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Abstract— This paper introduces a simple and intuitive
nonlinear observer for low-cost ground vehicle localization
system, using measurements from an inertial measurement
unit, two wheel speed sensors, and a GPS. Taking advantage
of the nonholonomic constraints, the design of the observer
takes into account imperfections of the embedded sensors
measurements, such as slowly time-varying gyroscope biases
or some uncertainty on the angle between the vehicle’s frame
and the road, to estimate the attitude, velocity and position
of a ground vehicle. Thanks to a simple nonlinear structure
based on the theory of symmetry-preserving observers, the
estimator is easy to tune, easy to implement, and well-behaved
even at very low speed. Moreover, the proposed filter presents
some guaranteed convergence properties when GPS is available.
Simulations and experiments in urban area illustrate the good
performances of this simple algorithm.

I. INTRODUCTION

The Global Position System (GPS) has become a
widespread device that is used in most of Vehicle Localiza-
tion System (VLS) algorithms. Standard commercial GPS
have a (only) relative accuracy (approximately 2 meters
Circular Error of Probability in position estimation) and
low update rate (1 to 4 Hz). Lack of GPS is also very
common in urban environments (indoors, in tunnels) and
the signals are frequently degraded in the so-called urban
canyons where the buildings tend to either mask the GPS
transmitted signal, or to reflect it along multipaths. For
those reasons, the GPS data are often fused with inertial
measurements. Recent technological developments of low-
cost embedded sensors (MEMS) have lead to a wide-spread
use of low-cost accelerometers and gyroscopes in VLS. The
severe drifts of those sensors are then corrected by GPS
estimations, which are, in the long run, accurate on average.

In the last decade, numerous on-board system designs
have been proposed for ground vehicle localization: see
e.g. [1], [7], [8], which use Inertial Measurement Unit (IMU),
speedometers and GPS. The VLS rely on the fusion of
the several sensors measurements and a trusted model of
the vehicle dynamics. The trusted dynamical model can be
entirely based on general kinematics equations, considering
the system as a material point to which a frame is attached
(orientation of the vehicle). In this case, any algorithm
designed for any moving system (e.g. an aerial vehicle) may
be used (e.g. see [14], [16], [15], or any commercial off-
the-shelf system, often called “aided Attitude and Heading
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Reference Systems” (aided AHRS), e.g. MIDG II from
Microbotics, or MTi-G from Xsens). However, a specific
model of terrestrial vehicles may improve the estimation
performances. In particular, [8] have shown that considering
nonholonomic constraints significantly improves the preci-
sion of the VLS. This kind of roll without slip model has
been advocated in several recent publications such as [7],
[9].

The data fusion is generally based on popular filtering
techniques such as the well-established extended Kalman
filter (EKF). When properly tuned and implemented, this
algorithm yields remarkably good results. However it suffers
several drawbacks: it is not easy to choose the numerous
parameters of the filter, and an expensive computation board
is needed to run the algorithm in real-time. Another main
drawback is that the models involved are nonlinear, so it
is in general very difficult to prove the convergence of the
estimation error to zero, even on the first order expansion
of the error around any trajectory, since the linearized error
equation is time-varying. If the system is badly initialized
or if the estimation differs much from the true state value
after a long GPS loss (e.g. in a tunnel), there is absolutely
no theoretical guarantee that the filter behaves well. This is
the reason why some recent works have aimed at developing
nonlinear observers with guaranteed convergence properties
for localization (e.g. see [11], see also [2], [13]).

In this paper we consider a vehicle moving in three
dimensions, and equipped with 3 low-cost biased gyro-
scopes, 3 low-cost accelerometers, a stand-alone GPS, and
a speedometer. Moreover the longitudinal angle between the
IMU (the car steel frame) and the ground is supposed to be
unknown. The precision sought for the attitude estimation is
typically a couple of degrees, and a clear improvement of
GPS velocity and position estimates.

The trusted model of the dynamics relies on a specific car
model (nonholonomic constraints), and a simple nonlinear
observer, which provides vehicle state estimations in real-
time, is proposed. Its structure is based on the theory of
symmetry-preserving observers [2], [3]. The proposed filter-
ing algorithm has the following advantages:

1) Convergence properties: the estimation of the yaw
angle possesses some global convergence properties.

