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Abstract— In this paper we deal with the problem of decen-
tralized observability of discrete event systems. We consider
a set of sites that observe a subset of events. Each site
transmits its own observation to a coordinator that decides
if the word observed belongs to a legal behavior or not. We
study two different properties: uniform q−observability and
q−diagnosability. Then, we prove that both properties are
decidable for regular languages. Finally, we give an algorithm
to compute starting from a given initial state, the time instants
at which the synchronization has to be done so as to guarantee
that if an illegal word has occurred it is immediately detected.

I. INTRODUCTION

A. Motivation

In [1] Tripakis defines a property that he calls local

observability. The idea is the following: a set of n local sites

observe, through their own projection masks Pi, a word w of

symbols that is known to belong to a language L. A language

K ⊂ L is locally observable if, assuming all local sites send

to a coordinator all observed strings Pi(w), the coordinator

can decide for any w if the word belongs to K or to L \K.

Note that this property was shown in [1] to be undecidable

even when languages L and K are regular: this is due to

the fact that the length of a word w can be arbitrarily long.

On the contrary, assuming only words of bounded length are

considered, the property is decidable for arbitrary languages,

since it must only be checked over a finite number of strings.

We observe that this property is closely related to local

diagnosability as defined by Sampath et al. [2]. In fact,

language K in this setting represents the set of all fault-free

evolutions, while the larger set L also includes the faulty

ones.

The problem we want to address is the following. Assume

w describes the event driven evolution of a system. The

coordinator can at any moment send a request to all local

sites to know the observed words since the previous request:

such a mechanism is called synchronization. After each

synchronization a coordinator should be able to decide if, on

the basis of the information received so far from the local

sites, the word w generated is legal, i.e, belongs to K. Note
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that a synchronization is costly, thus although we assume

that the maximal number of events that can be generated

by the system between two consecutive synchronizations is

bounded, the coordinator should request as few synchroniza-

tions as needed to solve the observability problem. Also

the distance between two consecutive synchronizations, ex-

pressed in terms of the number of events generated between

them, needs not be constant but may opportunistically vary

with the word generated so far.

In this setting, although the basic notion of local observ-

ability given by Tripakis is still fundamental, two major

extensions are needed. In fact the observability property

defined in [1] makes two rather restrictive assumptions.

The first assumption is that the observability property is

defined only with respect to words in L. On the contrary,

in our setting synchronization occurs repeatedly. Thus if a

synchronization occurs after a word w has been generated we

are interested in the observability of the residual language

w−1K, i.e., the set of all strings that belong to K and

whose prefix is w, with respect to the residual language

w−1L. Correspondingly, we introduce the notion of uniform

q−observability.

The second assumption in [1] is that when the observation

starts the word generated so far (that as discussed in the

previous paragraph is always the empty word) is perfectly

known. On the contrary, in our setting when a synchroniza-

tion occurs the coordinator should be able to determine if

the generated string is legal or not, but may not be able

to unambiguously estimate it. Thus when next observation

starts the word generated so far is only known to belong to a

given set. To capture this condition, we introduce the notion

of q−diagnosability.

B. Literature review

Observability is a fundamental property that has received

a lot of attention during the last decades due to the impor-

tance of reconstructing plant states that cannot be measured.

Several contributions have been presented in the framework

of automata [3], [4], [5], [6]. In [3] Caines et al. showed

how it is possible to use the information contained in the past

sequence of observations (given as a sequence of observation

states and control inputs) to compute the set of consistent

states, while in [4] the observer output is used to steer

the state of the plant to a desired terminal state. A similar

approach was also used by Kumar et al. [6] when defining

observer based dynamic controllers in the framework of

supervisory predicate control problems.

Özveren and Willsky [5] proposed an approach for build-

ing observers that allows one to reconstruct the state of finite
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automata after a word of bounded length has been observed,

showing that an observer may have an exponential number of

states. A problem strictly related to observability as defined

in the present paper is opacity. A system is (current-state)

opaque if its (current) state is never exposed to certainly

belong to a given set of secret states. See the work of Saboori

and Hadjicostis [7], [8] and of Dubreil et al. [9].

Finally, a very general approach for observability with

communication has been presented by Barret and Lafortune

in [10] in the context of supervisory control, and several

techniques for designing a possibly optimal communication

policy have also been discussed therein. By optimal we mean

that the local sites communicate as late as possible, only

when strictly necessary to prevent the undesirable behavior.

