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Abstract— By leveraging the availability of real time EFIT, we
propose a robust, multi-model-based, multi-input-multi-output
(MIMO) magnetic controller to provide current regulation,
position stabilization, and shape control of the plasma during
the current ramp-up phase in the National Spherical Torus
Experiment (NSTX). During the ramp-up phase of the toka-
mak discharge, the magnetohydrodynamic (MHD) equilibrium
continually evolves. As a consequence, the plasma response
model obtained via linearization around the changing MHD
equilibrium evolves as well. A robust controller is designed to
stabilize this family of plasma models, which are reformulated
into a nominal model with uncertainty. The proposed controller
is composed of three loops: the first loop is devoted to plasma
current regulation, the second loop is dedicated to plasma
radial and vertical position stabilization, and the third loop
is used to control the plasma shape and X-point location. A
singular value decomposition (SVD) of the nominal plasma
model is carried out to decouple and identify the most relevant
control channels. The DK-iteration method, combining H∞

synthesis and µ analysis, is applied to synthesize a closed-loop
controller that minimizes the tracking errors and optimizes
input efforts. Computer simulations illustrate the performance
of the robust, multi-model-based, shape controller, showing
potential for improving the performance of present non-model-
based controllers.

I. INTRODUCTION

The plasma shape requirements in a practical, highly-

efficient tokamak are very stringent. The extreme shapes

that must be achieved, the intrinsic instability in the plasma

vertical position, the large number of control inputs and con-

trol outputs, the magnetohydrodynamic (MHD) equilibrium

evolution, and the demanding regulation requirements make

this problem very challenging.

The recent implementation of the real-time equilibrium

reconstruction code rtEFIT [1] in the National Spherical

Torus Experiment (NSTX) [2] allows the plasma to be shaped

by controlling the magnetic flux at the plasma boundary.

A non-model-based, single-input-single-output (SISO), PID-

based shape controller that exploits this capability has been

recently proposed [3]. Model-based control methods have

been used in the past to design both vertical position [4]

and shape controllers [5], [6] during the current flat-top

phase. A PII controller containing a parallel connection of

proportional, integral, and double integral gains has been

applied in the design of controllers for the future ITER

tokamak during the current ramp-up phase [7].
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The MHD equilibrium continually evolves during the

ramp-up phase of the discharge. Twenty six scenario points

are chosen to describe the plasma equilibrium evolution,

which represent the prescribed reference trajectory of the

system, during the plasma current ramp-up phase in NSTX.

These 26 models are reformulated into a nominal model

with uncertainty and singular value decomposition (SVD)

is used to decouple and identify the most relevant control

channels [8]. A robust controller based on the DK-iteration,

combining H∞ synthesis and µ analysis, is proposed to

account for disturbances and uncertainties in the plasma

model during the ramp-up phase of the discharge. The

control goal is to drive the system to the reference plasma

current, vertical and radial position, and shape.

This paper is organized as follows. In Section II, the

NSTX tokamak is briefly described and the linearized plasma

model is presented. In Section III, the design of the plasma

control algorithm is described. Computer simulation results

are presented in Section IV. Section V states the conclusions.

II. DESCRIPTION OF NSTX

The system, which is composed of the plasma, shap-

ing coils, and passive structure, is described using circuit

equations derived for a particular plasma equilibrium from

Faraday’s Law and force balance relations in the radial

and vertical directions. In addition, rigid radial and vertical

displacements of the equilibrium current distribution are

assumed, and a series of resistive plasma circuit equations

are specified for the different equilibria [9]. The result is a

series of circuit equations describing the linearized response,

around a particular plasma equilibrium, of the conductor-

plasma system to voltages applied to the active conductors.

