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Abstract—The structure of the causal interdependencies
between processes in a causal, stochastic dynamical system can
be succinctly characterized by a generative model. Inferring the
structure of the generative model, however, requires calculating
divergences using the full joint statistics. For the case when
an upperbound on the indegree of each process is known,
we describe a computationally efficient method using directed
information which does not require the full statistics and
recovers the parents of each process independently from finding
the parents of other processes.

I. INTRODUCTION

There are many research problems in economics, biology,

physics, and other disciplines involving stochastic dynamical

systems with processes that interact causally. For some

problems, it is important to characterize the structure of these

interactions. Graphical models, where nodes represent pro-

cesses and edges represent relationships between processes,

can be simple, accessible, and complete depictions of the

structure. In the related context of interdependent random

variables, graphical models such as Bayesian networks,

Markov random fields, and factor graphs have been widely

used to succinctly represent statistical relationships between

variables [1].

For dynamical systems of causally interdependent random

processes, there is a similar graphical representation known

as generative model graphs [2]. For these graphs, each

process is represented as a node, and there are directed

edges between processes such that a process is causally

independent of all processes it does not have an incoming

edge from, causally conditioned on those it does have an

incoming edge from [2].

While generative model graphs succinctly represent the

structure of the causal interdependencies in the system,

computing them requires knowledge of the full joint statistics

and a large number of divergence calculations. In [2], an

This material is based upon work supported in part by the U.S. Air Force
Office of Scientific Research (AFOSR) under grant numbers MURI FA9550-
10-1-0573 and FA9550-11-1-0016, and in part by the Center for Science of
Information (CSoI), an NSF Science and Technology Center, under grant
agreement CCF-0939370. C. Quinn was supported by the Department of
Energy Computational Science Graduate Fellowship, which is provided
under grant number DE-FG02-97ER25308.

C. Quinn is with the Department of Electrical and Computer
Engineering, University of Illinois, Urbana, Illinois 61801
quinn7@illinois.edu

N. Kiyavash is with the Department of Industrial and Enterprise
Systems Engineering, University of Illinois, Urbana, Illinois 61801
kiyavash@illinois.edu

T. Coleman was with the Department of Electrical and Computer En-
gineering, University of Illinois, Urbana, Illinois 61801. He is now with
the Department of Bioengineering, University of California, San Diego, La
Jolla, CA 92093 tpcoleman@ucsd.edu

alternative graphical representation, the directed information

graph, was introduced. These graphs are based on directed

information, an information theoretic quantity formally in-

troduced by Massey [3].

Directed information has been shown to measure statistical

causation between processes [4]–[6]. Directed information

graphs were shown to be equivalent to generative model

graphs [2]. Inferring directed information graphs also require

knowledge of the full joint statistics but requires fewer

divergence calculations.

For an arbitrary causal dependence structure, the require-

ment of full knowledge of the joint statistics is reasonable.

However, often some information about the structures of the

system is known apriori. For example, some gene networks,

ecosystems, and the spread of some computer viruses have

random graph structures, while some metabolic networks,

neuronal networks, and social networks have small-world

network structures [7]. Optimal transportation systems and

the blood vessel system are known to have tree structures

[8], [9].

When the structure is known to have certain properties

such as having upper bounds on the indegree, where indegree

corresponds to the number of parents for each process, one

might expect that more efficient algorithms exist that can

recover the causal dependencies. In fact, in this work we

will show that such algorithms exists.

Our contribution can be summarized as follows:

• For the case when the underlying topology is known

to be a tree, we propose an algorithm that identifies

the structure only using pairwise statistics (directed

information) and does not use any coupled optimization

step.

• We generalize this algorithm to one which recovers the

structure if an upper bound to the indegree for each

process is known. This algorithm recovers the parents

of each process independently from finding the parents

of other processes, and it only uses statistics for groups

the size of the bound.

