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Abstract— We consider the problem of positive observer
design for positive systems defined on solid cones in Banach
spaces. The design is based on the Hilbert metric and con-
vergence properties are analyzed in the light of the Birkhoff
theorem. Two main applications are discussed : positive ob-
servers for systems defined in the positive orthant, and positive
observers on the cone of positive semi-definite matrices with a
view on quantum systems.

I. INTRODUCTION

Positive systems arise in several areas, where the state

variables represent quantities that do not have a physical

meaning when they are negative see, for example, [8],

[13], [7]. In the last ten years or so, the design of positive

observers for linear positive systems, i.e. observers such that

the estimated state respects positivity, has attracted an ever

growing attention. Indeed, the requirement that the observer

estimates be positive at any time seems desirable since it

allows a physical interpretation of the estimation. Positive

observers have been studied for classes of linear systems

and under specific structural assumptions. In [10] structural

properties, including observability, of positive systems have

been studied, whereas observers for compartmental systems

have been developed [14]. In [1] the positive observer design

problem has been dealt with using coordinates transforma-

tions and the theory of positive realization [10], [2], thus

generalizing the results in [14] and relaxing the conditions

under which positive observers exist.

For a class of time-varying non-linear (or linear) systems,

we advocate the fact that the use of special “polar” coordi-

nates (a vector is parameterized by its norm, and an element

of the unit sphere) as well as the use of a special metric on the

unit sphere (more exactly the projective space), the Hilbert

projective metric, simplifies the design of observers and the

convergence analysis. The key component of our approach

is a theorem by Birkhoff, 1957, that characterizes a class

of positive mappings that are contractions in the projective

space for the Hilbert metric. For those systems, a mere copy

of the system provides a simple positive observer which

converges exponentially in the projective space (at least). Our
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approach can thus be related to the one introduced by [9]

where the convergence analysis of observers is based on the

special choice of a contractive metric. The approach leads to

potentially powerful alternatives to the usual methods, which

are generally concerned with the conditions under which a

Luenberger observer is a positive system itself.

More generally this paper deals with the general question

of the design of observers on solid cones in Banach spaces,

the positive orthant being a particular case. The estimates are

required to remain in the cone at any time. We will prove

that the Hilbert projective and the Birkhoff Theorem allow

to design meaningful candidate observers with guaranteed

convergence properties for a large class of systems. The

approach is valid in finite and infinite dimension, and opens

the way to the design of simple observers which respect the

underlying structure of the problem, on several other cones

than the positive orthant. In particular we apply the technique

to the cone of positive semi-definite matrices.

The paper is organized as follows: in Section 2, the Hilbert

metric and Birkhoff theorem are recalled. In Section 3, a

class of observers on solid cones is proposed. In Section 4,

the results are applied to the positive orthant. In particular

we introduce a system for which it is not possible to build a

linear convergent positive observer and for which we present

a non-linear convergent observer. In Section 5 we discuss

the design of observers on the cone of positive semi-definite

matrices.

II. BIRKHOFF-BUSHELL THEOREM

In this section, we recall basic results presented in [4].

A solid cone K defined on a Banach space X , is a subset

of X which is such that 1) K̊, the interior of K , is not

empty, 2) K +K ⊂ K , 3) λK ⊂ K for all λ ≥ 0, and 4)

{−K} ∩K = {0}. On such a space, a partial order can be

defined by the following relation : x ≤ y iff y− x ∈ K . Let

us now define two important quantities. Let x, y ∈ K\{0}.

We let

M(x/y) = inf{λ ∈ R+|x ≤ λy}

m(x/y) = sup{µ ∈ R+|µy ≤ x}

and M(x/y) = +∞ if the set is empty. The notation is

justified by the fact that we always have m(x/y) y ≤ x ≤
M(x/y) y.

Definition 1: The Hilbert projective metric in K\{0} is

defined by d(x, y) = log(M(x/y)/m(x/y)).
The metric can be called projective, as we have

d(λx, µy) = d(x, y) for all λ, µ > 0. Let A : K → K
be mapping:
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• A is said positive if A : K̊ → K̊.

• A is monotone increasing if x ≤ y implies Ax ≤ Ay.

• A is said to be homogeneous of degree p if for all λ > 0
and x ∈ K we have A(λx) = λpA(x).

• The projective diameter of a positive mapping A is

defined by ∆(A) = sup {d(Ax,Ay)|x, y ∈ K}.

• The contraction ratio is k(A) = inf{λ ∈
R+|d(Ax,Ay) ≤ λd(x, y)}.