The poloidal cross section of NSTX, showing the distribution

of active coils, is presented in Fig. 1. The linearized plasma

response model is written in state space form

ẋp = Axp +Bup, δyp =Cδxp, (1)

with xp = [IT
c IT

v IT
p ]

T and up = [V T
c 0 V T

no]
T , where Ic, Iv, and

Ip represent the currents in the PF coils, vessel, and plasma

respectively, Vc represents the vector of voltages applied

to the PF coils, and Vno represents the effective voltage

applied to drive plasma current by noninductive sources (no

noninductive current source is considered in this work, i.e.,

Vno = 0). We define δyp = yp−y
p
eq and δxp = xp−x

p
eq where

y
p
eq and x

p
eq are the values of the equilibrium outputs and

states from which the model is derived. The output vector

yp ∈ ℜp (p = 8) represents the fluxes ψ1, ψ2, ψ3 at the

control points, the magnetic field Br and Bz at the desired
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Fig. 1. NSTX Isoflux Control Configuration

X point location, the plasma radial and vertical positions Rp

and Zp (see Fig. 1), and the plasma current Ip.

During the plasma current ramp-up phase, the MHD

equilibrium continually changes, and as a result, the plasma

response model (1) changes. In this work, 26 scenario points

from the experimental shot #124616 from 91 ms to 391 ms

are chosen to describe the plasma equilibrium evolution.

III. CONTROL SYSTEM DESIGN

A. Control System Structure

The proposed control architecture, shown in Fig. 2, is com-

posed of three loops. The first loop, described in Section III-

B, is devoted to plasma current regulation (PID controller).

The second loop, described in Section III-C, is dedicated

to plasma radial and vertical position stabilization (adaptive

PID controller). The third loop, described in Section III-D,

is used to control the plasma shape and X-point location

(multi-input-multi-output (MIMO) robust controller).

B. Plasma Current Controller

The ohmic (OH) coil is used for plasma current regulation.

The proposed plasma current controller is written as

VOH = G
Ip

P ∆Ip +G
Ip

I

∫ t

0
∆Ipdt +G

Ip

D

d∆Ip

dt
, (2)

where VOH is the ohmic coil voltage, ∆Ip = Ip − I
re f
P , and

I
re f
P denotes the reference plasma current. The parameters

G
Ip

P , G
Ip

I , and G
Ip

D are the plasma current PID error gains.

C. Plasma Position Controller

Poloidal field coils PF2U/L, PF3U/L, and PF5 are used

for plasma radial position control while poloidal field coils

PF2U/L and PF3U/L are used for plasma vertical position

control. Because the plasma response model (1) changes

during the ramp-up phase, an adaptive PID controller is pro-

posed to improve the tracking performance of the closed-loop

system. In order to achieve this goal, an adjusted parameter

kc is introduced to the PID controller. In general, the goal is

to minimize the closed-loop cost function Ja(kc) = ea(kc)
2/2.

Fig. 2. NSTX Control System Architecture

The error ea is defined as ea(kc, t) = ra(t)− ya(kc, t), where

ra(t) is the reference and ya(kc, t) is the system output,

which will be defined below as the actual radial and vertical

positions of the plasma. In order to make Ja small, it is

reasonable to change kc in the direction of the negative

gradient of Ja, which is defined as

k̇c =
dkc

dt
=−λ

∂Ja

∂kc

=−λ
∂Ja

∂ea

∂ea

∂kc

= λea

∂ya

∂kc

, (3)

where λ is the step length, and ∂ya/∂kc is the sensitivity

derivative. The output is expressed as ya = Paua, where Pa is

the transfer function of the system and the input ua is defined

as ua = kcKPIDea where KPID represents the PID controller

transfer function. The goal is to make ya(kc, t) = ra(t) by

choosing the optimal value of the adjusted parameter kc,

which is denoted k∗c . The optimal reference is assumed to

be ra = Pak∗cKPIDea = (k∗c/kc)PakcKPIDea = (k∗c/kc)ya [10].