Our work is by large a special case of the architecture in

[10] because we allow communications only between the

coordinator and the local observers — and not among local

observers — and we do not consider a control problem but

simply an observation one. There are, however, a few differ-

ences in our approach — derived from [1] — with respect

to [10] that motivate the need for additional investigation.

These differences are listed here. First, we frame our results

in the context of languages, rather than automata: this means

that some of our definitions and results apply to possibly non

regular languages. Secondly, while in [10] communications

are decided by the local observers and are triggered by the

observation of an event, in our case the communications are

triggered by the coordinator. Finally, we assume that the

coordinator knows the number of events generated so far,

but cannot directly observe their label; thus the observation

structure of the coordinator is not a projection mask but

simply a function f : L→ N that counts the events generated

so far.

Recently Ricker and Caillaud [11] have also considered

a setting where communications may also be triggered by

the receiver, that requests information from a sender. Fur-

thermore, they also discuss policies where communication

occurs after prefixes of any of the behaviors involved in a

violation of co-observability, not just those that may result

in undesired behavior.

II. BASIC NOTATIONS

Let Σ be a finite alphabet: Σ∗ denotes the set of all finite

strings over Σ, i.e., the Kleene star, and ε denotes the empty

string. Given two strings u and v, uv is the concatenation of

u and v.

A deterministic finite automaton (DFA) is a tuple G =
(X,Σ, δ, x0,Xm) where X is the set of states, Σ is the finite

set of events, a partial function δ : X × Σ → X is the

transition function, x0 ∈ X is the initial state, and Xm ⊆ X

is the set of marked states. The generated and marked

languages of G, denoted by L(G) and Lm(G), respectively,

are defined as L(G) = {w ∈ Σ∗|δ(x0, w) is defined} and

Lm(G) = {w ∈ Σ∗|δ(x0, w) ∈ Xm}. Given two determin-

istic finite automata G1 = (X1,Σ1, δ1, x0,1,Xm,1) and

G2 = (X2,Σ2, δ2, x0,2,Xm,2), the parallel composition

of G1 and G2 is the automaton G1‖G2 = (X ′,Σ1 ∪

Σ2, δ
′, (x0,1, x0,2),X

′
m), where X ′ ⊆ (X1 × X2), X ′

m ⊆
(Xm,1 ×Xm,2) and

δ′(x, e) =























(x̄1, x2) if e ∈ Σ1 \ Σ2, δ1(x1, e) = x̄1;
(x1, x̄2) if e ∈ Σ2 \ Σ1, δ2(x2, e) = x̄2;
(x̄1, x̄2) if e ∈ Σ1 ∩ Σ2, δ1(x1, e) = x̄1,

δ2(x2, e) = x̄2;
not defined otherwise.

Given a word w ∈ Σ∗, and an alphabet Σi ⊆ Σ, we denote

as Pi(w) the projection of w over Σi, that can be recursively

defined as follows. If w = ue, where u ∈ Σ∗ and e ∈ Σ, it

holds

Pi(w) =

{

Pi(u)e if e ∈ Σi,

Pi(u) otherwise

Given a language L and a string w ∈ Σ∗, the residual of L

with respect to (wrt) w is the language w−1L = {z | wz ∈
L}. The language L is regular iff the set of its residuals as w

ranges over Σ∗ is finite, i.e., iff the set {w−1L | w ∈ Σ∗}
is finite. The cardinality of the set {w−1L | w ∈ Σ∗} is

called the index of L.

III. UNIFORM q−OBSERVABILITY

Let us consider two prefix-closed languages K and L

defined over an alphabet Σ, such that K ⊂ L ⊆ Σ∗, and

a set of n sub-alphabets Σi ⊆ Σ, i = 1, . . . n.

The n sub-alphabets Σi’s are associated to n sites Si, i =
1, . . . , n. In particular, Σi includes all the events that can be

observed by Si.

A first definition of decentralized observability has been

given by Tripakis in [1] in the case of regular languages.

Definition 3.1: Let us consider two regular languages L

and K. The language K is jointly observable wrt L and

Σi, for i = 1, . . . , n, if there exists a total function f :
Σ∗

1 × . . . Σ∗
n → {0, 1}, such that ∀w ∈ L

w ∈ K ⇔ f(P1(w), . . . , Pn(w)) = 1. (1)

�

The above property uses unbounded memory since the

word w may have arbitrary length, thus it is undecidable

[1].