The Birkhoff theorem allows to characterize a class of

systems that are contractions for the Hilbert metric.

Theorem 1: [Birkhoff (1957)] Let A be a monotone in-

creasing mapping which is homogeneous of degree p in K̊.

Then for all x, y ∈ K we have

d(Ax,Ay) ≤ p d(x, y)

If A is a positive linear mapping we have for all x, y ∈ K̊

d(Ax,Ay) ≤ (tanh(
∆(A)

4
))d(x, y)

III. PROJECTIVE OBSERVER ON A CONE

Consider the time-varying system on a solid cone K in a

banach space X

xk+1 = Ak(xk)

yk = Ck(xk)
(1)

where each Ak is a positive map on K and C is a positive

homogenous map of degree q. Then if the initial state x0

is in the cone, it remains in the cone for all times. We are

concerned with the design of observers whose estimated state

x̂ remains in K for all times.

A. A positive observer

We start from the following decomposition for all x ∈ K̊:

x = rz, (r, z) ∈ R
∗
+ × (S ∩ K̊)

where S denotes the unit sphere in X and where r is a scaling

factor representing the norm of x, i.e. rk = ‖xk‖. We have

zk+1 =
Akzk

‖Akzk‖
(2)

which is well defined as Ak is a positive map. As the output

map is supposed to be homogeneous of degree q we have

‖yk‖ = rqk‖C(zk)‖

Thus a simple candidate observer for the complete state is

ẑk+1 =
Ak ẑk
‖Akẑk‖

,

r̂k =
( ‖yk‖

‖C(ẑk)‖

)1/q
(3)

with ẑ0 ∈ K̊. The observer is well-defined as ẑ0 ∈ K̊ and

C are positive, and it delivers positive estimates x̂k = r̂k ẑk,

as ẑ remains in K̊ .

B. Convergence issues

In this Section we study the asymptotic behavior of the

z coordinate. The Birkhoff theorem implies that if Ak is

a positive homogeneous map of degree p ≤ 1, the Hilbert

distance between zk and ẑk does not increase. As a result

the observer does not diverge (at least as long as the

estimation of the z coordinate is concerned). Furthermore,

when the observer’s dynamics is a contraction, exponential

convergence can be expected for a large class of systems (see

[9] for a general study of observers based on a contraction

associated to a specific metric). The Birkhoff theorem allows

to highlight some systems that are strict contractions:

Proposition 1: Consider the system (1) and suppose there

exists a finite horizon T such that either

1) ∃p (0 < p < 1) ∀k ∈ N the operator Ak+T ◦ · · · ◦
Ak+1 ◦Ak is homogeneous of degree at most p

2) Or ∃R > 0 ∀k ∈ N Ak+T ◦ · · · ◦Ak+1 ◦Ak is linear

with projective diameter ∆ ≤ R

Then observer (3) is such that d(ẑk, zk) converges exponen-

tially to zero.

Proof: The proof is a straightforward application of

Birkhoff theorem over a finite horizon.

IV. POSITIVE OBSERVERS FOR POSITIVE LINEAR

SYSTEMS IN THE POSITIVE ORTHANT

In this section we address the particular case of linear

systems on the positive orthant K = Rn
+ = {x ∈ Rn|∀i xi ≥

0}. The Hilbert metric on this cone is defined by:

d(x, y) = max
i,j

log(
xiyj
xjyi

)

We consider the linear positive system in R
n
+.

xk+1 = Akxk +Bkuk, yk = Ckxk (4)

where Ak is positive, Bk and Ck are non-negative matrices.

The positive observer (3) becomes

ẑ0 ∈ K̊, ẑk+1 =
Akẑk +Bkuk

‖Akẑk +Bkuk‖
,

r̂k =
‖yk‖

‖Ck(ẑk)‖

(5)

In continuous time, the linear system becomes

d

dt
x = A(t)x +B(t)u(t), y = C(t)x (6)

with, A(t) Metzler, i.e. Aij(t) ≥ 0 for i 6= j, B(t) and C(t)
non-negative, and observer (5) writes

d

dt
ẑ = (1− ẑẑT )[A(t)ẑ +B(t)u(t)],

r̂ =
‖y(t)‖

‖C(t)ẑ‖

(7)
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A. Convergence issues

First of all, theorem 3.5 of [4] proves that the contraction

ratio of the map x 7→ Ax+z0 with z0 ≥ 0 is less than the one

of A. Thus the additional term Bkuk helps convergence and

needs not be considered in the sequel. We have the following

result extending Proposition 1 to the full observer:

Proposition 2: Consider the system (4) and suppose there

exists a finite horizon T such that ∃R > 0 ∀k ∈ N Ak+T ◦
· · · ◦ Ak+1 ◦ Ak is linear with projective diameter ∆ ≤ R,

Proposition 1 implies the quantity

d(ẑk, zk)

converges exponentially to zero. Moreover, if there exists

ǫ, α, β > 0 such that for k > 0 the ball center ẑk and radius

ǫ satisfies S(ẑk, ǫ) ⊂ K , and α ≤ ‖Ck‖ ≤ β, then observer

(5) is such that the quantity

|
r̂k
rk

− 1|

also converges exponentially to zero.