In short, these algorithms have the advantage that they do

not require the knowledge of the full joint and only utilize

local statistics (such as between pairs, triplets, or K-sized

groups where K is the upper bound on indegree). Moreover,

they identify the topology in a distributed manner, i.e, finding

the parents for one process is done independently from

finding the parents of other processes. The latter property

is specially advantageous for parallelizing the computations.
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II. RELATED WORK

There are some procedures, related to Chow and Liu’s

dependence tree approximation procedure for Bayesian net-

works [10], that find the best tree approximation of a

stochastic dynamical system with an arbitrary structure. They

compute pairwise statistical relationships, such as directed

information and a spectral coherence based distance func-

tion, and use a global optimization step (maximum weight

spanning tree algorithm) to find the best tree approximation

[11], [12]. When the structure is a tree, these algorithms

will recover the correct tree. However, they would still

use a global optimization step which is not necessary with

our proposed method. There are also algorithms related to

Chow and Liu which can recover tree structures even with

missing variables [13]. They use pairwise distances and joint

optimization steps to find the minimal latent tree among the

class of consistent latent trees.

There is an algorithm for Bayesian networks known as the

SGS algorithm which, when there is a known upperbound of

the indegree, uses a series of conditional independence tests

using local statistics (from pairwise up to the size of the

upperbound) to recover the structure [14]. While it only uses

local statistics, it requires a large number of independence

tests. An alternative approach to identifying sparse structures

is Group Lasso, based on the model selection technique

Lasso [15].

We will first introduce notations and definitions. We will

then review some properties of generative model graphs and

directed information graphs. Then we will introduce this

simpler procedure for tree structures. Then we introduce the

generalized version.

III. DEFINITIONS

A. Notation and Information Theoretic Definitions

• For a sequence a1, a2, . . ., denote a
j
i as (ai, . . . , aj) and

ak � ak1 .

• Denote [m] � {1, . . . ,m} and the power set 2[m] on [m]
to be the set of all subsets of [m]. Let [m]i � [m]\{i}.

• For any Borel space Z, denote its Borel sets by B(Z)
and the space of probability measures on (Z,B(Z)) as

P (Z).
• Consider two probability measures P and Q on P (Z).

P is absolutely continuous with respect to Q (P � Q)

if Q(A) = 0 implies that P(A) = 0 for all A ∈ B(Z).
If P � Q, denote the Radon-Nikodym derivative as the

random variable dP
dQ

: Z → R that satisfies

P(A) =

∫
z∈A

dP

dQ
(z)Q(dz), A ∈ B(Z).

• The Kullback-Leibler divergence between P ∈ P (Z)
and Q ∈ P (Z) is defined as

D(P‖Q) � EP

[
log

dP

dQ

]
=

∫
z∈Z

log
dP

dQ
(z)P(dz) (1)

if P � Q and ∞ otherwise.

• Throughout this paper, we will consider m random

processes where the ith (with i ∈ {1, . . . ,m}) random

process at time j (with j ∈ {1, . . . , n}), takes values in

a Borel space X.

• For a sample space Ω, sigma-algebra F , and probability

measure P, denote the probability space as (Ω,F ,P).
• Denote the ith random variable at time j by Xi,j : Ω →

X, the ith random process as Xi = (Xi,1, . . . , Xi,n) :
Ω → X

n, the subset of random processes XI = (Xi :
i ∈ I)T : Ω → X

|I|n, and the whole collection

of all m random processes as X � X[m] : Ω →
X
mn. Denote the whole collection of all m random

processes from time j = 1 to n′ as X(1:n′) �

(X1,1, . . . , X1,n′ , . . . Xm,1, . . . , Xm,n′) : Ω → X
m(n′).

• The probability measure P thus induces a probability

distribution on Xi,j given by PXi,j
(·) ∈ P (X), a joint

distribution on Xi given by PXi
(·) ∈ P (Xn), and a

joint distribution on XI given by PX
I
(·) ∈ P

(
X
|I|n

)
.