2) Precision at low speed: the estimation of the yaw angle
generally relies on the arctan of the ratio between
North and East GPS velocity measurements. Such
techniques drastically simplify the analysis but they
lead to very poor results at low speed [1]. The proposed
observer bypasses this limitation. In the same way, the
GPS velocity measurements are never divided by the
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norm of the velocity that can be possibly small.
3) Altitude estimation: the quality of the vertical GPS ve-

locity measurement is generally poor when compared
to North and South velocity measurements. Thus, the
algorithm does not use this component at all.

4) Simplicity: the observer is easy to tune (only a few
parameters to choose), easy to implement and compu-
tationally economic (very few scalar operations).

The paper is organized as follows. In Section II, the
problem is presented, and the considered model is simplified
under some realistic assumptions. In Section III, a non-
linear observer is proposed, and its convergence properties
are analyzed. Finally, in Section IV, simulations and real
experiments illustrate the nice properties of the observer.

Preliminary results can be found in [4], which considers
a slightly different problem in the particular case where the
vehicle is moving only in a horizontal plane.

II. GROUND VEHICLE LOCALIZATION PROBLEM

A. Considered model

We consider the localization problem of a vehicle moving
on a road in the three dimensional space. The Earth is
considered flat and defining an inertial frame R0. It is also
assumed there is no sideslip, i.e. the vehicle velocity vector
is always tangent to the trajectory (as in [2], [8], [9]). The
frame attached to the vehicle is R = (ex,ey,ez).

Three kinds of sensors are used: a low-cost inertial mea-
surement unit (IMU) with three orthogonal accelerometers
and three orthogonal gyroscopes, a GPS and two wheel speed
sensors. The wheel speed sensors (speedometers) measure
the average speed of the wheels multiplied afterwards by
the radius of the wheel to provide the vehicle longitudinal
velocity. Note that the wheel speed can be easily measured
from the signals of the Anti-lock Braking System (ABS)-
dedicated sensors via the Analog to Digital converter.

Each gyroscope is supposed to be biased. Such biases
tend to slowly drift with temperature and must be estimated
online, especially when low-cost gyroscopes are used. In-
deed, they lead to errors that grow linearly with time, and
should be well estimated at any time, in case of loss of GPS.
Moreover, a constant small pitch harmonization angle θ0 is
also considered in the model. This longitudinal misalignment
between the IMU and the road vehicle frames is essentially
due to the specific geometry of the car (the steel frame of
the car is not parallel to the ground), and variations of load
in the vehicle. The motion of the vehicle is described by the
following nonholonomic equations

φ̇ = ωx−bx + tan(θ)
(
(ωy−by)sinφ +(ωz−bz)cosφ

)
θ̇ = (ωy−by)cosφ − (ωz−bz)sinφ

ψ̇ =
(
(ωz−bz)cosφ +(ωy−by)sinφ

)
/cos(θ)

ṗ = vs
(
cos(θ −θ0)cosψ,cos(θ −θ0)sinψ,sin(θ −θ0)

)T

ḃx = ḃy = ḃz = θ̇0 = 0,

where φ ,θ ,ψ are the Euler angles (resp. roll, pitch, yaw an-
gles), vs is the (scalar) velocity measurement provided by the

wheel speed sensors, p = (pn, pe,z)T and v = (vn,ve,vz)T =
(ṗn, ṗe, ż)T are the position and the velocity vectors of the
midpoint of the rear axle with respect to the Earth-fixed
frame, in coordinates that correspond to North, East, and Up
(altitude) respectively. The known input (from gyroscope and
speedometer measurements, which are assumed to be always
available) is (

uω

us

)
=
(

ωm
vs

)
, (1)

where ωm = (ωx,ωy,ωz)T . The gyroscopes bias vector is
b = (bx,by,bz)T . GPS measurements yield (when they are
available) (

yp
yv

)
=
(

p
v

)
; (2)

v = vs(cos(θ −θ0)cosψ,cos(θ −θ0)sinψ,sin(θ −θ0))T .
Those outputs can be completed by accelerometers mea-

surements. Indeed, first of all, speedometer is a special type
of sensor, where the time between two pulses indicates the
angular velocity of the wheel. This signal is theoretically
noiseless and can be differentiated. As a result, d

dt vs can
be computed. Moreover we have v̇ = (ωm−b)×v+am +gb,
where gb is the gravity expressed in the vehicle (body) frame
and am is the accelerometers measurements. The nonholo-
nomic constraint writes v = vsex. This implies am.ex = v̇s +
gsinθ , am.ey = vs(ωz−bz)+gsinφ , and am.ez =−vs(ωy−
by)+gcosθ sinφ . As a result a combination between v̇s and
the (noisy) accelerometers measurements yieldyax

yay

yaz

=

 gsinθ

−vsbz +gsinφ

vsbz +gcosθ sinφ

 . (3)

Accelerometers are sometimes assumed to provide roll and
pitch angles under quasi-static approximation (see, e.g. [13]).
With additional information from the speedometer, we see
how the approximation can be made exact, as θ and φ can
be deduced from (3). This idea seems to have never been
much used, but it can yield decent results, as advocated by
real experiments in Section IV.

