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Abstract— Consensus algorithms can be used to compute an
average value across a multi-hop network in a distributed way.
However, their convergence to the right value is not guaranteed
in the presence of random packet losses that are common
in real life low-power wireless networks. Corrective consensus
solves this problem by using a set of auxiliary variables to
compensate for the asymmetric state updates caused by packet
losses. Nevertheless, one key assumption is that the probability
of delivering a packet from node i to a neighboring node j is the
same as in the reverse direction, from j to i. This assumption
might be violated in real life conditions. Our main contribution
is showing that corrective consensus converges to the correct
average even when this assumption is removed. In addition, we
provide a heuristic for modifying the weights used by corrective
consensus that specifically considers the unequal probabilities,
and we empirically show that this choice can lead to faster
convergence.

I. INTRODUCTION

Average consensus [17] is a distributed algorithm that
computes the mean of a set of variables held locally by the
nodes of a multi-hop network. Doing so might be useful,
for instance, when aggregating the measurements of some
physical quantity collected by a wireless sensor network,
with the goal of obtaining a more accurate estimate. As such,
consensus is a key component for a wide range of distributed
applications such as Distributed Kalman Filtering [19], Dis-
tributed Hypothesis Testing [16], Distributed Linear Support
Vector Machine [9], and Distributed Maximum Likelihood
Estimation [4].

Consensus algorithms typically require symmetric packet
exchanges (i.e., undirected network topology) to converge
to the average value [17]. Low-power wireless networks,
however, are often characterized by random and asymmetric
packet losses [21]. As a consequence, the network topology
should be viewed as a time-varying and generally non-
balanced directed graph, which prevents convergence towards
the average value [11]. Chen et al. introduced corrective
consensus, which extends the traditional average consensus
algorithms to withstand random packet losses [5]. Neverthe-
less, that work assumes equivalent packet reception ratios
between a pair of nodes, i.e., packets can get lost at random,
but the probability of delivering a packet from node i to node
j is assumed equal to the probability of delivering a packet
from node j to node i. Although this property generally
holds [21], it may be broken due to interference between
different technologies using the same radio spectrum [14].

In this paper, we remove the equal probability assumption
and study the convergence behavior of corrective consensus

in this setting. Our results prove that corrective consensus still
converges to the correct average. Furthermore, we explore an
alternative way of applying the auxiliary variables to correct
state values during the corrective iterations, and empirically
show that this method converges faster than the original
corrective consensus algorithm in the case of unequal loss
probabilities.

This paper proceeds as follows. Section II gives a brief
review of related work and Section III introduces standard
and corrective consensus and the terminology used in this
paper. In Section IV we first show the convergence of the
corrective consensus algorithm after the removal of the equal
probability assumption, and then present a different way of
using the auxiliary variables. Section V concludes this paper.

II. RELATED WORK

This paper extends the work of Chen et al., which in-
troduced corrective consensus, a consensus algorithm that
guarantees convergence to the global average in the presence
of random packet losses and consequently unbalanced weight
matrices [5]. While other works considered similar settings
and methodologies, they only showed convergence towards
a random value which is generally not equal to the average
of initial state values (see [1], [2] and references therein).
More recent work applied corrective consensus to the accel-
erated consensus frameworks [3], [12] for achieving faster
convergence rate under the same conditions [7].

To the best of our knowledge, all previous algorithms as-
sume that the packet reception ratios for both communication
directions between a pair of nodes are equal. While this
assumption generally holds for wireless sensor nodes [21],
there are various factors that can break this balance. For
example, collocated wireless devices can generate significant
interference at one sensor node and, at the same time, intro-
duce only light interference at other nodes that are physically
farther [14]. In this work we remove this assumption and
allow for unequal packet reception ratios.

We assume that the network graph is still symmetric,
although with asymmetric packet loss probabilities. In other
words, if node i can send packets to node j, then we assume
that also node j can send packets to node i with probability
greater than zero. This assumption excludes directed network
graphs, and ensures that, for every link, there will be a chance
to recover packet drops for both directions. In addition, we
only consider the method of [5] and not the accelerated
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version of [7]. We will investigate extensions of our methods
in these directions in the future.