In this paper we generalize such a definition to the case

of finite memory, i.e., the coordinator can at any moment

send a request to all local sites to know the observed words

since the previous request. On the basis of the information

received so far from the local sites, the coordinator should

establish if the evolution is legal.

Definition 3.2: Let Σ be a finite alphabet, and Σi ⊆ Σ,

with i = 1, . . . , n, be n sub-alphabets of Σ. Let L and K be

two prefix closed languages such that K ⊂ L ⊆ Σ∗.

The language K is called uniformly q−observable wrt L

and Σi, for i = 1, . . . , n, if ∀ w ∈ K there exists a function

fw : Σ∗
1 × . . . × Σ∗

n → {0, 1} such that ∀ u ∈ w−1L with

|u| ≤ q, it holds

u ∈ w−1K ⇐⇒ fw (P1(u), . . . , Pn(u)) = 1. (2)

�
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Fig. 1. The DFA considered in Example 3.5.

In simple words, uniform q−observability implies the

possibility of establishing if the behavior of a given system

is legal, only looking at the occurrence of no more than

q events, and knowing that the sequence w preceding such

events is legal.

Let us now introduce an equivalence relation among

strings that allows us to rephrase the above definition of

uniform observability.

Definition 3.3: Let Σ be a finite alphabet, and Σi ⊆ Σ,

with i = 1, . . . , n, be n sub-alphabets of Σ. Let L and K be

two prefix closed languages such that K ⊂ L ⊆ Σ∗.

A word u ∈ w−1L is observation equivalent (or simply

equivalent) to v ∈ w−1L, i.e., u ≡ v, if Pi(u) = Pi(v) for

all i = 1, . . . , n. We denote [u] the set of words that are

equivalent to u. Finally, we say that two words that are not

equivalent are distinguishable. �

Using this notion, the definition of uniform

q−observability of a language can be rewritten as follows.

Definition 3.4: Let Σ be a finite alphabet, and Σi ⊆ Σ,

with i = 1, . . . , n, be n sub-alphabets of Σ. Let L and K be

two prefix closed languages such that K ⊂ L ⊆ Σ∗.

The language K is called uniform q−observable wrt L

and Σi, i = 1, . . . , n, if ∀ w ∈ K, and ∀ u ∈ w−1L,

w[u] ∩K 6= ∅ ⇒ w[u] ⊆ K. (3)

�

The following example clarifies the above definitions.

Example 3.5: Let Σ = {a, b}, Σ1 = {a}, Σ2 = {b}, L be

the language generated by the regular expression (a + b)
∗
,

while K is the language generated by the regular expression

K1 + K2 where K1 = (aa∗b)
∗

and K2 = (aa∗b)
∗
aa∗.

It can be easily verified that L corresponds to the language

generated by the DFA in Fig. 1 starting from x0, while K

is the language generated by the same DFA neglecting the

state x2, still assuming x0 as the initial state. Moreover, K1

corresponds to the set of words that finish in x0, while K2

corresponds to the set of words that finish in x1.

We want to study the uniform q−observability of K wrt

L, Σ1 and Σ2.

Let’s start with q = 1. According to the definition of

uniform q−observability we have to consider all possible

words u ∈ w−1L of unitary length. This is equivalent to

consider an arbitrary word w ∈ (K1 + K2) followed by any

word u of length 1. Since all words w ∈ K1 terminate in

x0, then only two words of unitary length may occur after

w, namely u1 = a and u2 = b. Clearly it is wu1 ∈ K and

wu2 ∈ L \K, therefore it should be

fw(P1(u1), P2(u1)) = fw(a, ε) = 1

and

fw(P1(u2), P2(u2)) = fw(ε, b) = 0.

Let us now consider an arbitrary word w ∈ K2, i.e., an

arbitrary word that terminates in x1. Starting from x1 the

only admissible words of length 1 are u3 = a and u4 = b.

In such a case both wu3 and wu4 are in K, thus it should

be

fw(P1(u3), P2(u3)) = fw(a, ε) = 1

and

fw(P1(u4), P2(u4)) = fw(ε, b) = 1.

This enables us to conclude that K is uniformly

1−observable wrt L, Σ1 and Σ2.

Note that the same conclusion can be drawn using the no-

tion of uniform 1-observability based on equivalence classes.

