, this suggests the existence of an oscillation of the

corresponding period.

Furthermore, if we find the period N , we also know the

resulting amplitude of the oscillation of the transmission

powers. This is because integrating the signum of a sinus

function results in a triangular wave, whose amplitude is

dependent on the gain β and the period length N . In the

next section, we will see that the interference coupling can

have a large influence on the resulting oscillations and that

observed oscillations in simulations could be predicted.

V. SIMULATIONS

Consider the following example where

Γ̄†F̄ =





0 0.01 0.55
0.55 0 0.01
0.01 0.55 0



 ,

and σ̄i = γ̄†i = 10, ∀i. Let the system dynamics be given by

b = 1, m =
0.5

z − 1
, f = 1,

with total delay, δ, of one. Hence h(z) = 0.5
z2−z+0.5 and

Theorem 1 is used to prove stability.

The Nyquist curve for the system is depicted in Figure 3b.

The inverse eigenvalues of Γ̄†F̄ are {1.79,−0.94 ± 1.57}
and we can see that the Nyquist curve does not encircle

any eigenvalue. Therefore, the simplified system is locally

stable. Trajectories of both the simplified and complete

system model are shown in Figure 7. We see that the

simplified system converges to the equilibrium point, while
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Fig. 8: Approximate harmonic balance analysis for δ = 1.

The points are the left-hand side of equation (10) while the

lines are the right-hand side for varying U .
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Fig. 9: Observed oscillations with periods 6,7 and 8 for δ =
1. For clarity, one of the users is plotted solid.

the complete system with decision feedback converges to a

limit cycle of period 8, close to the equilibrium.

The left- and right-hand sides of (10) are plotted in

Figure 8 for N = {4, 6, 8} and different values of the

amplitude U . We used ǫi = 0.5 and Ui = U for all i. For

this example we predict oscillations with period N = {6, 8}.

Using simulations with different initial conditions, oscillation

modes with N = {6, 7, 8} are found. The observed oscilla-

tions are plotted in Figure 9.

The result of the example can be compared to the analysis

in [8] where only the period N = 6 is predicted. This

motivates taking the interference feedback into account.

Another observation is that stable periods of odd length are

observed. The oscillation with period N = 7 can be seen as

alternating between a period of lenght 6 and 8. Note that this

oscillation cannot be predicted using the proposed approach.

VI. CONCLUSIONS

A linearization approach is used to show that the inter-

ference feedback plays a fundamental role in stability and

performance of power control in wireless networks. The

eigenvalues of the linearized interference operator are equal

to the eigenvalues of the feasibility matrix, containing the

cross coupling gains and QoS-requirements. This is used to

derive results on stability and performance through a mul-

tivariate Nyquist stability criterion that separates the system

dynamics from the eigenvalues of the feasibility matrix. A

robustness result to changes in the channel gains is obtained

by an investigation of the location of the eigenvalues. Finally,

we consider binary feedback and derive an harmonic balance

equation, that also involves the eigenvalues of the feasibility

matrix to predict the equilibrium oscillations that arise.

Acknowledgement: The authors are grateful to Mats Blom-

gren at Ericsson and Corentin Briat at KTH for valuable

suggestions.

REFERENCES

[1] T. Charalambous, I. Lestas, and G. Vinnicombe. On the stability of
the Foschini-Miljanic algorithm with time-delays. In Proceedings of

the 47th IEEE Conference on Decision and Control, Cancun, Mexico,
2008.

[2] M. Chiang, P. Hande, T. Lan, and C.W. Tan. Power control in wireless
cellular networks. Foundations and Trends in Communications and

Information Theory, 2(4):1–156, 2008.
[3] J.A. Fax and R.M. Murray. Information flow and cooperative control

of vehicle formations. Automatic Control, IEEE Transactions on,
49(9):1465 – 1476, 2004.

[4] G. J. Foschini and Z. Miljanic. Distributed autonomous wireless
channel assignment algorithm with power control. IEEE Transactions

on Vehicular Technology, 44(3):420–429, 1995.
[5] F.R.Gantmacher. The Theory of Matrices, volume II. Chelsea

Publishing Company, New York, N.Y., 1959.
[6] F. Gunnarsson. Power Control in Cellular Radio Systems: Analysis,

Design and Estimation. PhD thesis, Linköping University, Linköping,
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