III. BACKGROUND

We consider a multi-hop wireless network formed by a
group of N nodes, and model it as a directed graph G =
(V, E). The vertex set V = {1, 2, . . . , N} represents the N
nodes, and the edge set E = {(i, j) : i, j ∈ V, pij > 0}
consists of ordered vertex pairs. A pair (i, j) ∈ E represents
the directed edge i ← j, which indicates that node i can
receive packets from node j. We assume that packets on a
link i← j can be lost at random and that this process can
be modeled as Bernoulli trials with probability of success
pij , which is usually referred to as packet reception ratio
(PRR) in wireless sensor networks. We assume statistical
independence across both time and different links.

On link i ← j, node j can repeatedly transmit the same
packet n times. In this case, the effective PRR, i.e. the
probability of delivering the packet with multiple trials, is
equal to p̂ij := 1 − (1 − pij)n. As mentioned in Section I,
we assume that for all i 6= j, if pij > 0, then pji > 0.
We define the (i, j)th entry of the adjacency matrix A(t) of
graph G as Aij(t) = 1 if during the t-th iteration node i
receives a packet from node j, and zero otherwise. Also,
Aii = 0, ∀i. The in-degree of node i during iteration t is
given by di(t) :=

∑N
j=1Aij(t), the degree matrix of the

graph G is defined as D(t) := diag(d1(t) · · · dN (t)). Then
the graph Laplacian is defined as L(t) := D(t) − A(t),
and its eigenvalues are located within a disk centered at
maxi,t(di(t)) + 0j in the complex plane with the radius
equal to maxi,t(di(t)), due to Gershgorin’s theorem [10].

A. Standard Consensus

Average consensus assumes that each node i ∈ V holds
a value zi ∈ R and that the goal is to compute the average
z =

∑N
i=1 zi/N using distributed linear iterations [17]. To

do so, each node i defines xi(t) as the local state variable,
initializes it as xi(0) = zi, and iteratively updates its value
with a weighted average of its neighbors’ state variables. It
can be shown that xi(t) asymptotically converges to z under
certain conditions [13], [15], [17], [18].

Specifically, each node i sends its state variable xi(t) to
its one-hop neighbors during each iteration. After receiving
their neighbors’ states, nodes update their state variables as

xi(t+ 1) = xi(t) +

N∑
j=1,j 6=i

Wij(t)
(
xj(t)− xi(t)

)
, (1)

where W (t) ∈ RN×N is the weight matrix defined as

W (t) := I − εL(t). (2)

Since links are subject to random packet losses, W (t) is
a random matrix and we denote its expectation as E(W ).
Assuming graph G is connected, we can select the constant ε
to satisfy the constraint 0 < ε < 1/maxi,t(di(t)), such that
the second largest eigenvalue of E(W ) is smaller than 1 in
magnitude. As a result, the consensus algorithm shown in (1)

will converge to some common value, i.e., limt→∞ x(t) =
α1 [20]. When the weight matrix is balanced, i.e., when
1TW (t) = 1T , then the nodes converge to the correct average
α = z̄. In general, however, α 6= z because W (t) is not
always balanced due to the random packet losses [8].

B. Corrective Consensus

The goal of corrective consensus is to converge to the
consensus value z even if W (t) is not always balanced [5].
To do so, corrective consensus introduces a set of auxiliary
variables φij(t) on each node i, and updates them as follows:

φij(t+1) = φij(t)+Wij(t)
(
xj(t)−xi(t)

)
, φij(0) = 0. (3)

Comparing with (1), one can see that φij(t) represents the
amount of change that node i has made to its state variable
xi(t), due to the past packet exchanges with neighbor node j.

From (3), we have φij +φji = 0 if Wij(t) = Wji(t) holds
for all t. This happens when the links between node i and j
have had only symmetric packet losses. In general, however,
it can happen that node j received xi(t) but xj(t) was lost,
i.e., Wji(t) 6= Wij(t), and consequently φij +φji 6= 0, which
indicates a possible drift of the global average value of all
the state variables away from z.

In corrective consensus, the nodes first start with the
standard consensus iterations, shown in (1), and every k
such iterations perform one corrective iteration, as follows

xi(k + 1) = xi(k)−
∑N

j=1 ∆ij(k)/2, (4)

φij(k + 1) = φij(k)−∆ij(k)/2, (5)

where we define ∆ij(t) = φij(t) + φji(t), which is equal to
the amount of bias accumulated between node i and j. At a
high level, each node i periodically receives φji(t) from its
neighbors and uses them to calculate ∆ij(t), and adjusts its
state variable xi(t) accordingly.