Remark 1: a constant scaling corresponding to the un-
certainty on the wheel radius, s, could be added in the
model vs → svs. This scaling depends on slowly changing
parameters such as pressure in the wheel and tire wear. It
can be easily estimated through the following non-linear
filter ˙̂s = ks(‖VGPS‖2− ŝ2v2

s ), which is such that ŝ− s tends
to zero as we have ‖VGPS‖ = svs. Such an algorithm uses
the vertical component of VGPS. This is not really a problem
since the gain ks can be very small (typically 0.1 min−1, as s
is approximately known and drifts slowly) and such long-run
identification procedures filter efficiently GPS noise.

B. Simplified model

The design and convergence analysis are based on the
following assumptions:
• Linearization around the horizontal position: θ and φ

are assumed to be small. This is correct as the maximum
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slopes (for θ and φ ) are rarely above 15 degrees (30%)
on human-made roads. It corresponds to a cosine of at
least 0.97 (which is very close to 1). On the contrary,
ψ does not remain necessarily small.

• Small biases: in low-cost systems, the magnitude of the
biases is typically of order 0.1◦/s. The terms in b2

t or
btφ , where bt is any gyroscope bias, are considered
second order. We will also assume −(vsbz)/g+ sinφ ≈
sinφ as for a maximum speed of 40m/s, neglecting the
term (vsbz)/g will result in an error of at most 0.4◦ on
the estimation of φ , that we consider as negligible for
the precision of estimation sought.

Under those assumptions, the linearized system around the
horizontal position writes

φ̇ = ωx−bx +θωz (4)

θ̇ = ωy−by−φωz (5)
ψ̇ = ωz−bz +ωyφ (6)

ṗ = vs(cosψ,sinψ,θ −θ0)T (7)

ḃx = ḃy = ḃz = θ̇0 = 0, (8)

with output yp = p,yv = v,yθ = θ ,yφ = φ . By only consider-
ing the attitude and velocity estimation problem, there are 4
unknown biases, and 4 effective measurements (as the norm
of the GPS velocity is already known). It is thus hopeless to
try to identify the two other accelerometers biases (θ0 can
be viewed as an accelerometer bias), unless the vehicle is
assumed to follow a sequence of specific trajectories (see
[5]). Note that we do not want to use the altitude velocity
measurement and we replace it with the altitude estimation z
of the GPS (which is a less sensitive procedure as it is only
used to identify θ0 in the long run, i.e. the corresponding
gain is small).

III. PROPOSED NONLINEAR OBSERVER

When the GPS signal is available, we propose the follow-
ing nonlinear observer defined via several output injections:

d
dt

φ̂ = ωx− b̂x + yθ ωz− kφ

1 (φ̂ − yφ ) (9)

d
dt

b̂x = kφ

2 (φ̂ − yφ ) (10)

d
dt

θ̂ = ωy− b̂y− yφ ωz− kθ
1 (θ̂ − yθ ) (11)

d
dt

b̂y = kθ
2 (θ̂ − yθ ) (12)

d
dt

ψ̂ = ωz− b̂z + yφ ωy + kψ

(
cos(ψ̂)yve − sin(ψ̂)yvn

)
(13)

d
dt

b̂z =−kbvs
(
cos(ψ̂)yve − sin(ψ̂)yvn

)
(14)

d
dt

p̂n = vs cos ψ̂ + kp(ypn − p̂n) (15)

d
dt

p̂e = vs sin ψ̂ + kp(ype − p̂e), (16)

d
dt

ẑ = vs(yθ − θ̂0)− vskz
1(ẑ− yz) (17)

d
dt

θ̂0 = vskz
2(ẑ− yz). (18)

The velocity estimation is given by

v = vs
(
cos(θ̂ − θ̂0)cos ψ̂,cos(θ̂ − θ̂0)sin ψ̂,sin(θ̂ − θ̂0)

)T
.