Indeed, both u1 and u2, and u3 and u4 are distinguishable.

Let us now study uniform 2−observability. As discussed

above, if w ∈ K1 we should consider all words u ∈
L of length 2 that can be generated from x0, i.e., u ∈
{aa, ab, ba, bb}. However, ab and ba are clearly equivalent

but wab ∈ K while wba ∈ L \K. Thus K is not uniformly

2−observable wrt L, Σ1 and Σ2.

In other terms, we can say that a function fw satisfying the

if and only if condition in (2) could not be defined. Indeed

it should simultaneously be

fw(P1(ab), P2(ab)) = fw(b, a) = 1

and

fw(P1(ba), P2(ba)) = fw(b, a) = 0,

i.e., fw should assume different values in correspondence to

the same arguments. �

The following result trivially follows from Definition 3.2.

Proposition 3.6: If K is uniformly q−observable wrt L

and a set of alphabets Σi, i = 1, . . . , n, then it is also

uniformly (q − 1)-observable wrt them.

Proof: Follows by the fact that the same fw function

used in the case of uniform q−observability can be used in

the case of uniform (q−1)−observability, simply restricting

its arguments to words of length q − 1 rather than q. �

This implies that, if a language is uniformly q−observable

for some finite q > 1, then it is also uniformly 1-observable.

A simple condition under which uniform 1-observability

is guaranteed is now given.

Proposition 3.7: Let us consider a set of alphabets Σi,

i = 1, . . . , n, such that Σ1 ∪ . . . ∪ Σn = Σ.

Any language K ⊂ L ⊆ Σ∗ is uniformly 1−observable

wrt to L and Σi, i = 1, . . . , n.

Proof: Since Σ1 ∪ . . . ∪ Σn = Σ, there exists at least

one site that can detect any event e that has occurred. If the

function fw has been defined for a word w, the new function

simply assigns the value 1 if we ∈ K and 0 otherwise. Being

possible to define the function for any observed event, the

system is uniformly 1−observable. �
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On the contrary, uniform 1-observability is no more en-

sured if one or more events in Σ are not observable by all

the sites. Let

Σ̂ = Σ \
n
⋂

i=1

Σi (4)

denotes the set of events that are observable by no site. If

Σ̂ 6= ∅ then K ⊂ L ⊆ Σ∗ can be not uniformly 1-observable

wrt L and Σi’s, even if all words formed by the concatenation

of a word in K and a word in Σ̂∗ are still in K, i.e., KΣ̂∗∩
L ⊂ K.

A. Regular languages

Particularly interesting results can be proved if K and L

are prefix-closed regular languages. First, it can be shown

that analyzing uniform q-observability is a decidable prob-

lem. Then, a simple criterion can be given to establish if a

certain sequence is legal, based on DFA.

Proposition 3.8: Let us consider a set of alphabets Σi,

i = 1, . . . , n, such that Σ1 ∪ . . .∪Σn = Σ. Let K and L be

two prefix-closed languages such that K ⊂ L ⊆ Σ∗.

If K and L are regular languages, the uniform

q−observability of K wrt L and Σi is decidable for any

finite q ∈ N.

Proof: According to the Myhill-Nerode Theorem [12],

each regular language L has a finite index, i.e., the set of

languages {w−1L | w ∈ L} is finite. This implies that it is

sufficient to check the existence of a function fw for a finite

number of words w over a finite subset of Σ∗
1 × · · ·Σ

∗
n, i.e.,

the set of projections on Σi’s, i = 1, . . . , n, with length less

than or equal to q. Thus the problem is decidable. �

From the Myhill-Nerode Theorem [12], it follows that to

each regular language can be uniquely associated a minimal

DFA generating it, namely a DFA with the fewest number

of states. Now, let L and K be two regular prefix-closed

languages, where K represents the legal behavior and L

represents the set of all possible behaviors, including legal

and illegal behavior. Let GL and GK be the minimal DFA

with generated languages L(GL) and L(GK), respectively.

Being such languages prefix-closed, marked languages coin-

cide with regular languages.

Starting from GL and GK , we want to give a procedure

to construct a unique DFA H where some states are good

and others are bad. The strings terminating in a good state

represent a legal behavior and should belong to K. On the

contrary, the strings terminating in a bad state represent the

forbidden language, i.e., should belong to L \K.