• A distribution PX is called positive if there exists a

measure φ such that PX � φ and
dPX

dφ
(x) > 0 for all

x in the support of PX.

• With slight abuse of notation, denote Y ≡ Xi for

some i and X ≡ Xk for some i �= k and denote

the conditional distribution and causally conditioned

distribution of Y given X as

PY|X=x(dy) � PY|X(dy|x)

=
n∏

j=1

PYj |Y j−1,Xn

(
dyj |y

j−1, xn
)

(2)

PY‖X=x(dy)� PY‖X(dy‖x)

�

n∏
j=1

PYj |Y j−1,Xj−1

(
dyj |y

j−1, xj−1
)
. (3)

Note the similarity with regular conditioning in (3),

except in causal conditioning the future (xn
j ) is not

conditioned on [16] 1. The notation for PY|X=x and

PY‖X=x is used to emphasize that PY|X=x ∈ P (Xn)
and PY‖X=x ∈ P (Xn).

• With slight abuse of notation, denote Y ≡ Xi for some

i with Y = X
n and W ≡ XI for some I ⊆ [m]i with

W = X
|I|n. Consider two sets of causally conditioned

distributions {PY‖W=w ∈ P (Y) : w ∈ W} and

{QY‖W=w ∈ P (Y) : w ∈ W} along with a marginal

distribution PW ∈ P (W). Then the conditional KL

divergence is given by

D
(
PY‖W‖QY‖W|PW

)
=

∫
W

D
(
PY‖W=w‖QY‖W=w

)
PW(dw) (4)

The following Lemma will be useful throughout:

Lemma 3.1: D
(
PY‖W‖QY‖W|PW

)
= 0 if and only if

PY‖W=w(dy) = QY‖W=w(dy) with PW probability

one.

1Note the slight difference in conditioning upon x
j−1 in this definition as

compared to x
j in the original causal conditioning definition. The purpose

for doing this will be clear later in the manuscript.
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• Let X ≡ Xi for some i, Y ≡ Xk for some k and

W ≡ XI for some I ⊆ [m]i,k. The mutual informa-

tion, directed information [3], and causally conditioned

directed information [16] are given by

I(X;Y) �D
(
PY|X‖PY|PX

)
(5)

I(X → Y) �D
(
PY‖X‖PY|PX

)
(6)

I(X → Y‖W) �D
(
PY‖X,W‖PY‖W|PX,W

)
(7)

Conceptually, mutual information and directed infor-

mation are related. However, while mutual informa-

tion quantifies statistical correlation (in the colloquial

sense of statistical interdependence), directed infor-

mation quantifies statistical causation. For example,

I(X;Y) = I(Y;X), but I(X → Y) �= I(Y → X)
in general. Note that as a consequence of Lemma 3.1

and (7), we have:

Corollary 3.2: I(X → Y‖W) = 0 if and only if X is

causally conditionally independent of Y given W:

PY‖X=x,W=w(dy) = PY‖W=w(dy), PX,W − a.s.

Equivalently, we denote that X ⇒ W ⇒ Y form a

causal Markov chain.

B. Generative Model Graphs and Directed Information

Graphs

We will now consider succinct representations of causal

interactions between processes in stochastic dynamical sys-

tems. For these representations, the causal interactions in the

dynamical system need not have a tree structure. The first

representation that will be discussed is generative models.

The second will be directed information graphs, which were

recently introduced in [2]. In that paper, it was shown

that these two representations are equivalent and that the

procedure to identify directed information graphs is more

efficient than the procedure to identify generative models

(fewer divergence calculations for general structures). The

following definitions are from [2].