When GPS measurements are not available, the GPS
output cannot be used anymore to estimate the state variables.
In this case, equations (13)–(18) are updated without any
correction terms (open-loop), as the corresponding subsystem
becomes unobservable.

The algorithm obviously possesses the advantages 1)-4)
listed in the Introduction. Indeed, it is easy to implement,
computationally thrifty, and easy to tune (10 gains to choose
that boil down to 5 if tuned as recommended below).
Furthermore, this algorithm can still be used at low speed.
Indeed, there is no division between measurements having a
possibly degraded signal-to-noise ratio (especially, the term
arctan(yve /yvn ) is never computed), and no division by the
(possibly very small) term vs is involved. The motivation is
that such simplifications lead to poor performances at low
speed. For instance, suppose that yvn is noisy and close to
zero, then arctan(yve /yvn ) can switch from π/2 to −π/2 a
great number of times in small amount of time. It is then
common to define a threshold in the norm of the velocity
(typically 2m/s) under which the estimated yaw angle is not
corrected anymore, see e.g. [6].

Another important property of the observer is its conver-
gence guarantees around a large set of trajectories. Indeed the
error system breaks into 2 main independent subsystems. The
heading subsystem (13)–(16) is concerned with the estima-
tion of the yaw angle and the North and East components of
the position and velocity vectors, whereas the pitch, roll and
vertical subsystem (9)–(12) and (17)–(18) is concerned with
the corresponding Euler angles and the vertical component
of the velocity and position vectors.

A. Convergence analysis of the heading subsystem

The nice nonlinear structure of the observer is based
on the theory of symmetry-preserving observers, and it
can be linked to invariant observer design on Lie groups
[3], [12]. Here, the (Lie) symmetry group is the group of
rotations around the vertical axis. The design is based on a
so-called “invariant” state-error that considerably simplifies
convergence analysis. Indeed consider the state error

ψ̃

b̃z
p̃n

p̃e

=


ψ̂−ψ

b̂z−bz
p̂n− pn

p̂e− pe

 ,

the (nonlinear) state error equation has the following nice
structure:

d
dt

ψ̃ =−b̃z− kψ vs sin(ψ̃) (19)

d
dt

b̃z = kbv2
s sin(ψ̃) (20)

d
dt

p̃n = (vs cos ψ̂− vs cosψ)− kp(p̃n) (21)

d
dt

p̃e = (vs sin ψ̂− vs sinψ)− kp(p̃e), (22)
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and we see it is invariant to rotations around a vertical axis
(for instance, if the first axis is pointing North or East):
ψ 7→ ψ + ψ0 and ψ̂ 7→ ψ + ψ̂0. The error system breaks
into two subsystems: (19)-(20) and (21)-(22). Convergence of
the subsystem (21)-(22) is straightforward as soon as ψ̃ has
converged. Thanks to the use of an invariant error, the first
system is independent of the trajectory (ψ(t),ω(t)). Indeed,
although the system is nonlinear, the error only depends on
the errors ψ̃ , b̃, and vs (instead of ψ̃,ψ, b̃,ωm, and vs as it is
usual for nonlinear systems). This property plays a key role
in the following convergence properties of the observer.

1) Local convergence around a very large set of tra-
jectories: the following theorem proves that the proposed
observer converges around any trajectory followed by the
system, under some assumptions on the vehicle speed that
are practically relevant in normal driving conditions.

Proposition 1: Consider subsystem (19)–(22). Assume
there exist three scalars M1,M2,M̄2 > 0, such that the speed
vs satisfies

d
dt

vs < M1v2
s , M2 ≤ v2

s ≤ M̄2. (23)

Take kp,kb > 0 and kψ > M1. The nonlinear observer (13)-
(16) converges around any trajectory of the time-varying
corresponding subsystem.

Proof: This proof is inspired by [10]. The main goal
is to prove convergence of the subsystem (19)-(20). When
it has converged, the convergence of subsystem (21)-(22)
is obvious (indeed if ψ̃, b̃z converge to zero, it implies that
(21)-(22) are linear equations in the variables p̃n, p̃e driven by
bounded terms, and thus there is no peaking). The linearized
subsystem (19)-(20) writes

d
dt

ψ̃ =−b̃z− kψ vsψ̃ (24)

d
dt

b̃z = kbv2
s ψ̃. (25)

Consider the Lyapunov function V = 1
2 (kbv2

s ψ̃2 + b̃2
z ). The

derivative of V writes

d
dt

V = kbvs[
d
dt

vs− kψ v2
s ]ψ̃

2.