The main steps of the procedure to construct such a DFA

can be summarized by Algorithm 1.

The following property is satisfied by the DFA H built

using the above procedure.

Proposition 3.9: Let H be the automaton built according

to Algorithm 1, starting from two prefix-closed regular

languages K and L.

• All strings that finish in an unmarked state are in K.

• All strings that finish in a marked state are in L \K.

Algorithm 1 Construction of the DFA H

Let G′
K = (X,E, δ, x0,Xm) be a DFA where X , E, δ

and x0 are the same of GK and Xm = ∅.
Add a new marked state to G′

K that has a self-loop

containing all events in E.

Add arcs labeled E \ {e ∈ E|δ(x, e)!} from each state

x ∈ X to this new state.

Let H = GL‖G
′
K be the automaton obtained by the

parallel composition of automaton GL and automaton G′
K .

Proof: Simply follows from the rules of construction of

H using Algorithm 1. �

Note that it can never occur that a string finishes in an

unmarked state passing through a marked state. Indeed, by

the rules of construction of H , if a string reaches a marked

state, all events that follow, never allow the state to be

changed.

Uniform q−observability can be studied according to

Algorithm 2.

Algorithm 2 Uniform q-observability

Let X = {X \Xm} be the set of unmarked (good) states

of H .

while X 6= ∅ do

Choose arbitrarily one state x ∈ X
i← 1.

while i ≤ q do

Compute the set of words of length i that can be

generated by H starting from x.

Partition such words in equivalence classes Wj’s.

if ∃ some equivalence class W̄ : W̄ ∩K 6= ∅ but

it is not W̄ ⊆ K then

exit. {The language K is not uniformly

q−observable wrt L and Σi’s}.
else

i = i + 1
end if

end while

X ← X \ {x}
end while

Example 3.10: Let L and K be the two languages already

considered in Example 3.5, namely, L = (a + b)∗ and K =
K1 + K2 where K1 = (aa∗b)

∗
and K2 = (aa∗b)

∗
aa∗.

The DFA in Fig. 1 can be obtained applying Algorithm 1

where GK is composed by x0 and x1 while GL also includes

x2. Therefore, all strings starting from x0 avoiding x2 belong

to K. However, if a string finishes in x2 it belongs to L\K,

i.e., it is a bad word.

To study uniform 1-observability we initially assume X =
{x0, x1}. Let us first focus on x0. The set of words of unitary

length starting from x0 is {a, b}: a and b obviously belong

to different equivalence classes, i.e., they are distinguishable,

thus we continue the algorithm. In particular, we repeat the

same reasoning for x1 and we conclude that K is uniformly
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1-observable.

Using similar arguments we conclude that the language K

is not uniformly 2-observable. �

IV. q−DIAGNOSABILITY

In this section we introduce a new property, strictly related

to uniform q-observability, that we denote q-diagnosability.

Such a property still concerns the possibility of establishing

if a word given by the concatenation of a legal word w,

and a word u on which we receive some information, is

legal as well. The main difference of q-diagnosability wrt

q-observability is on the information on u. We still assume

the presence of n observers, each one with its own alphabet,

and a coordinator. However, in the case of q-diagnosability

observations are sent to the coordination by single sites in

the form of a series of a finite number m of synchronized

words, rather than a single word.

Definition 4.1: Let Σ be a finite alphabet, and Σi ⊆ Σ,

with i = 1, . . . , n, be n sub-alphabets of Σ. Let L and K be

two prefix closed languages such that K ⊂ L ⊆ Σ∗.

The language K is called q−diagnosable wrt L and Σi,

i = 1, . . . , n, if for all m ∈ N and ∀ sequence of m words

(u1, u2, . . . , um) such that u1u2 . . . um ∈ L and |ui| ≤ q,

∀i = 1, . . . ,m, it holds

u1u2 . . . um ∈ K ⇐⇒
f (P1(u1), . . . , Pn(u1), . . . ,

. . . , P1(um), . . . , Pn(um)) = 1.
(5)

�

The notion of equivalence can be easily extended to the

case of q− diagnosability.

Definition 4.2: Let Σ be a finite alphabet, and Σi ⊆ Σ,

with i = 1, . . . , n, be n sub-alphabets of Σ. Let L and K be

two prefix closed languages such that K ⊂ L ⊆ Σ∗.