The adjusted parameter kc is therefore expressed as

k̇c = λea

∂ya

∂kc

= λea

∂
(rakc)

k∗c
∂kc

=
λ

k∗c
eara = νeara, (4)

where ν is the adaptive gain. Using (4), the proposed radial

position controller is then written as

∆V
U/L

PF2R
= ∆V

U/L

PF3R
= ∆VPF5R

=VRp (5)

VRp = kcr(G
Rp

P ∆RP +G
Rp

I

∫ t

0
∆RPdt +G

Rp

D

d∆RP

dt
) (6)

where ∆V
(U/L)
PFiR

represents the voltage contributed by the

radial position controller to the PFi(U/L) coil (i = 2,3,5),

∆Rp = Rp −R
re f
P , R

re f
P denotes the reference plasma radial

position, k̇cr = νr∆RpR
re f
P denotes the radial adjusted param-

eter, and νr denotes the radial adaptive gain. The parameters

G
Rp

P , G
Rp

I , G
Rp

D are the plasma radial position PID error gains.

The proposed vertical position controller is written as

∆V
j

PF2Z
= ∆V

j
PF3Z

=VZp( j) (7)

VZp( j) = (−1) jkcz(G
Zp

P ∆ZP +G
Zp

I

∫ t

0
∆ZP +G

Zp

D

d∆ZP

dt
) (8)

where the superscript j ∈ 0,1 refers to upper (U) and lower

(L) PF coils respectively, ∆V
(U/L)
PFiZ

represents the voltage

contributed by the vertical position controller to the PFi(U/L)

coil (i = 2,3), ∆Zp = Zp −Z
re f
P , Z

re f
P denotes the reference
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plasma vertical position, k̇cz = νz∆ZpZ
re f
P denotes the vertical

adjusted parameter, νz denotes the vertical adaptive gain.

The parameters G
Zp

P , G
Zp

I , and G
Zp

D are the plasma vertical

position PID error gains.

D. Plasma Shape and X-point Location Controller

The separate design of the plasma current and position

controllers transforms the shape control problem into an

output tracking problem. The tracking error is defined as

e(t) = r(t)− y(t), where the system output y(t) is defined

as the magnetic flux at three control points (Fig. 1) and

the magnetic field components at the desired X-point

location, i.e., y = [ψ1 ψ2 ψ3 Br Bz]
T and r(t) is the desired

reference trajectory. The system input is defined as u =
[∆VU

PF1S
∆VU

PF2S
∆VU

PF3S
∆VPF5S

∆V L
PF3S

∆V L
PF2S

∆V L
PF1S

∆VPF1BS
]T ,

where ∆V
(U/L)
PFi(B)S

represents the voltage contributed by the

shape controller to the PFi(B)(U/L) coil (i = 1,2,3,5).

The control goal is to guarantee closed-loop stability while

minimizing a quadratic cost function that weights the

tracking error. The plasma shape and X-point location

control algorithm is summarized by the following steps: (1)

calculate ψ1, ψ2 and ψ3 at the control points, and Br and

Bz at the desired X-point location; (2) estimate the actual

X-point location and compute the flux at this point which is

defined as ψre f ; (3) make the flux at the control points track

the flux ψre f and make Br and Bz at the desired X-point

location go to zero.

The relation between the inputs and the outputs is the

linear model (1) which is expressed in terms of its transfer

function P(s) =Y (s)/U(s) =C(sI−A)−1B, where s denotes

the Laplace variable and Y (s) and U(s) denote the Laplace

transform of output and input vectors respectively. Assuming

a constant reference r̄ and closed-loop stabilization, the

system will reach steady state as t → ∞. It is possible then to

define ȳ= limt→∞y(t), ū= limt→∞u(t), and ē= limt→∞e(t) =
r̄− ȳ. By invoking the final value theorem, we can express

the closed-loop system in steady state as

ȳ = P̄ū =−CA−1Bū ū = ¯̂Kē = ¯̂K (r̄− ȳ) , (9)

where K̂(s) represents the transfer function of the controller

and ¯̂K = K̂(0).
We consider the problem of minimizing a steady-state cost

function given by

J̄ = lim
t→∞

eT (t)Qe(t) = ēT Qē (10)

where Q ∈ ℜp×p is a symmetric positive definite weighting

matrix and p is the number of outputs. In order to weight the

control effort, another positive definite weighting matrix R ∈
ℜm×m is also introduced where m is the number of inputs.