Let X be a set of m random processes, each of time

length n, in a causal, stochastic dynamical system with a

joint distribution PX. The distribution can be factorized over

time as

PX(dx) =

n∏
j=1

PX(j)|X(1:j−1)
(dx(j)|x(1:j−1)). (8)

Since this system is causal, given the full past, the future

(next step) of each of the processes is independent. Thus,

factorizing over the processes

PX(dx) =
n∏

j=1

m∏
i=1

PXi,j |X(1:j−1)
(dxi,j |x(1:j−1)). (9)

Assumption 1: For the remainder of this paper, we only

consider joint distributions PX which are positive and satisfy

(9).

Equation (9) can be rewritten as

PX(dx) =

m∏
i=1

PXi‖X[m]i
(dxi ‖ x[m]i

). (10)

While (10) fully characterizes the dynamical system it might

be the case that not every process Xi depends causally on all

the other processes X[m]i . For notational simplity, consider

a function A : [m] → 2[m] which for each process i ∈
[m], specifies the subset of other processes that Xi causally

depends on. We can fully describe the dynamics with the

following factorization

PA(dx) =

m∏
i=1

PXi‖XA(i)
(dxi ‖ xA(i)). (11)

We will call such simpler factorizations “generative mod-

els.” In particular, we will focus on those where each for

each process i, the subset of other processes A(i) causally

conditioned on is of minimal cardinality.

Definition 3.3 ([2]): Under Assumption 1, for a joint dis-

tribution PX, a minimal generative model is a function

A : [m] → 2[m] such that for each process i ∈ [m], i /∈ A(i)
and |A(i)| is minimal such that

D
(
PX‖PA

)
= 0, (12)

where PA is defined in (11).

Lemma 3.4 ([2]): Under Assumption 1, for any distribu-

tion PX there is a unique, minimal generative model.

When we say “generative models,” we refer to minimal

generative models. Note that Lemma 3.4 means that for each

process Y ≡ Xi, there is a unique set of processes, indexed

by A(i), such that (12) holds. Not only is A(i) of minimal

cardinality, but there is only one A(i) of that cardinality [2].

The structure of the generative model, which is the struc-

ture of causal dependencies in the stochastic, dynamical

system, can be represented graphically.

Definition 3.5 ([2]): A generative model graph is a di-

rected graph for a generative model where each process is

represented by a node, and there is a directed edge from Xk

to Xi for i, k ∈ [m] iff k ∈ A(i).
Generative model graphs are one representation of the

causal dynamics of a system. They characterize causally con-

ditioned independences between processes. An alternative,

related representation characterizes the causally conditioned

directed information between processes.

Definition 3.6 ([2]): A directed information graph is a

directed graph over a set of random processes X where each

node represents a process and there is a directed edge from

process X ≡ Xk to process Y ≡ Xi (for some i, k ∈ [m])
iff

I(X → Y ‖ X[m]i,k
) > 0. (13)

An edge is drawn from X to Y if, even with full

knowledge of the past of all other processes, the past of X

still influences the future of Y. From the definition, directed

information graphs are unique. We note that directed infor-

mation graphs are analogous to Markov networks [1], but

instead of conditional independence, for directed information

graphs the criterion is causally conditional independence.

Although they are different characterizations of the causal

dependencies, minimal generative model graphs and directed

information graphs are equivalent [2].
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We will now consider the problem of inferring these

structures from known statistics.

IV. DISCOVERING GENERATIVE MODEL

GRAPHS WITH TREE TOPOLOGIES

For the case that the generative model graph is known

to be a tree, we can recover the structure directly from the

definition of generative model graphs or from the definition

of directed information graphs. Both use the full statistics to

recover each parent. However, since the structure is simple,

using the full statistics might not be necessary. This is

discussed in the following example.

Example 1: Consider a set of six processes X =
{X1, . . . ,X5,Y} with a joint distribution PX. Assume it

has a minimal generative model with a tree structure. We

want to efficiently determine which process is the parent of

Y. This is represented graphically in Figure 1, where there

is a question mark next to each edge we will check.