Proof: Proposition 1 implies that d(ẑk, zk) tends expo-

nentially to zero. So S(zk, ǫ/2) ⊂ K for k large enough. So

the angle between zk and any line of Ck is less than, say,

θ < π/2. It implies that

|
rk
r̂k

− 1| ≤
1

α cos θ
| ‖Ckẑk‖ − ‖Ckzk‖ |

≤
1

α cos θ
‖Ck(ẑk − zk)‖

Moreover, the differential of the map Sn−1 ∩ K ∋ v 7→
d(v, w) for w ∈ Sn−1 ∩ K satisfying S(w, ǫ/2) ⊂ K is

uniformly bounded from below in all directions on the subset

{v ∈ Sn−1∩K| S(v, ǫ/2) ⊂ K}. So there exists γ > 0 such

that ‖ẑk−zk‖ ≤ γ d(ẑk, zk) for k large enough. As a result,

‖ẑk − zk‖ converges exponentially to zero for k sufficiently

large and so does | rkr̂k − 1|.
The previous result provides a convergence result that

differs from the usual linear exponential convergence. Indeed

the fact that r̂k/rk converges exponentially to 1 does not

imply the exponential convergence of the linear error r̂k−rk
and x̂k − xk. Nevertheless, it could be argued that the

exponential convergence of the error r̂k/rk is a meaningful

alternative that acknowledges the nonlinear nature of the

state-space. For instance, this error is invariant to scalings,

which is meaningful from a physical point of view as scalings

often correspond to a change of units. Such a state error is

also naturally found in the theory of symmetry-preserving

observers [3].

Moreover, for bounded trajectories, exponential conver-

gence of the ratio r̂k/rk does imply exponential convergence

of the linear error. Finally, it is of interest to observe that the

proposition implies (non exponential) convergence for the

following metric:

dp(x̂k, xk) =
√

d(ẑk, zk)2 + | log(r̂k/rk)|2 (8)

The metric | log(r̂k/rk)| is called the “natural” metric on R∗
+,

see e.g. [6]. The metric (8) is therefore a contractive metric

for the observer. This result is reminiscent of the general

work of [9].

B. Time-invariant case

Birkhoff is a generalized version of the celebrated Perron

theorem on an arbitrary cone by means of Hilbert’s geometry.

Indeed, in the case where K is the positive orthant, the

Perron theorem is a corollary of the Birkhoff theorem.

Proposition 2 can thus be formulated directly with the help of

Perron-Frobenius theory that deals with applications having

a finite projective diameter.

Proposition 3: Consider the time-invariant system

xk+1 = Axk +Buk, yk = Cxk

Suppose that A is primitive, i.e. there exists a natural T ∈
N such that all the coordinates AT

ij of the T -th power of

A are strictly positive. Then observer (5) has the following

properties:

• d(ẑk, zk) and | r̂krk − 1| converge exponentially to zero.

• dp(x̂k, xk) → 0 where dp is the metric (8).

• if the sequence rk is bounded, the observer is exponen-

tially convergent in the usual sense, i.e. ‖x̂k−xk‖ → 0
exponentially.

Proof: Theorem 1 and the Banach contraction mapping

theorem (or the Perron-Frobenius theorem) imply there exists

a vector v ∈ K̊ (the fixed point) in K̊ ∩ S such that both

d(ẑk, v) and d(zk, v) tend exponentially to zero (see [4] for

more details). For k large enough, it implies that

|
rk
r̂k

−1| ≤
2

‖Cv‖
| ‖Cẑk‖−‖Czk‖ | ≤

2

‖Cv‖
‖C(ẑk−zk)‖

So there exists γ > 0 such that |rk/r̂k−1| ≤ γ‖ẑk−zk‖. On

the tangent space to v/‖v‖ in S ∩ K̊ the differential of the

map w 7→ d(v, w) is bounded from below in all directions.