We then define the “weighted” steady-state transfer function,

and its singular value decomposition (SVD), as

P̃ = Q1/2P̄R−1/2 =USV T , (11)

where S = diag(σ1,σ2, · · · ,σm)∈ ℜm×m, U ∈ ℜp×m (UTU =
I), and V ∈ ℜm×m (V TV =VV T = I). The steady-state input-

output relation is now expressed as

ȳ = Q−1/2P̃R1/2ū = Q−1/2USV T R1/2ū. (12)

By invoking the properties of the SVD, we note that

the columns of the matrix Q−1/2US define a basis for the

subspace of obtainable steady-state output values. Therefore,

we can always write

ȳ = Q−1/2USȳ∗ ⇐⇒ ȳ∗ = S−1UT Q1/2ȳ (13)

where ȳ∗ ∈ ℜm. This implies that we will only be able to

track the component of the reference vector r̄ that lies in

this subspace. We now write the reference vector as the sum

of trackable components r̄t and non-trackable components

r̄nt , i.e., r̄ = r̄t + r̄nt , where

r̄t = Q−1/2USr̄∗ ⇐⇒ r̄∗ = S−1UT Q1/2r̄ (14)

with r̄∗ ∈ ℜm and S−1UT Q1/2r̄nt = 0. By defining ū∗ =
V T R1/2ū, the relationship between ȳ∗ and ū∗ is obtained by

using (12) as

ȳ∗ = S−1UT Q1/2ȳ= S−1UT Q1/2Q−1/2USV T R1/2ū= ū∗ (15)

and a one-to-one relationship between the inputs and outputs

is obtained, and the new system is a square decoupled

system. The steady state error is now written as

ē = r̄− ȳ = Q−1/2US(r̄∗− ȳ∗). (16)

Substituting this expression into (10), the performance index

is expressed as

J̄ = (r̄∗− ȳ∗)T S2(r̄∗− ȳ∗) =
m

∑
i=1

σ2
i (r̄

∗
i − ȳ∗i )

2. (17)

The goal of the shape controller is to minimize the

performance index J̄. However, it is usually the case where

σ1 > · · ·σk ≫ σk+1 > · · · > σm > 0. Note that the singular

value σi, for i = 1, . . . ,m, is the weight parameter for the

ith component of the tracking error. Therefore, it is possible

that with the intent of minimizing J̄ in (17) we will spend

a lot of control effort to minimize the ith component of the

tracking error, for i > k, which has a very small contribution

to the overall value of the cost function. To avoid spending

a lot of control effort for a marginal improvement of the

cost function value, we partition the singular value set into

significant singular values Ss and negligible singular values

Sn. We then write

U =
[

Us Un

]

,V =
[

Vs Vn

]

, S =

[

Ss 0

0 Sn

]

(18)

to obtain a reduced form of the cost function defined in (17)

J̄s =
k

∑
i=1

σ2
i (r̄

∗
i − ȳ∗i )

2 = (r̄∗s − ȳ∗s )
T S2

s (r̄
∗
s − ȳ∗s ) (19)

where r̄∗s = S−1
s UT

s Q1/2r̄, ȳ∗s = S−1
s UT

s Q1/2ȳ, and ū∗s =
V T

s R1/2ū.

E. Design of µ Synthesis Controller

A frequency response study for the family of 26 decoupled

plasma models obtained for the current ramp-up phase shows

that the models do not have a large difference in magnitude,

as shown in Fig. 3. Based on this frequency response study,

the linear model at 115 ms, which is denoted as Ptop, has

the highest magnitude over the frequency range considered,

and the model at 391 ms, which is denoted as Pbottom, has
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Fig. 3. Frequency Study of Plasma Models

the lowest magnitude. The model at 211 ms, which has the

mean magnitude, is chosen as the nominal model, denoted

as P0. The family of plasma models can be considered as

a one time-varying state-space model, which is written as

an uncertain state-space model and formulated into a robust

control framework.