We could identify the parent through the definition of

generative models. To test if X3 is the parent, calculate

D
(
PY‖X[5]

‖PY‖X3

∣∣PX[5]

)
. (14)

If this value is 0, then X3 is the parent. Otherwise,

check another. There are six subsets to check in total:

{∅,X1, . . . ,X5}.

Alternatively, the definition of directed information graphs

could be used. To test if X3 is the parent, calculate

I(X3 → Y ‖ X[5]3
) = D

(
PY‖X[5]

‖PY‖X[5]3

∣∣PX[5]

)
. (15)

If this value is greater than 0, then X3 is the parent.

Note that to calculate (14) or (15) requires the full

joint distribution to determine PY‖X[5]
. This might seem

necessary because there is no knowledge of the structure

of {X1, . . . ,X5} other than that each process has at most

one parent.

However, there is a method, described below, that uses the

same number of divergence calculations as the above two

methods, but only uses pairwise statistics and can discover

the parents separately. In particular, to check if X3 is the

parent, it only needs to calculate

I(X3 → Y) = D
(
PY‖X3

‖PY

∣∣PX3

)
. (16)

This calculation only requires knowledge of PY,X3
, not PX.

Also, finding the parent of Y can be done independently

of finding the structure of {X1, . . . ,X5}. No global opti-

mization step is necessary. The motivation for this algorithm

comes from the following data processing inequality for

causal Markov chains.

Lemma 4.1: Let {X,Y,Z} be a set of processes with a

causal markov chain generative model: X ⇒ Y ⇒ Z. Then

I(X → Z) < I(Y → Z). (17)

Proof: By applying the chain rule for directed infor-

mation twice (Ch. 3 in [16]),

I({X,Y} → Z) = I(X → Z) + I(Y → Z ‖ X) (18)

= I(Y → Z) + I(X → Z ‖ Y) (19)

Fig. 1. A graph of candidate parents for process Y in Example 1. It
is known that the minimal generative model has a tree structure, but it is
unknown which tree that is. The sub-tree structure of {X1, . . . ,X5} is
unknown and not depicted.

By definition of edges in a generative model,

D
(
PZ‖{X,Y}‖PZ‖Y

∣∣P{X,Y}

)
= 0, (20)

which by definition of causally conditional directed informa-

tion implies that I(X → Z ‖ Y) = 0. Thus,

I(Y → Z) = I(X → Z) + I(Y → Z ‖ X) (21)

Consider the case that I(Y → Z ‖ X) was also 0. This

would imply (by definition of causally conditioned directed

information) that

D
(
PZ‖{X,Y}‖PZ‖X

∣∣P{X,Y}

)
= 0. (22)

This means that either there is an edge from X to Z in the

generative model (thus multiple minimal generative models),

or Z is causally conditionally independent of {X,Y} so

there is no edge into Z. Both of these possibilities contradict

the uniqueness of minimal generative models Lemma 3.4.

Thus,

I(Y → Z ‖ X) > 0 (23)

which implies from (21) that

I(X → Z) < I(Y → Z).

Since processes in directed trees have at most one parent,

such as Y is Z’s parent in the above lemma, the parent of a

process can be found by calculating all pairwise directed in-

formations to that process and picking the one with maximal

value. This is formally described in the following algorithm.

Algorithm 1. TreeRecovery

Input: set of all second order distributions {PXi,Xl
}i,l∈[m] .

1. Initialize parent(1 . . .m) ← ∅
2. For i, l ∈ [m] with i �= l

3. Compute I(Xl → Xi)
4. For i ∈ [m]
5. k = argmax

l∈[m]i

I(Xl → Xi)

6. If I(Xk → Xi) > 0
7. parent(i) ← k

Theorem 4.2: If the minimal generative model for PX has

a directed tree structure, Algorithm 1 will recover it.
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Distributed Search Pairwise Statistics

CL X

GMG and DIG X

Alg. 1 X X

Table 1. A comparison of properties of Chow and Liu based algorithms
[11], [12], algorithms implicit in the definitions of generative model graphs
(GMG) and directed information graphs (DIG) [2], and Algorithm 1.
Distributed search means that the algorithm finds the parent of a process
independently of finding the parents of other processes.