V̇ ≤ 0 as d
dt vs ≤M1v2

s implies that d
dt vs ≤ kψ v2

s . As V is not
increasing, it is bounded and d

dt V is integrable. As d
dt vs−

kψ v2
s ≤ (M1 − kψ)M2, which is a fixed negative scalar, it

implies that ψ̃2 is integrable. ψ̃ and b̃z are bounded as V
is bounded and v2

s > M2 > 0. Thus d
dt (ψ̃)2 is bounded from

(24), and applying Barbalat’s lemma, (ψ̃)2 → 0 and thus
ψ̃ → 0.

Suppose that V (t) does not tend to zero. As V is mono-
tonically decreasing, it means there exists δ > 0 such that
for all t ≥ 0, V (t) ≥ δ . As (ψ̃)2→ 0 it implies there exists
t1 ≥ 0 such that for all t ≥ t1 one has b̃2

z (t)≥ δ/2. As b̃z is
continuous, it implies that |b̃z| is lower bounded by a strictly
positive scalar. It yields a contradiction as it implies |ψ̃(t)|
tends to infinity according to (24). Thus V (t) tends to 0 and
b̃z(t)→ 0.

2) Almost global convergence in case of constant velocity:
the following proposition ensures that the observer converges
almost globally when the norm of the vehicle speed is con-
stant, which is often the case in normal driving conditions.

Proposition 2: Assume the speed vs is constant over the
time. Set kψ ,kb,kp > 0. The nonlinear observer (13)–(16) is
such that:
• the error (ψ̃, p̃n, p̃e, b̃z) is locally exponentially stable to

0;
• for almost any initial conditions, the error asymptoti-

cally converges to 0.
Proof: Consider the error subsystem (19)-(20) and the

candidate Lyapunov function V =
(
1− cos(ψ̃)

)
+ 1

2kbv2
s
b̃2

z .

One has
d
dt

V =−kψ vs sin(ψ̃)2. (26)

A standard application of Barbalat’s lemma proves that sin ψ̃

tends to zero and thus ψ̃ → kπ , with k ∈ Z. Studying the
linearized system, one proves that (ψ̃, b̃z) = (0+2kπ,0) is an
exponentially stable equilibrium, and (ψ̃, b̃z) = (π +2kπ,0)
is an unstable equilibrium, as the linear subsystem has
one eigenvalue with strictly positive real part. There are
trajectories that converge along the stable center manifold as-
sociated with the stable direction of the linearization around
(π + 2kπ,0). From center manifold theory, the set of the
trajectories that converge to this unstable equilibrium point
is of null measure in overall space. Finally, exponential con-
vergence of the error subsystem (21)-(22) is straightforward
for kp > 0 as soon as ψ̃ has converged to 0.

Note that “almost any” means that the set of initial
conditions such that the error does not converge to zero is
of null measure in the overall space. Thus, if the observer
is initialized inside this set, a small perturbation (such as
gyroscope measurement noise) will make it move out of the
set. So global convergence is always expected in practice.

B. Convergence analysis of the pitch, roll and vertical sub-
system

The following proposition ensures that the rest of the
system converges asymptotically.

Proposition 3: Take kθ
1 ,kθ

2 ,kφ

1 ,kφ

2 ,kz
1,k

z
2 > 0. Then

• θ̂ − θ , φ̂ − φ , b̂x− bx, b̂y− by converge exponentially to
zero.

• ẑ− z and θ̂0−θ0 tend to zero as soon as
∫

∞

0 vsdt = ∞.
Proof: Convergence of θ̂−θ , φ̂−φ , b̂x, b̂y is guaranteed

by the fact that the corresponding error subsystems are
linear and time-invariant. The convergence of subsystem
(17)-(18) relies on the Lyapunov function V = θ̃ 2

0 + kz
2z̃2

whose time derivative is V̇ =−vskz
1z̃2kz

2z̃2. A change of time
scale and a standard application of LaSalle’s theorem proves
convergence as soon as

∫
∞

0 vsdt = ∞.

C. Gain tuning

When the velocity vs is constant the linearized heading
error subsystem (24)-(25) writes : d2

dt2 ψ̃ +kψ vs
d
dt ψ̃ +kbv2

s ψ̃ =
0. Letting kψ = 2ξ ωψ and kb = ω2

ψ , the error system is a
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Fig. 1. Estimated Euler angles (simulation)

damped linear oscillator with pulsation vsωψ . This choice is
very natural, as the convergence speed vsωψ naturally adapts
to the car velocity and thus to the signal-to-noise ratio (if
the velocity measurement noise of the GPS is supposed to
be additive). Moreover, given a convergence speed vsωψ , the
choice ξ =

√
2/2 minimizes the ITAE criterion.