By defining the matrix

M =

[

A B

C D

]

(20)

the transfer function of a linear system with state-space

matrices A, B, C, and D can be written as an upper linear

fractional transformation (LFT) [11], denoted by Fu, as

P(s) = Fu

(

M,
1

s
I

)

=C(sI −A)−1B+D. (21)

By defining the matrices

M0 =

[

A0 B0

C0 D0

]

,∆i =

[

∆Ai ∆Bi

∆Ci ∆Di

]

(22)

where ∆Ai = Ai −A0, ∆Bi = Bi −B0, ∆Ci = Ci −C0, ∆Di =
Di −D0, and i ∈ 1,2 refers to the top and bottom models

respectively, the state-space system matrices are now written

as uncertain matrices as

A = A0 +
2

∑
i=1

δi∆Ai B = B0 +
2

∑
i=1

δi∆Bi

C =C0 +
2

∑
i=1

δi∆Ci D = D0 +
2

∑
i=1

δi∆Di. (23)

By conducting a frequency analysis of the uncertain model of

the system (23), the uncertain model is proven to capture the

behavior of the family of reduced order decoupled plasma

models as shown in Fig. 3.

The uncertainty can be formulated into a LFT by achieving

the smallest possible number of repeated blocks by employ-

ing the method outlined in [12]. Thus, the matrix ∆Mi is

formed as

∆Mi =

[

∆Ai ∆Bi

∆Ci ∆Di

]

. (24)

By using singular value decomposition and grouping terms,

the matrix ∆Mi is expressed as

∆Mi =UiΣiV
T
i = (Ui

√
Σ)(

√
ΣV T

i ) =

[

Li

Wi

][

Ri

Zi

]T

. (25)

By employing (25), the uncertainty is written as

δi∆Mi =

[

Li

Wi

]

[

δiIqi

]

[

Ri

Zi

]T

(26)

Fig. 4. Shape Control System Design Structure

where qi is the rank of the matrix ∆Mi. The matrix M, defined

in (20), is finally expressed as

M = M0 +
2

∑
i=1

δi∆Mi = H11 +H12∆H21 (27)

where

H11 =

[

A0 B0

C0 D0

]

H12 =

[

L1 L2

W1 W2

]

H21 =

[

RT
1 ZT

1

RT
2 ZT

2

]

∆ =

[

δ1Iq1
0

0 δ2Iq2

]

. (28)

The representation of the matrix M, defined in (27), is

equal to a lower LFT, denoted by Fl and written as

M = Fl(H,∆) = H11 +H12∆H21 (29)

where H =

[

H11 H12

H21 0

]

. Using (21) and (29), the transfer

function P(s) between the output y and the input u is next

expressed as

P(s) = Fu

(

Fl(H,∆),
1

s
I

)

= Fl

(

Fu

(

H,
1

s
I

)

,∆

)

= Fl(P
′,∆) = Fu(P

′′,∆) (30)

where P′ =

[

P′′
22 P′′

21

P′′
12 P′′

11

]

and P′′ =

[

P′′
11 P′′

12

P′′
21 P′′

22

]

. Using the par-

tition of the generalized plant P′′, the input/output equations

are
y∆ = P′′

11u∆ +P′′
12u, y = P′′

21u∆ +P′′
22u.

The control goal is to design a k×k feedback controller K,

where k is the number of significant singular values defined

in (18), that can stabilize the system and keep the tracking

error e∗s = r∗s − y∗s small. The corresponding block diagram

of the system is shown in Fig. 4 where the weight functions

Wp(s) and Wu(s) are parameterized as

Wp(s) = Kp

(

s
M1

+wb1

s+wb1A1

)2

,Wu(s) = Ku

(

s+wb2A2
s

M2
+wb2

)2

and the coefficients Mi, Ai, wbi, for i ∈ 1,2, as well as Kp

and Ku, are design parameters defined based on frequency-

domain specifications.