Proof: Suppose that a process Y ≡ Xi does not have a

parent in the generative model. By definition of a generative

model,

D
(
PY‖X[m]i

‖PY

∣∣PX[m]i

)
= 0. (24)

By definition of directed information, I(X[m]i
→ Y) = 0.

For all l ∈ [m]i, by the chain rule for directed information

(Ch. 3 in [16]),

I(X[m]i→ Y) = I(Xl → Y) + I(X[m]il
→ Y ‖ Xl) = 0. (25)

By nonnegativity of directed information, I(Xl → Y) = 0.

Thus, the algorithm will correctly return parent(i) = ∅.

Otherwise, Y has exactly one parent, denoted as Xk, with

I(Xk → Y) > 0. Since this minimal generative model is

unique by Lemma 3.4, for any l ∈ [m]i,k, either Y is causally

independent of Xl, or (Xl,Xk,Y) form a causal Markov

chain. Thus, by the data processing inequality Lemma 4.1,

I(Xk → Y) > I(Xl → Y) ∀ l ∈ [m]i,k. (26)

There are two significant properties of Algorithm 1.

1) only pairwise statistics are needed, and

2) the parent of each process can be found independently

of the parents of other processes.

A comparison with other methods is in Table 1. Methods like

Chow and Liu [10] which approximate arbitrary structures

with causal dependence trees [11], [12], only use pairwise

statistics, but require a global optimization step. Both gen-

erative model graphs and directed information graphs find

the parent for each process independently from finding the

parents of other processes, but need the full joint statistics.

Thus, this method provides a simple procedure to recover

the structure of a causal, stochastic dynamical system when

the structure is a tree. A natural next question is whether

there is an analogous procedure for more complicated struc-

tures.

V. DISCOVERING GENERATIVE MODEL GRAPHS

WITH GENERAL TOPOLOGIES

As discussed in [2], if a process has more than one parent,

pairwise directed information values can be misleading. This

can be illustrated through an example.

Example 2: Let W, X, Y, and Z be four processes, with

W and X independent Bernoulli( 12 ) processes and

Yi = Wi−1 ⊕Xi−1 + εi

Zi = Wi−2 ⊕Xi−2 + ε′i

for some i.i.d. Gaussian noises {εi, ε
′
i}

n
i=1. Because of the

properties of the XOR function ⊕, I(X → Z) = 0 while

I(Y → Z) > 0. On the other hand, I(X → Z ‖ W,Y) > 0
and I(Y → Z ‖ W,X) = 0. Thus, Algorithm 1, which only

uses pairwise tests, would fail at recovering this topology.

A natural question is whether there exists a generalization

of the procedure in Algorithm 1 for generative model graphs

with more general topologies. We will now develop a pro-

cedure similar to Algorithm 1 which can efficiently recover

the true structure when an upper bound on the number of

parents for each process is known.

Where in Algorithm 1, directed informations of the form

I(Xl → Y) were calculated for individual processes Xl,

here directed informations of the form I(XIl
→ Y) will be

calculated for subsets of processes Il ⊆ [m]i. The subsets

XIl
that maximize the directed information to Y all will

contain the true parents of Y, and there will be no other

process common to all of them.

The motivation for this algorithm comes from extending

the intuition of the data processing inequality for causal

Markov chains of Lemma 4.1. The parents of a process

Y convey all of the relevant causal information that the

entire set of processes X[m]i
does. Any set of processes

XIl
which includes all of the parents will have the maximal

directed information. Any set of processes XIl
which does

not include all of the parents can be seen to form a causal

Markov chain with the set of parent processes and Y. In

this case, XIl
will have directed information strictly less

than the parents. Before making this statement precise (in

Lemma 5.2), first consider the following lemma which will

be used to prove Lemma 5.2.