Consider two sequences of word (u1, u2, . . . , um) and

(v1, v2, . . . , vm), where u1u2 · · ·um, v1v2 · · · vm ∈ L. The

two sequences are diagnosable equivalent, or simply equiv-

alent, if Pi(vj) = Pi(uj) for all i = 1, . . . , n and

all j = 1, . . . ,m. We denote this (u1, u2, . . . , um) ≡
(v1, v2, · · · , vm). Finally, we say that two sequences that are

not equivalent are distinguishable. �

Obviously, if both languages L and K are regular, by

Algorithm 1 the analysis of q−diagnosability can be carried

out using DFA where final states correspond to bad states,

and sequences that terminate in them are not legal.

Moreover, the following implication holds.

Proposition 4.3: If a language K is q−diagnosable wrt

to a language L and a set of alphabets Σ1, . . . ,Σn, then it

is also q−observable wrt L and Σ1, . . . ,Σn.

Proof: It is a consequence of Definitions 3.2 and 4.1.

Indeed, consider any word w ∈ K and write it as w =
u1u2 · uk where |ui| ≤ q for all i.

Then for any word u ∈ w−1L with |u| ≤ q we can

define function fw in Definition 3.2 in terms of function

a 

b 

b�

a x1 

x0 

x2 x3 

x4 x5 x6 

x7 

b 

a, b, c 

a 

b 

c 

c 

c 

Fig. 2. The DFA considered in Example 4.4 where q7 is the bad state.

f in Definition 4.1 as follows:

fw (P1(u), . . . , Pn(u))
= f (P1(u1), . . . , Pn(u1), . . . , P1(uk), . . . , Pn(uk),

P1(u), . . . , Pn(u))

showing that K is uniformly q−observable wrt L and Σi’s.

�

On the contrary, q-observability does not imply q-

diagnosability as shown by the following example. Although,

the results presented above hold for both regular and non

regular languages, for the sake of simplicity the following

example deals with regular languages.

Example 4.4: Let L be the language generated by the

DFA in Fig. 2 where x0 is the initial state, while K is the

language generated by the same DFA with the same initial

state, but neglecting x7, that is the only bad state. Finally,

assume three sites with alphabets Σ1 = {a}, Σ2 = {b} and

Σ3 = {c}, respectively.

As shown in the following items, K is uniformly

3−observable wrt L and Σi, i = 1, 2, 3.
• Let w = ε. All possible words u ∈ w−1L with

|u| = 3 finish in good states, without passing through a

bad state. In particular, u1 = abb terminates in x3 and u2 =
bac in x6. Therefore, it is fw(P1(u1), P2(u1), P3(u1)) =
fw(a, bb, ε) = 1 and fw(P1(u2), P2(u2), P3(u2)) =
fw(a, b, c) = 1.

• Let w = a. Two possible sequence of length 3 may

follow w, namely u3 = bbc 6∈ w−1K and u4 = bba ∈
w−1K. However bbc 6≡ bba, thus they can be distinguished

by the coordinator assuming fw(P1(u3), P2(u3), P3(u3)) =
fw(ε, bb, c) = 0 and fw(P1(u4), P2(u4), P3(u4)) =
fw(a, bb, ε) = 1.

• Let w = b. As in the above item, there are two sequences

of length 3 that can follow w, namely u5 = acc 6∈ w−1K

and u6 = acb ∈ w−1K. However, these strings can be

distinguished being acc 6≡ acb.
• Let w = ab. In this case, there are 4 possible strings

of length 3 that may follow w, one in w−1K, namely

u7 = baa, the other three not in w−1K, namely, bca, bcb

and bcc. However, the word finishing in a good state can be

distinguished by all words finishing in the bad state since it

does not contain event c, while all the others do.
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• Let w = ba. Also in this case the good word (cbb) can

be distinguished by the bad ones (cca, ccb, ccc) since it only

contains one c, while the others contain at least two c.
• Let w = abb. Also in this case the good word can be

distinguished by the bad ones since it does not contain c,

while all the bad do.
• Let w = bac. The same as in previous case: if one c is

observed by Σ3, the coordinator can conclude that the bad

state x7 is reached.
• Note that no other words w need to be considered since

the previous ones cover all good states of the DFA. Moreover

we do not need to consider words u of length smaller than

3 since by Proposition 3.6 uniform q−observability implies

uniform (q − 1)-observability.