The feedback system is now expressed in the conven-

tional ∆−P∗−K robust control framework, where ∆ is the

uncertainty, P∗ is the generalized plant, K is the feedback

controller, Z1 = Wuu∗s , and Z2 = Wpe∗s . The input/output

equations of the generalized plant P∗ are expressed as








y∆

Z1

Z2

e∗s









= P∗(s)





u∆

r∗s
u∗s



=









P∗
11 P∗

12 P∗
13

P∗
21 P∗

22 P∗
23

P∗
31 P∗

32 P∗
33

P∗
41 P∗

42 P∗
43













u∆

r∗s
u∗s



 (31)

2635



10
−2

10
0

10
2

10
4

10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (rad/s)

S
tr

uc
tu

re
d 

S
in

gu
la

r 
V

al
ue

 µ

Fig. 5. Structured Singular Value µ versus Frequency

where P∗
11 = P′′

11, P∗
12 = 0, P∗

13 = P′′
12R−1/2Vs, P∗

21 = 0, P∗
22 =

0, P∗
23 = Wu, P∗

31 = −WpS−1
s UT

s Q1/2P′′
21, P∗

32 = Wp, P∗
33 =

−WpS−1
s UT

s Q1/2P′′
22R−1/2Vs, P∗

41 =−S−1
s UT

s Q1/2P′′
21, P∗

42 = 1,

P∗
43 =−S−1

s UT
s Q1/2P′′

22R−1/2Vs.

The closed-loop transfer function from the external input

r∗s to the external outputs
[

ZT
1 ZT

2

]T
is defined as

Tzr = Fu(N,∆), (32)

where N = Fl(P
∗,K). We seek a controller K(s) that robustly

stabilizes the system and minimizes the H∞ norm of the

transfer function Tzr(N,∆), i.e.,

min
K(s)

‖Tzr(N,∆)‖∞=min
K(s)

(sup
ω

σ̄ [Tzr(N,∆)( jω)]) (33)

where σ̄ represents the maximum singular value. The control

method employed in this work to achieve the control goal

(33) is the µ synthesis design technique [12].

There is no direct method to synthesize a µ-optimal con-

troller, however the DK-iteration method, which combines

H∞ synthesis and µ analysis, can be used to obtain an itera-

tive solution. This method starts with an upper bound on µ in

terms of the scaled singular value µ(N)≤ min(σ̄(DND−1).
Then, we seek a controller that minimizes the peak value

over frequency of this upper bound

min
K

(min
∥

∥DN(K)D−1
∥

∥

∞
).

The controller is designed by alternating between the

two minimization problems until reasonable performance is

achieved. The DK-iteration steps are summarized as follows:

(1) K step: Synthesize an H∞ controller for the scaled

problem, minK

∥

∥DN(K)D−1
∥

∥

∞
with fixed D(s). (2) D step:

Find D( jω) to minimize σ̄(DND−1( jω)) at each frequency

with fixed N. (3) Fit the magnitude of each element of D( jω)
to a stable and minimum-phase transfer function D(s) and go

to step 1. The iteration continues until
∥

∥DN(K)D−1
∥

∥

∞
< 1

or the H∞ norm no longer decreases.

To validate the designed controller, the robust stability of

the closed-loop system is determined. The system is written

in the N−∆ structure, and the robust stability is determined

by evaluating the structured singular value

µ(N11( jω)) =
1

min{km|det(I − kmN11∆) = 0} (34)

where N11 is the transfer function from the input u∆ to the

output y∆. The closed-loop system is robustly stable for all

allowable perturbations if and only if µ(N11( jω)) < 1,∀ω .

Fig. 5 shows a plot of the structured singular value µ versus

frequency, and as can be seen µ < 1 for all frequencies.

Therefore, the closed-loop system is robustly stable. In other

words, the controller stabilizes the whole family of models.