Note that during some iterations, node i may not have
access to φji due to packet losses, and consequently cannot
compute ∆ij . When this happens, the corresponding terms
in (4) and (5) are omitted.

Finally, it is assumed that each node will try to repeatedly
send n times each packet containing xi(t) in a standard
iteration and m times each packet containing φij(t) in a
corrective iteration. When the equal probability assumption
pij = pji holds, corrective consensus is shown to converge
to z, given appropriate values of m and n [5].

IV. ANALYSIS FOR UNEQUAL PACKET RECEPTION RATIOS

In this section, we first analyze the convergence properties
of corrective consensus when the equal probability (pij = pji)
assumption is removed. We then present an alternative way of
dividing the ∆ij and show that it leads to faster convergence
in a two-node network. Last, we show simulation results for
different dividing rules in a 10-node network.

A. Convergence of Corrective Consensus

Chen et al. proved that corrective consensus converges to
the correct average when pij = pji, ∀i, j ∈ V [6]. When this
assumption is removed, one can still employ the iterations

6661



given by (1), (3), (4) and (5). However, some important
properties that were critical for the theoretical analysis are
not valid under the new assumption (unequal probability).
For instance, we now have E(Wij(t)) 6= E(Wji(t)).

Fortunately, the results of [6] can be extended to this
new case. Notice that if the iterations of corrective consensus
converge to a single point, then this point must satisfy x = z̄1,
∆ij = 0, ∀(i, j) ∈ E . Therefore, if we define the sequence
x̃(t) := x(t)− 1

N 11Tx(t), it will be sufficient to show that
limt→∞ x̃(t) = 0, as it can be deduced from the following.

Theorem 1. Let u ∈ {1, 2, . . .} indicate the number of rounds
of k standard plus one corrective consensus iterations (i.e.,
each round has k+ 1 iterations). With appropriate number of
repeated packet transmissions n and m, there exist constants
0 < c ≤ b < 1 such that

E (‖x̃((k + 1)u)‖) ≤ cbu−1E (‖x̃(0)‖) . (6)

The constants c and b depend only on the packet reception
ratios (i.e., pij) of the links, and the number of repeated
transmissions n and m for standard and corrective iteraitons
respectively. With sufficiently big n and m, the constants c
and b can satisfy the inequality 0 < c ≤ b < 1. It follows
that ‖x̃((k + 1)u)‖ → 0 as u→∞ almost surely.

The result follows by modifying some of the proofs in [6].
For the exact definition of c and b, and for the details on the
proof we refer the reader to the Appendix and [6].

B. Dividing ∆ij in Proportion to Packet Reception Ratio

Corrective consensus, as shown in (4) and (5), divides
the ∆ij into halves to amend the state values. This can
be seen as letting each node take 50% responsibility of
the accumulated error, which is intuitively the appropriate
approach when pij = pji, because nodes i and j are equally
likely to cause asymmetric state updates. Following the same
argument, one could expect that when pij 6= pji, it would be
more appropriate to divide ∆ij in proportion to the packet
reception ratios. For example, instead of dividing in half, we
propose the following heuristic

xi(k + 1) = xi(k)−
N∑
j=1

pji
pij + pji

∆ij(k), (7)

φij(k + 1) = φij(k)− pji
pij + pji

∆ij(k). (8)

In the above, between a pair of nodes i and j, the node that
has a higher outgoing probability is assumed to take a greater
responsibility for the accumulated errors. The rationale is as
follows. Suppose that node i has a higher outgoing probability,
i.e., pji > pij . Then it is more likely that xi is delivered to
node j and xj gets updated than vice-versa. In other words,
when asymmetric updates occur such that ∆ij 6= 0, it is more
likely that xj was updated but xi was not, and therefore xi
should be “pulled” towards the average value using ∆ij . This
rationale is illustrated in more detail via a two-node example
in next section.

1 2

90%

10%

Fig. 1. A two-node network with highly asymmetric packet reception ratios.