Using similar arguments, we can prove that K is not

4−observable. In particular, the two sequences abbc ≡ bacb

may follow w = ε but abbc 6∈ w−1K while bacb ∈ w−1K.

Thus no function fw may be defined to distinguish them.

Finally, let us prove that even if K is 3−observable, it is

not 3−diagnosable. Indeed, let us assume u1 = ab, u2 = bc,

v1 = ba and v2 = cb. Since P1(ab) = P1(ba) = a, P2(ab) =
P2(ba) = b, P3(ab) = P3(ba) = ε, P1(bc) = P1(cb) = ε,

P2(bc) = P2(cb) = b and P3(bc) = P3(cb) = c then v1v2 ≡
u1u2. Being v1v2 ∈ K and u1u2 6∈ K it will be impossible

for the coordinator to distinguish among them. �

The following result provides a useful criterion to the

analysis of q-diagnosability.

Proposition 4.5: Let K be q−observable wrt a given

language L and a set of alphabets Σi’s. If after any q̂ ≤ q

steps the state is uniquely determined, q−observability =⇒
q−diagnosability.

Proof: If after q̂ ≤ q steps the state is uniquely

determined and K is q−observable it is always possible to

say if the concatenated word is in K. Using this argument

for a finite number of subsequences, the statement follows.

�

Example 4.6: Let us consider again the case of Exam-

ple 4.4 whose corresponding DFA H is that reported in

Fig. 2. As already proved K is not 3−diagnosable even if it

is 3−observable.

This result is consistent with Proposition 4.5. Indeed, if we

consider u = ab, the first site observes a and the second one

observes b. Thus the current state is not uniquely determined:

both x2 and x5 are possible. �

We finally present the following result.

Proposition 4.7: Let us consider a set of alphabets Σi,

i = 1, . . . , n, such that Σ1 ∪ . . .∪Σn = Σ. Let K and L be

two prefix-closed languages such that K ⊂ L ⊆ Σ∗.

If K and L are regular languages, the q−diagnosability

of K wrt L and Σi’s is decidable for any finite q ∈ N.

Proof: We just give a sketch of the proof. Since we are

taking into account regular languages we can equivalently

speak about a DFA H constructed with Algorithm 1 with

state set X . To determine if the property holds for m = 1
we need to check all words u1 of length less than or equal to

q that can be generated by the DFA starting from the initial

state x0.

Consider the case m = 2. After the first synchroniza-

tion is performed, we do not know the current state of

the DFA but we know it belongs to a set X(u1) =
X(P1(u1), . . . , Pn(u1)) ⊆ X and the set Ξ1 = {X(u1) |
u1 ∈ K, |u1| ≤ q} is finite. Now, for all possible X1 ∈ Ξ1

we consider the the language L(H | X1) = ∪x∈X1
L(H | x)

where L(H | x) denotes the language generated by the

automaton with initial state x and we need tho check all

words of length less than or equal to q in this language.

As m is increased one may have larger sets Ξk to check

but eventually Ξk = Ξk+1 because for all k ≥ 1 it holds

Ξk ⊆ 2X . Hence there are at most 2|X| languages L(H | Xk)
to consider and the problem is decidable. �

V. DYNAMIC OBSERVABILITY AND DIAGNOSABILITY

In this section we focus on regular prefix-closed languages

and consider a problem that may occur in several real

applications. We assume that the actual state of the system

is known, and we want to develop an algorithm to determine

the instants at which it is necessary to synchronize the

observations coming from the different sites, so that the bad

state is identified exactly as soon as it is reached. Obviously,

the last instant at which synchronization occurs should be

equal to the length of the shortest path (denoted by k) from

the actual state to a bad state. Furthermore, according to

Proposition 4.5, the state in which the system is after k steps

should be uniquely determined such that it is still possible

to perform diagnosis.

The proposed algorithm is also based on the following

quite intuitive result.

Proposition 5.1: Two consecutive synchronization per-

formed after q1 and q2 steps, respectively, lead to a number of

consistent words/states smaller than a unique synchronization

after q1 + q2 steps.

Proof: Follows from the trivial consideration that an

intermediate additional synchronization can only lead to ad-

ditional information, thus to a reduced number of consistent

words/states. �

Let us now consider two regular languages L and K ⊂ L

generated by two DFA GL and GK , respectively. Given an

initial state, Algorithm 3 computes the instants at which it

is necessary to synchronize to guarantee that a bad state is

identified exactly in the instant in which it is reached, and in

the case that no bad state is reached after a number of steps

equal to the length of the shortest path from the current state

to a bad state, the new state is uniquely identified.