Finally, the overall plasma shape and X-point location

controller is written as

K̂(s) =
U(s)

E(s)
= R−1/2VsK(s)S−1

s UT
s Q1/2 (35)

where E(s) denotes the Laplace transform of e(t). The

contribution to the coil voltages by the shape and X-point

location controller is written as

VShape = [∆V
U/L

PF1As
∆VPF1Bs ∆V

U/L

PF2s
∆V

U/L

PF3s
∆VPF5s

]T

= L
−1{K̂(s)E(s)} (36)

where L −1 denotes the inverse Laplace transform.

IV. SIMULATION RESULTS

The simulation model is updated every 12 ms, and the ref-

erence values for the radial position, vertical position, plasma

current and X-point location are those of the equilibrium

around which the linearized model is obtained. The reference

value for the flux at the control points is equal to the flux at

the X-point, which is computed every 4 ms.

The parameters for the plasma current, vertical position

and radial position loops are G
Ip

P = 1, G
Ip

I = 0.02, G
Ip

D =

0.1, G
Rp

P = 800, G
Rp

I = 100, G
Rp

D = 1, νr = 5, G
Zp

P = 200,

G
Zp

I = 0, G
Zp

D = 10, νz = −10. The weight matrices Q

and R are set as Q = diag
[

2 2 2 1 1
]

and R =
diag

[

10 1.5 2.5 1 2.5 1.5 10 10
]

. The param-

eters for the µ synthesis are M1 = 100, wb1 = 0.01, A1 =
7500, K1 = 1000, M2 = 500, wb2 = 1, A2 = 75, K2 = 0.001.

The time responses for the plasma radial and vertical

positions are shown in Fig. 6 (a). The radial and vertical

positions are stabilized by the controller and the reference

values are quickly achieved. Fig. 6 (b) (top) shows the time

evolution of the plasma current, and the tracking error is less

than 0.5%. The components of magnetic field at the desired

X-point are shown in the Fig. 6 (b) (bottom), and the errors

are less than 0.02 T. Fig. 6 (c) (top) shows both the flux at the

X-point and the flux at the three control points (ψ1, ψ2, and

ψ3), and the flux at the control points tracks the flux at the X-

point. Fig. 6 (c) (bottom) shows the tracking errors, which are

less than 0.05 Wb. A series of four plasma boundary shapes

at different times are shown in the Fig. 7. The blue circles

represent the control points, the blue asterisk represents the

actual location of the X-point, and the red asterisk represents

the reference location of the X-point. The voltages of the PF

coils are regulated according to the robust control law (35)

in order to keep the plasma boundary at the control points

and to regulate the X-point location around its desired value.

Based on the simulation, the control scheme proves to be

successful in stabilizing the plasma position while regulating

the plasma current and keeping the plasma shape and X-

point location as specified. Because the controller forces the

outputs to follow the desired reference trajectories, the MHD

equilibrium evolves as specified during the ramp-up phase.
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Fig. 6. (a) Plasma radial and vertical position; (b) Plasma current and magnetic field; (c) Magnetic flux & flux error at the control points.
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Fig. 7. Plasma Boundary at 80 ms, 160 ms, 240 ms and 320 ms

V. CONCLUSION

A robust multi-model-based MIMO controller was de-

signed for NSTX. The design was based on linearized

plasma response models in the current ramp-up phase. The

availability of independent current and position controllers

transforms the shape control problem into an output tracking

problem. Singular value decomposition of the steady state

transfer function is used to decouple the system and identify

the most relevant control channels, and the shape controller

is designed using this decoupled system. The DK-iteration

technique, combining H∞ synthesis and µ analysis, is used

to minimize the tracking error and optimize input effort. The

proposed controller was tested in simulations, and shows

potential for expanding present experimental control capa-

bilities. A more exhaustive and realistic simulation study

is part of our future work before experimental validation.

Ideally this study should include free-boundary simulations,

real-time boundary reconstruction, synthetic noise in the

measurements and disturbances.
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