C. A Two-node Example

In this simple example, the network has only two nodes
and the packet reception ratios differ significantly, as shown
in Figure 1. Specifically, the probability of successful delivery
of a packet through the link 2← 1 is p21 = 90%, while the
probability in the reverse direction is merely p12 = 10%. We
further assume that the initial state values at node 1 and node
2 are x1(0) = 10 and x2(0) = −10 respectively. Therefore
the average value is z = 0 and the desired consensus
configuration is (x1, x2) = (0, 0). To simplify the analysis,
we assume the parameter k is set to 1, i.e., a corrective
iteration takes place after each standard iteration, and consider
only the first two iterations. In addition, we set the step size
to ε = 1

2 , and assume that n = m = 1, i.e., nodes do not
repeatedly send the same packets.

Let us start by calculating for the case that A12(0) = 0,
A21(0) = 1, A12(1) = 0, A21(1) = 1. Here Aij(t) is the
(i, j)-th entry of the adjacency matrix, and Aij(t) = 1 means
that in the t-th iteration, the packet from node j is successfully
delivered at node i; and zero otherwise.

In the first iteration, state value x1(0) is delivered to node
2, but x2(0) is lost. After receiving the state value, node 2
updates its state as x2(1) = x2(0) + 1

2 (x1(0) − x2(0)) =
−10 + (10− (−10))/2 = 0. On the other hand, node 1 does
not receive any state value and thus does not change its state
value and therefore x1(1) = x1(0) = 10. At this point, the
auxiliary variables are φ12(1) = 0 and φ21(1) = 10.

In the second iteration, both nodes would try to correct
their state values by running a corrective iteration. Here we
suppose A12(1) = 0, A21(1) = 1, or in other words, φ12(1)
is delivered to node 2, but φ21(1) does not arrive at node 1.
Therefore, when equally dividing ∆12, node 2 corrects its state
as x2(2) = x2(1)− 1

2 (φ12(1) +φ21(1)) = 0− (0 + 10)/2 =
−5, but node 1 does not receive φ21(1) and therefore cannot
correct its state, so x1(2) = x1(1) = 10.

On the other hand, when dividing ∆12 in proportion
to packet reception ratios, we have x2(2) = x2(1) −

p12

p12+p21
(φ12(1) + φ21(1)) = 0 − 10%

90%+10% (0 + 10) = −1,
and x1(2) = x1(1) = 10. This is closer to the final consensus
configuration (x1 = x2 = 0) than dividing ∆12 equally.

To quantify the distance to the consensus configuration, we
define e(t) := x21(t)+x22(t). One can see that e(2) = 125 and
e(2) = 101 respectively for the two dividing methods, and
that dividing in proportion to pij yields better performance.

This analysis can be repeated for all possible instances
of packed drops. Table I lists the results for all non-trivial
cases, e.g., when A12 and A21 are both nonzero. The last
column lists the probability of each corresponding case. For
example, the probability for the first case can be computed
as P (A12(0) = 0) × P (A21(0) = 1) × P (A12(1) = 0) ×
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Dividing ∆12 A12(0) A21(0) A12(1) A21(1) x1(1) x2(1) φ12(1) φ21(1) x1(2) x2(2) e(2) Probability
Half & half 0 1 0 1 10 0 0 10 10 -5 125 0.6561

Proportional 0 1 0 1 10 0 0 10 10 -1 101 0.6561
Half & half 0 1 1 1 10 0 0 10 5 -5 50 0.0729

Proportional 0 1 1 1 10 0 0 10 1 -1 2 0.0729
Half & half 0 1 1 0 10 0 0 10 5 0 25 0.0081

Proportional 0 1 1 0 10 0 0 10 1 0 1 0.0081
Half & half 1 0 0 1 0 -10 -10 0 0 -5 25 0.0081
Proportional 1 0 0 1 0 -10 -10 0 0 -9 81 0.0081
Half & half 1 0 1 1 0 -10 -10 0 5 -5 50 0.0009
Proportional 1 0 1 1 0 -10 -10 0 9 -9 162 0.0009
Half & half 1 0 1 0 0 -10 -10 0 5 -10 125 0.0001
Proportional 1 0 1 0 0 -10 -10 0 9 -10 181 0.0001

TABLE I
CONSENSUS ITERATIONS IN THE TWO-NODE NETWORK. PROPORTIONAL DIVIDING PERFORMS BETTER IN THE MORE PROBABLE CASES.
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Fig. 2. Convergence speed for different ways of dividing ∆ij in a 10-node
line topology.