The rest of the system can be tuned independently from
the measured velocity vs. In order to minimize the ITAE
criterion once again, we propose the following relations:
kθ

1 = 2ξ ωθ , kθ
2 = ω2

θ
, kφ

1 = 2ξ ωφ , kφ

2 = ω2
φ
, kz

1 = 2ξ ωz,
kz

2 = ω2
z , where ξ =

√
2/2. Finally, the horizontal position

gain kp can be chosen in accordance with the quality of the
GPS position estimation.

IV. SIMULATIONS AND EXPERIMENTS

A. Simulations

The proposed estimation algorithm is first validated
through simulation. To simulate a realistic setup, noise is
added to the several sensor measurements, as illustrated in
Fig. 2 (ηz is the noise added on the gyroscope measure-
ment ωz). The vehicle velocity is pretty low, around 2m/s.
Equations of nonlinear observer are given by (9)–(18). The
gains of the estimator are set to kφ

1 = kθ
1 = kψ = 0.14,

kφ

2 = kθ
2 = kb = 0.01, kz

1 = 0.71, and kz
2 = 2.5e−2.

To illustrate the large domain of convergence of the
proposed filtering algorithm, the estimator is badly initialized
(e.g. with an initial heading estimation error equal to 130◦).
Figures 1-2 show that the observers converges despite very
wrong initial values (only a few variables are plotted due to
lack of space). Notice that the yaw angle is well estimated,
even if the speed of the vehicle is very low.

B. Experimental validation

1) Experimental setup: the proposed nonlinear observer
is now validated through real experiments. The vehicle used
for the experiments belongs to Mines ParisTech, and is
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Fig. 2. Estimated bias and harmonization angle (simulation)

Fig. 3. Used vehicle and IMU/GPS on the roof

shown on Fig. 3, as well as the IMU and GPS antenna
on the roof. The trajectory followed by the vehicle is a
turn around the “Place du Châtelet”, at the center of Paris
(France), in order to illustrate the good behavior of the filter
in urban areas, where GPS measurements are likely to be
inaccurate or even unavailable. The vehicle moves at very
low speed (around 10km/h). The vehicle trajectory is almost
planar. Therefore, only two dimensional plots are shown,
despite the use of the complete 3D nonlinear observer (9)–
(18). Measurements from Crossbow VG600 IMU (update
rate 84Hz) and GPS Trimble AG132 antenna (update rate
10Hz) are used. In addition, two wheel speed sensors provide
measurements at 10Hz. A computer gathers all information
and gives estimations in real-time at 84Hz, using a simple
Euler explicit approximation for the integration scheme.

2) Results: Figure 4 validates the approach adopted in the
paper: it is possible to identify the pitch angle through the
accelerometer and speedometer measurements. Indeed, the
differentiated measurements from the wheel speed sensors
are compared to the data from the longitudinal accelerometer
on an horizontal surface. They overlap pretty well. These
signals are filtered with a low-pass filter to get rid of high
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frequency noise. Figure 5 illustrates two important properties
of the proposed nonlinear filter:
• its good behavior, despite a low speed of the vehicle and

inaccurate GPS measurements due to the surrounding
buildings and trees,

• its large domain of convergence, here with an error in
the initial estimated yaw angle, ∆ψ(0), equal to 90◦ and
even to 180◦.

V. CONCLUSION

In this article, we propose a simple easy-to-tune nonlinear
observer for VLS, which takes into account several sensor
measurements imperfections. It can be seen as a credible
alternative to Kalman-based filtering algorithms usually used
for vehicle localization. Beyond several nice features, the
main advantage of the proposed observer is that it has
guaranteed convergence properties for a very large set of tra-
jectories, and provides an online estimation of the gyroscopes

biases that tend to slowly drift. Such theoretical guarantees
allow the observer to be robust to GPS losses, and from an
industrial viewpoint, it can be of great interest for safety,
especially if the estimator is used for feedback control of
vehicle. Another main advantage is the fact that contrarily
to many state of the art VLS, the pitch and roll angles are
estimated. They give information on the longitudinal and
lateral inclination of the road, which can be useful in several
applications (such as mobile mapping systems).
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