Remark 5.2: Algorithm 3 ensures that the set of consis-

tent states after the last synchronization at the k-th step is

a singleton, i.e., the actual state of the system is known

after the last synchronization. This is a trivial consequence

of the fact, that after k steps all equivalence classes are

singleton. On the contrary, the set of consistent states after

the intermediate synchronization is in general not a singleton.

�

Example 5.3: Let us apply Algorithm 3 to the DFA in

Fig. 3 assuming Σ1 = {a}, Σ2 = {b} and x12 as the bad

state.
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Algorithm 3 Synchronization

k ← length of the shortest path from the actual state to a

bad state.

Let I = {k} be the set of indices of steps at which we

have to synchronize.

Compute all words of length k and split them in equiva-

lence classes Wj with the same projections on Σi, ∀i =
1, . . . , n.

while |Wj | 6= 1 for all j do

Choose randomly one word w̄ ∈ W̄
Compute an index p ≤ |w̄| such that if a new interme-

diate synchronization occurs after p steps, w̄ will not

be equivalent to any word in W̄ \ {w̄}.
I ← I ∪ {p}.
Update the set of equivalence classes Wj taking into

account the new synchronization.

end while

�

a 

b 

b 

b�

a x1 x0 
x2 x3 

x5 x6 x7 

b 

b 

a 

x4 

x8 

x12 

a, b 

a 

a 

b 

a 

x9 x10 

a 

b 

a 

a 

x11 

Fig. 3. The DFA considered in Example 5.3 where x12 is the bad state.

• The length of the shortest path from x0 to the bad state

x12 is k = 5. Hence, we intially take I = {5}.
• The set of strings of length k = 5 starting from x0 is

{abbaa, abbab, bbaaa, bbaab, baaba}. Therefore, we can de-

fine two equivalence classes: W1 = {abbaa, bbaaa, baaba}
and W2 = {abbab, bbaab}. In fact, P1(abbaa) =
P1(bbaaa) = P1(baaba) = aaa and P2(abbaa) =
P2(bbaaa) = P2(baaba) = bb.

• We randomly choose an equivalence class with cardi-

nality greater than 1, e.g., W̄ =W1.
• We randomly choose w̄ = abbaa and consider p = 1.

Thus w̄ = ūv̄ with ū = a and v̄ = bbaa. Indeed, P1(ū) = a

while the projection of the first event of all other sequences in

W̄ is equal to the empty string, thus the new synchronization

makes w̄ not equivalent to all the sequences in W̄ \ {w̄}.
• Let I = {1, 5}.
• The new equivalence classes assuming synchronization

at steps 1 and 5 are:W ′
1 = {abbaa},W ′′

1 = {bbaaa, baaba},
W ′

2 = {abbab} and W ′′
2 = {bbaab}.

• We randomly choose a new equivalence class of cardi-

nality greater than 1, e.g., W̄ =W ′′
1 .

• We randomly choose w̄ = bbaaa and consider p = 2.
• Let I = {1, 2, 5}.
• It is easy to verify that the new equivalence classes are

singleton and the algorithm stops.

Therefore, starting from x0, in order to be able to uniquely

identify the state after 5 steps (the length of the shortest path

to the bad state x12) two additional synchronization should

be performed. One after one step, the second one after one

more step, and the last third one after 3 further steps.

Let us remark that this does not imply that after the two

intermediate steps the state is uniquely determined, while

this is ensured after the last synchronization at step 5.

At step 5, the algorithm should be run again considering

as initial state the new one that has been actually reached

after the occurrence of 5 events. �

VI. CONCLUSIONS

This paper deals with the problem of establishing if a

given behavior is legal, based on decentralized observation

performed by a finite number of sites, who are only able to

observe a subset of the possible events. The sites transmit

their observation to a coordinator who takes the decision

concerning legacy of the occurred word. Two different

properties have been defined, namely q−observability and

q−diagnosability, that differ for the criterion used to syn-

chronize the different sites. Finally, an algorithm to compute

the instants in which synchronization should occur, assuming

that the initial state is known, has been given. It guarantees

that the occurrence of the an illegal word is detected as soon

as it has occurred.
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