Lemma 5.1 ([2]): Let X be a set of processes with a joint

distribution PX satisfying Assumption 1. Let Y ≡ Xi for

some i ∈ [m]. Let IA, IB ⊆ [m]i be two subsets of indices

that carry the same causal information about Y:

D
(
PY‖X

IA

‖PY‖X
IB

∣∣PX
IA∪IB

)
= 0. (27)

Then their intersection contains all of the causal influence

on Y:

D
(
PY‖X

IA

‖PY‖X
IA∩IB

∣∣PX
IA

)
= 0. (28)

Lemma 5.2: Let Y ≡ Xi be a process whose parent

processes in the generative model are denoted by Z. Let

A be any subset of processes of X[m]i
containing all of the

parents, Z ⊆ A, and B any subset of processes of X[m]i
.

Then B ⇒ A ⇒ Y forms a causal Markov chain, and thus

I(B → Y) ≤ I(A → Y). (29)

Moreover, there is equality iff B contains all of the parents

of Y: Z ⊆ B.

Proof: A graphical depiction of the subsets is in

Figure 2. A sketch of the proof involves considering I(B →
Y ‖ A) and nonnegativity of directed information to show

the inequality, I(A → Y ‖ B) to show equality if B

contains all the parents, and Lemma 5.1 for strict inequality

otherwise.
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Fig. 2. A graph depicting the overlap of sets in Lemma 5.2. Y ≡ Xi is
a process with parents Z ⊆ A ⊆ X

[m]i
. B ⊆ X

[m]i
is another, arbitrary

subset of processes.

If we want to identify the structure of a generative model,

Lemma 5.2 suggests some important properties that can be

used to develop an efficient procedure. The first is that

finding the parents of a process Y can be done independently

of finding the rest of the structure. The second is that any

subset of processes with all of the parents of Y conveys the

maximal directed information to Y of any subset of pro-

cesses (excluding Y itself). Any subset not including all of

the parents conveys strictly less information. Consequently,

as long as we know an upper bound L to the number of

parents that Y has, we can calculate the directed information

from all L-sized subsets of processes to Y. There would be

at least one L-sized subset with the parents. If we check all

L-sized subsets, then only the parents would be common to

the subsets that had maximal directed information to Y. This

procedure is formally described in Algorithm 2.

Algorithm 2. StructureRecovery

Input: set of all second order distributions {PXi,Xl
}i,l∈[m],

upper bound on number of parents maxparents(1 . . .m).
1. Initialize parents(1 . . .m) ← ∅
2. For i ∈ [m]
3. L ← maxparents(i)
4. IL ← {I : I ⊆ [m]i, |I| = L}
5. For Il ∈ IL

6. Compute I(XIl
→ Xi)

7. ILmax ← argmax
Ij∈IL

I(XIj
→ Xi)

8. parents(i) ←
⋂

Il∈ILmax

Il

We will now show the correctness of the algorithm.

maxparents(1 . . .m) denotes the upperbounds on the num-

ber of parents for each process in [m].
Theorem 5.3: Algorithm 2 recovers the minimal

generative model structure for a given PX if

maxparents(1 . . .m) ≤ m− 2.

Proof: The proof is analogous to the proof for Theo-

rem 4.2. It requires Lemma 5.2, since now there are sets of

processes.

Like Algorithm 1, finding the parents of one process is

done independently of finding the parents of other processes.

Thus, the procedure can easily be distributed. Also, Algo-

rithm 2 does not need the full statistics. It only uses Kth

order statistics where K is the upperbound of the indegree.

Thus, Algorithm 2 provides an efficient procedure to recover

general structures when upperbounds on the indegree are

known.
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