As a result, ‖ẑk − zk‖ converges exponentially to zero for k
sufficiently large and so does | rkr̂k − 1|.

C. An example

We consider the positive continuous-time system of [5]

ẋ =





1 3 2
10 2 4
3 2 1



 x, y =
(

1 1 1
)

x

As all the off-diagonal coordinates of A are strictly positive,

the associated discrete-time map is primitive, and Proposition

3 applies for this system. The present paper allows to derive

a convergent positive observer whereas [5] proves that it is

not possible to build a convergent positive linear observer

for this system.

D. Positive observers and measurement noise

Proposition 2 proves that for a whole class of systems,

one can build a convergent positive observer with very weak

assumptions on the output map. Indeed, for those systems

n− 1 coordinates (the z term) are estimated without the use

of the output map. Thus the z estimate is never noisy, even

when the measurement noise is very large. The remaining
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1-dimensional term r is estimated via the following relation:

r̂k = ‖yk‖/‖Ck(ẑk)‖. Note that any non-zero component of

the output yk suffices to estimate the r coordinate, so that

we will assume in the sequel the output is a scalar yk > 0.

If the measurement noise is large, the estimation of ob-

server (5) may not be easy to interpret as r̂k can be as noisy

as the output yk. For a better noise filtering, we propose the

following modification:

r̂k = ‖Ak(r̂k−1 ẑk−1) +Bkuk−1‖+ Lr(yk/Ck(ẑk)− r̂k)

If Lr is small enough the noise is efficiently filtered. Yet, Lr

must be large enough to ensure convergence. For instance if

we consider the one-dimensional time-invariant system:

d

dt
r = ar, y = cr

with a > 0, we see that convergence is guaranteed as soon

as Lr > a.

E. Numerical experiments

Consider the continuous-time system [1]:

ẋ =

(

−1 1
2 0

)

x, y =
(

1 0
)

x (9)

for which there exists no convergent linear Luenberger ob-

server. Proposition 3 proves that observer (5) is positive and

converges, as the off-diagonal terms of the matrix associated

to the continuous time system are strictly positive. In the

first numerical experiment we consider the noiseless system

(see Fig 1). We see that the estimates of the first and second

coordinates of the observer (5), x̂1(t) and resp. x̂2(t) are

always positive and that the error converges.

In the second experiment, a gaussian white noise with unit

standard deviation (more than 10% of the maximum value of

the signal) was added. Estimates of the following observer:

d

dt
ẑ = (1 − ẑẑT )[Aẑ +Bu(t)],

d

dt
r̂ = r̂(ẑTAẑ) + Lr(

‖y‖

‖C(ẑ)‖
− r̂)

(10)

with Lr = 3 s−1 are presented on Figure 2. We see that the

noise is efficiently filtered and the observer is still positive

and convergent. In both experiments the initial conditions

are: x(0) = (1, 1/10)T , x̂(0) = (1/10, 1)T .

As a final remark, note that, looking at the figures we see

the error r̂/r − 1 seems much more adapted than the usual

error x̂ − x when the norm of x diverges (i.e. r → ∞).

Indeed, the interesting transient behavior of the estimation

error is “crushed” by the plot scale as the coordinates of x
grow exponentially. For example if we plot ‖x̂− x‖ over a

6-seconds horizon, the initial errors are barely visible on the

plot.

V. OBSERVERS IN THE CONE OF POSITIVE SEMI-DEFINITE

MATRICES

Positive semi-definite matrices appear in various contexts

of applied mathematics and engineering. They appear as

variables (convex programming, LMI, Lyapunov equation),
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Fig. 1. Results of observer (7) for system (9) with noiseless measurement.
Top left: x1(t) (plain line) and x̂1(t) (dashed line). They are equal by
definition of the observer since the output is x1. Top right: x2(t) (plain
line) and x̂2(t) (dashed line). Bottom left: r̂/r− 1. Bottom right: ‖ẑ− z‖.