P (A21(1) = 1) = 0.9× 0.9× 0.9× 0.9 = 0.6561.
One can see from Table I that proportionally dividing ∆ij

yields faster convergence for the more probable cases and
therefore converges faster in expectation. The expected error
E
(
e(2)

)
for the cases in Table I is 86.12 when dividing by

half and 67.24 when dividing in proportion to pij .
We do not claim that the choice of weights for splitting

the ∆ij in (7) is optimal. However, in practice, as it will be
shown in the next section, this choice is superior to using
equal weights. In our future work we will investigate criteria
for choosing the weights optimally.

D. Simulation Results

We run the corrective consensus in a 10-node linear
topology where pij = 10%, ∀i = j + 1 and pij = 90%,
∀i = j − 1. Figure 2 presents the convergence results
for the two methods of dividing ∆ij . The y-axis draws
e(t) :=

∑N
i=1(xi(t) − z)2, and each curve was averaged

over 100 independent experiments with the initial state values
following a uniform distribution. During the experiments, we
set n = 1, m = 5 and k = 1. One can see that the original
corrective consensus, i.e, dividing ∆ij into halves, indeed
converges to the average value, as show in Section IV-A. In
addition, it is also obvious that dividing ∆ij according to the
values of pij and pji gives significantly faster (≈ 2.3 times)
convergence speed than the original corrective consensus.

V. CONCLUSION

In this paper we have shown the convergence of corrective
consensus with unequal packet reception ratios. We have also
studied the effect of assigning the correction values according

to packet reception ratios, which empirically converges faster
than the original corrective consensus algorithm. Our future
work will further investigate its convergence properties.
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APPENDIX

CONVERGENCE OF CORRECTIVE CONSENSUS

We want to analyze the convergence properties of corrective
consensus under unequal packet reception ratios. Similar to
[6], we prove Theorem 1 from Section IV-A in two steps:
first assume that the φij’s are always successfully delivered,
and then remove this assumption.

A. Non-lossy φij
In the case of non-lossy φij , we need to show that Theorem

2, 3, 4 and 5 in [6] hold. Specifically, unequal packet reception
ratios mean that E(Wij(t)) 6= E(Wji(t)), which mainly
affects the proofs for Theorem 3 and leave the other three
theorems intact. Therefore, in what follows we will adopt the
very steps in the proof of Theorem 3 in [6] and report only
the necessary modifications.

First, we observe that Equations (24)-(29) in [6] remain
unaffected. Therefore, we have

E‖x̃(k+1)‖ = E‖x̃(k)‖+ 1

2

k−1∑
s=0

E

√√√√ N∑
j=1

( N∑
i=1

δij(s)
)2
, (9)

where δij(t) = (Wij(t)−Wji(t))(x̃j(t)− x̃i(t)). Each term
of the summation in Equation (9) can be bounded by using
Jensen’s inequality. Therefore, we can rewrite Equation (30)
in [6] while taking into account that E(δij(t)) 6= 0 as

E

[( N∑
i=1

δij(s)
)2∣∣∣x̃(s)

]
= E

[ N∑
i=1

N∑
l=1

δij(s)δlj(s)
∣∣∣x̃(s)

]
≤ E

[
1

2

N∑
i=1

N∑
l=1

(
δ2ij(s) + δ2lj(s)

)∣∣∣x̃(s)

]
= E

[
N

N∑
i=1

δ2ij(s)
∣∣∣x̃(s)

]
= N

N∑
i=1

E
[
(Wij(s)−Wji(s))

2
]

(x̃j(s)− x̃i(s))2

= N

N∑
i=1

(p̂ij + p̂ji − 2p̂ij p̂ji)ε
2 (x̃j(s)− x̃i(s))2

≤ N(p̂ı̂̂ + p̂̂ı̂ − 2p̂ı̂̂p̂̂ı̂)ε
2

N∑
i=1

(x̃j(s)− x̃i(s))2

= Np̃ε2
∑N

i=1 (x̃j(s)− x̃i(s))2

= Np̃ε2
( N∑
i=1

x̃2j (s) +

N∑
i=1

x̃2i (s)− 2

N∑
i=1

x̃j(s)x̃i(s)
)