0 0.5 1 1.5 2 2.5 3
−5

0

5

10

Time

F
ir
s
t 

c
o

o
rd

in
a

te

Plot of the first coordinate of x and its estimate

0 0.5 1 1.5 2 2.5 3
0

5

10

15

Time

S
e

c
o

n
d

 c
o

o
rd

in
a

te

Plot of the second coordinate of x and its estimate

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

1.5

2

2.5

Time

E
rr

o
r 

Error on r 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

Time

E
rr

o
r

Error on z

Fig. 2. Results of observer (10) for system (9) with noisy measurement
(white noise with unit standard deviation). Top left: Measurement y(t) (plain
line) and x̂1(t) (dashed line). The noise is efficiently filter (see top right
graphics) and x̂1 is thus masked by y. Top right: x2(t) (plain line) and
x̂2(t) (dashed line). Bottom left: r̂/r − 1. Bottom right: ‖ẑ − z‖.

and as covariance matrices (statistics, signal processing,

Kalman filtering), diffusion tensors (biomedical imaging),

and kernels in machine learning. The study of the cone of

positive semi-definite hermitian matrices has thus received

ever growing attention in the last years, and we propose to

apply the theory developped in this paper on this cone. It

writes

K = {X ∈ C
n×n|X = X†, X � 0}

the Hilbert metric is

d(X,Y ) = log(
λmax(XY −1)

λmin(XY −1)
)

Considering a linear system defined on K

Xk+1 = Ak(Xk) + Bk(u), yk = Ck(Xk)

the whole analysis developped in Section II can be applied.

We are now going to discuss a particular possible domain of

application : design of quantum filters.
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A. Quantum filtering as a positive observer problem

An interesting linear system on K is the evolution of the

density matrix characterizing a state in a quantum channel.

Indeed consider a quantum channel associated to the Kraus

map (which is a positive linear map on K)

K(ρ) =

n
∑

µ=1

MµρMµ

where ρ is the density matrix, i.e. an hermitian semi-definite

positive matrix of trace one, describing the input state, K(ρ)
is the output state, and

∑m
1
MµM

†
µ = I . The evolution is

described by the following discrete-time system

ρk+1 = Mµk
(ρk) :=

1

Tr(Mµk
ρkM

†
µk
)
Mµk

ρkM
†
µk

where ρk is the quantum state at time tk and µk = {1, ..,m}
is a random variable such that µk = j with probability

Tr(MjρkM
†
j ). The process preserves the trace and it is a

concatenation of a linear map and a renormalization.

The problem of quantum filtering is the following: con-

sider a realization associated to the Kraus map defined above,

and assume that at each step the jump µk ∈ {1, .., n} is

detected, but the initial state ρ0 is not known. It is typically

an observer problem. The following observer is known as a

“quantum filter”:

ρ̂k+1 = Mµk
(ρ̂k) (11)

and it is a mere copy of the dynamics which takes into

account the jump information µk. Observer (11) suits in the

framework developped in Section 1. Moreover, as the true

process ρk must be of trace 1, there is no need to estimate the

scaling rk of Section 1. The quantum filters can be analyzed

as positive observers in the light of the theory developped

in this paper. In particular we have the following sufficient

condition for exponential convergence:

Proposition 4: If for any 1 ≤ µ ≤ n the map Mµ has a

finite projective diameter, the quantum filter (11) converges

exponentially, i.e. d(ρ̂k, ρk) → 0 exponentially.

Note that a similar result has already been underlined re-

cently by one of the authors in [12] for applications in

consensus. Proposition 4 proves that the Hilbert distance is a

good metric to analyze convergence of quantum filters, as the

Kraus maps are contractions for the Hilbert metric. Indeed

they are linear maps so Theorem 1 proves the the contraction

ratio does not exceed 1. The Hilbert metric may thus prove

to be a useful alternative to the celebrated trace norm, i.e.

d(ρ1, ρ2) = Tr(|ρ1 − ρ2|) for the study of quantum filters.

See [11] and references therein for more details.

VI. CONCLUSION

In this paper, we proposed a new design method for

positive observers on solid cones. The convergence analysis

is based on Birkhoff theorem. It allows to build convergent

positive observers for a large class of systems, which are

homogeneous and not necessarily linear.

The theory was applied to two cones: the positive orthant

of the euclidean space and the cone of hermitian positive

definite matrices. In the positive orthant, the theory allows

to build very simple convergent positive observers for a

large class of systems. For instance, we prove exponential

convergence of the observer for the linear system d
dtx =

Ax + Bu, y = Cx as soon as the off-diagonal terms of

A are strictly positive, and the construction of the observer

is trivial. In the cone of positive definite matrices, the

application of Birkhoff theorem provides a framework to

design and analyze quantum filters. Another application on

the cone of semi-definite positive matrices would be to study

the convergence of the distributed Kalman filter with the

tools introduced in this article. This is left for future research.

As a concluding remark, note that the method developped

in this paper may seem magical as the observer design

becomes trivial. However the price to pay is that the conver-

gence speed is not freely chosen as in Luenberger observer

design for observable linear systems where the eigenvalues

of the closed-loop system can be freely assigned.
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