= Np̃ε2
(
Nx̃2j (s) + ‖x̃(s)‖2

) (10)

Recall that the effective PRR of the link (i, j) ∈ E is
p̂ij := 1 − (1 − pij)n, where n is the number of repeated
transmissions in each standard iteration. In Equation (10) we
define (̂ı, ̂) = arg max

1≤i,j≤N
p̂ij + p̂ji − 2p̂ij p̂ji, and we use a

shorthand p̃ = p̂ı̂̂ + p̂̂ı̂−2p̂ı̂̂p̂̂ı̂ for convenience. Comparing
the above result to Equation (30) in [6], one can see that the
only difference is the coefficient N and the definition of p̃.
The same applies to Equation (31)-(35) in [6]. Hence, we have

E‖x̃((k + 1)u)‖ ≤ cu‖x̃(0)‖, (11)
where

c =

(
λ2

k
+

1

2
ε
√

2p̃N2
1− λ2

k

1− λ2

)
, (12)

and λ2 = E
(
|λ2(W (t))|

)
, i.e., the expected second largest

eigenvalue of the weight matrix. Note that we can enforce
c < 1 by tuning the stepsize ε and the number of repeated
packet transmissions n. Specifically, p̃ can be made arbirarily
close to 0 by increasing n, as explained by Theorem 5 in [6].

Note that Equation (11) is different from the one in
Theorem 1 in Section IV-A, and this is because in this
section we are using the assumption that φij is non-lossy,
but Theorem 1 is for the more general case that φij can be
lossy, which will be addressed in next section.

The result in (11) is equivalent to Theorem 3 in [6] with
the new critical value c defined in (12). By far, we have
shown the convergence properties of corrective consensus
under nonequal probabilities in the case of non-lossy φij .

B. Lossy φij
Next we will remove the non-lossy φij assumption. In

this case, we need to show that Theorem 6, 7 and 8 in [6]
hold. Similar to the previous case, only Theorem 6 is affected
and the other two theorems are intact with a trivial change
to Theorem 8. In what follows, we will make necessary
modifications to the proof of Theorem 6, and then point out
the trivial change to Theorem 8.

As in [6], we use the random stationary variables vij(u)
to indicate the reception status of φij , defined as vij(u) = 1
if node i receives φji from node j at the u-th corrective
iteration, and zero otherwise. We will also denote qij =
P (vij = 1) = 1− (1− pij)m, with m being the number of
repeated transmissions in each corrective iteration. In other
words, qij is the effective PRR of the link i ← j during
corrective iterations.

In Theorem 6 [6], it can be verified that Equations (38)-
(44) still hold without modification. However, E(δij) 6= 0,
therefore it is not straightforward to obtain Equation (46) in
[6]. We will proceed by first analyzing the following term

E
[(∑N

i=1 δij(s)vij(u)
)2∣∣∣x̃(s)

]
= E

[∑N
i=1

∑N
l=1 δij(s)δlj(s)vij(u)vlj(u)

∣∣∣x̃(s)

]
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≤ E

[
1

2

N∑
i=1

N∑
l=1

(
δ2ij(s) + δ2lj(s)

)
vij(u)vlj(u)

∣∣∣x̃(s)

]
≤ E

[
1

2

N∑
i=1

N∑
l=1

(
δ2ij(s) + δ2lj(s)

)∣∣∣x̃(s)

] (13)

in which we use the fact that, by definition, 0 ≤ vij(u) ≤ 1.
Combining (10) and (13), we obtain

E‖x̃(û− 1)‖+ E

1

2

û−1∑
s=û−k−1

{ N∑
j=1

[ N∑
i=1

δij(s)vij(u)
]2} 1

2


≤ cE‖x̃(û− k − 1)‖,

in which the definition of c is given in (12), and we use
û = (k + 1)u as a shorthand. This result is identical to
Equation (46) in [6] except for the different definition of c.

Next, Equation (47) and the first three rows of (48) in [6]
hold and we get

E‖x̃(û)‖ ≤ cE‖x̃(û− k − 1)‖

+
1

2

u−1∑
r=1

(k+1)r−2∑
s=(k+1)(r−1)

Vu,s,r(δij , vij). (14)

where

Vu,s,r(δij , vij) = E

√√√√ N∑
j=1

[ N∑
i=1

δij(s)vij(u)Λij(u− 1, r)
]2

≤ E


√√√√√E

 N∑
j=1

[ N∑
i=1

δij(s)vij(u)Λij(u− 1, r)
]2∣∣∣x̃(s)


 ,
(15)

in which we define

Λij(u, r) =

u∏
l=r

(
1− 1

2

(
vij(l) + vji(l)

))
.

The innermost term on the second row of (15) can be
expanded as[ N∑
i=1

δij(s)vij(u)Λij(u− 1, r)
]2

=

N∑
i=1

N∑
l=1

δij(s)δlj(s)vij(u)vlj(u)Λij(u− 1, r)Λlj(u− 1, r)

≤1

2

N∑
i=1

N∑
l=1

(δ2ij(s) + δ2lj(s))

× vij(u)vlj(u)Λij(u− 1, r)Λlj(u− 1, r)

=

N∑
i=1

δ2ij(s)vij(u)Λij(u− 1, r)

N∑
l=1

vlj(u)Λlj(u− 1, r)

≤
N∑
i=1

δ2ij(s)vij(u)Λij(u− 1, r)N

where we use the property that 0 ≤ Λij(u − 1, r) ≤ 1 and
0 ≤ vij(u) ≤ 1, ∀i, j, u, r. Then, we can write the second

innermost term on the second row of (15) as

E
[ N∑
j=1

[ N∑
i=1

δij(s)vij(u)Λij(u− 1, r)
]2∣∣∣x̃(s)

]
≤ E

[
N

N∑
j=1

N∑
i=1

δ2ij(s)vij(u)Λij(u− 1, r)
∣∣∣x̃(s)

]
= N

N∑
j=1

N∑
i=1

E(δ2ij(s)|x̃(s))Evij(u)EΛij(u− 1, r)

= N

N∑
j=1

N∑
i=1

E(δ2ij(s)|x̃(s))qij(1−
qij
2
− qji

2
)u−r

≤ Nqı̂̂(1−
qı̂̂
2
− q̂ı̂

2
)u−r

N∑
j=1

N∑
i=1

E(δ2ij(s)|x̃(s))

≤ N(1− qı̂̂
2
− q̂ı̂

2
)u−r

N∑
j=1

N∑
i=1

E(δ2ij(s)|x̃(s))

≤ N(1− qi∗j∗

2
− qj∗i∗

2
)u−r

N∑
j=1

N∑
i=1

E(δ2ij(s)|x̃(s))

= Nq̃u−r
N∑
j=1

N∑
i=1

E(δ2ij(s)|x̃(s))

in which we define (̂ı, ̂) = arg max
1≤i,j≤N

qij(1 − qij
2 −

qji
2 )u−r

and (i∗, j∗) = arg min
1≤i,j≤N ;qij>0

qij + qji, and use the property

qı̂̂ ≤ 1. In addition, we define q̃ = 1 − qi∗j∗

2 − qj∗i∗

2 as a
shorthand.

Using the above results, we can revise Equation (48) in
[6] as follows

E

√√√√ N∑
j=1

[ N∑
i=1

δij(s)vij(u)Λij(u− 1, r)
]2

≤ E

√√√√E
[ N∑
j=1

[ N∑
i=1

δij(s)vij(u)Λij(u− 1, r)
]2∣∣∣x̃(s)

]
≤ E

√√√√Nq̃u−r
N∑
j=1

N∑
i=1

E(δ2ij(s)|x̃(s))


≤ q̃

u−r
2

√
2p̃N2εE‖x̃(s)‖

Finally, Equations (49), (50) and (51) in [6] remain the
same except for the additional coefficient N and the different
definitions of the critical value c and the shorthands q̃ and p̃.
Hence, we have proved Theorem 6 in [6]. This implies the
statement of Theorem 1 in Section IV-A with b satisfying
q̃ ≤ b(b−c)

2b−c , and we will have

E (‖x̃((k + 1)u)‖) ≤ cbu−1E (‖x̃(0)‖) . (16)

One can see that Equation (11) is a special case of Equation
(16), in which b degenerates to b = c.

Now Theorem 8 in [6] should be modified to state that
such value b always exists with an appropriate choice of the
number of repeated transmissions m, which is trivial to show
because q̃ can be made arbitrarily close to 0 by tuning the
value of m.
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