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Abstract— An inexpensive robotic system intended for edu-
cational use in parallel algorithms for embedded control and
signal processing is described. The hardware platform is com-
prised of a state-of-the-art multi-core system in a wireless
network with several mobile LEGO robots that collect data
from their environment. The setup covers a broad range of
real-time cooperative and parallel problems arising in sensor
networks, robotics, surveillance and high-performance embed-
ded applications. As an illustration, a bearings-only tracking
problem, estimating both mobile robots positions and the
position of a non-cooperating target by using parallel particle
filtering, is solved on the proposed platform. In order to
improve the estimation accuracy and to adjust to changes in
the environment and movements of the target, a controller
positioning the mobile robots is utilized.

Index Terms— Control education, Real time, LEGO, Mobile
Robots, Tracking, Multi-core, Sensor Networks

I. INTRODUCTION

Processor manufacturers are to an ever increasing degree
using multi-core approaches, instead of only increasing the
clock frequency, to achieve higher computing power. An
advantage with the multi-core approach in embedded systems
is the increased computing power per unit energy, conserving
battery. This computing power does not necessarily mean that
demanding real-time applications of today will be running
faster or spend less energy on a multi-core computer.

Most of the algorithms in automatic control and signal
processing are developed to run sequentially with full access
to sensor data and are not capable of taking advantage of
the parallel environment. Combined with real-time process
scheduling, the effect of running on a multi-core system can
even be a reduction in execution speed compared to a single
core processor system with a comparable clock frequency.
If an algorithm assumes access to information that is not
instantly available in cache memory, valuable computing
time amounting to hundreds of processor cycles might be
lost while waiting for it.

Similarly, in such distributed applications as sensor net-
works, the estimation problem might be spread over several
physically separated nodes with only partial network con-
nectivity. Here the algorithms need not only be parallel but
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also to take the network topology and communication costs
into account.

Developing new and modifying existing real-time al-
gorithms so that they are aware of the computational platform
and take advantage of parallel and distributed computing is
therefore an important and sometimes challenging task.

A clear tendency in control curriculum of the last decade
is the introduction of courses dealing with real-time systems
and embedded control. These make typically use of a concoc-
tion of computer science and control engineering approaches.
In view of the transition to multi-core embedded platforms,
control courses have to face the challenges and embrace
the possibilities of parallel implementation of control and
estimation algorithms. At the same time, in an academic
environment, it not always easy to come up with a well-
defined and sufficiently rich example of a control application
that would illustrate the benefits and pitfalls of parallel
implementation.

The robotic system described below is intended for devel-
opment, testing and benchmarking of parallel algorithms in
advanced automatic control and signal processing courses,
both in laboratory and project assignment formats. As an
illustration, a bearings-only tracking problem solved by
parallel particle filtering is worked out in detail.

In a so called bearings-only problem, the only available
measurements are the angles to a moving target, relative
some reference angle from a sensor with a known position.
The bearings-only problems are inherently non-linear with
observability issues and are typically solved with respect to
a set of constraints on the state vector range.

The mobile sensor network is built using three LEGO
Mindstorms robots. Sensor networks consisting of mobile
robots are a well explored area with many commercial
applications available [1], [2], [3], [4], [5]. The Mindstorms
kit is fairly cheap and contains a fully functional robotic
system that is easy to use and re-use. Video cameras mounted
on mobile sensor nodes were the only sensors used, giving
a realistic data for the estimation problem.

The server is a state-of-the-art multi-core machine using
12 processor cores to perform state estimation of the sensor
network and the non-cooperating tracked object. The price
of the advanced server is still just a fraction of that of an of-
the-shelf laboratory unit. Data processing is handled both in
a distributed manner on the sensor nodes and on the central
server, also acting as network hub.

In Section II, a brief overview of the hardware platform
is provided while system implementation is described in
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Section III. In Section IV, some experimental results are
presented to exemplify the implemented platform’s capabil-
ities. Finally, in Section V, the advantages and disadvantages
of the implemented platform and LEGO Mindstorms are
summarized.

II. HARDWARE OVERVIEW

A. Sensor nodes

The mobile sensor nodes are built using the LEGO Mind-
storms robotics kit, [6]. It consists of a computer block
(referred to as the NXT) and several basic sensors and
actuators described below. The NXT is equipped with a 32-
bit ARM processor with a clock frequency of 48 MHz, 256
kB flash memory, and 64 kB RAM memory. It has 3 output
ports for actuators and 4 input ports for sensors, [7].

1) Operating system: The operating system shipped by
LEGO is capable of receiving and executing simple com-
mands via bluetooth. Minor programs can be downloaded
to the NXT using a graphical user interface for construct-
ing simple algorithms comprised of block schemes with
predefined blocks. However, if more advanced algorithms
are to be implemented, there are many alternative operating
systems that can be used. Most of them have a basic micro
kernel with real time capabilities that can run user-defined
software (usually written in C/C++).

One OS stands out: a Java virtual machine available as
an open source project called leJOS, [8]. It enables the user
to implement and run on the NXT any algorithm in Java
with an almost a full set of Java libraries. The use of the
Java language makes the development faster and simpler
than in C/C++, with the extra advantage of being suitable
for educational purposes. All interfaces for sensors/actuators
are implemented in the standard (object oriented) Java way
with an interface object accessible to the programmer as
a library component. The downside of using Java is the
reduced execution time compared to C/C++. leJOS has been
selected for the implementation described below.

2) Communication: The NXT is equipped with an USB
port and bluetooth. Communication over USB is limited by
the length of the cable, so the main way of communica-
tion is over a bluetooth link. All network communication
is transmitted using the RFCOMM protocol emulating an
RS232 connection between the devices. The network two-
way latency was observed to be lower than 40 ms, using
one device. If more devices are used, the latency increases
somewhat but usually stays below 70 ms. Latency increases
even more if the network strain is high.

The range of bluetooth can be a problem. Some low-
power implementations have seriously degraded performance
already at a couple of meters. Using a more powerful antenna
(class 1), the effective range can be extended to more than
20 meters (100 meters is the theoretical maximum in the
specifications).

3) Sensor and actuators: The Mindstorms kit is delivered
with a basic set of sensor and actuators such as three servo
motors and sensors for touch, sound, ultrasound and light
intensity (a one pixel camera). There is however a range

of third party devices available including multiplexers for
attaching extra sensor or actuators to one NXT.

Light sensors come in many flavours. The basic one has
just one grey scale pixel but there is also an official version
of it that detects colors. For more advanced needs, there is
a sensor array and a full video camera. The sensor array is
simply several parallel light sensors on a decimeter long plate
to detect difference in surface brightness along a line. The
low resolution camera is attached to a micro-controller to
process the image since the sensor bus is too slow to upload
the full image to the main processor. Parameterized data are
however accessible from the micro-controller.

Range finders exploiting either laser or ultrasound are
available. The accuracy, resilience to different target geo-
metries, and range varies. Some sensors of this type have
many range finders mounted on one unit.

Motors controlled by pulse-width modulation are fitted
with tachometers yielding an accuracy of one degree of the
angles turned from the zero point. More and less powerful
ones than the official LEGO motors are available.

Touch sensors are only binary but can still be used for
collision detection or as a button.

Linear actuators can extend a rod able to push objects.
Gyroscope and Accelerometer are used to estimate a

change in position or the direction of gravity. The accuracy
is very high and these sensors are capable of keeping track
of a moving robot for an extended period.

Sound sensor can record audible sound well enough for
transmitting data via sound waves.

Compass and GPS sensors can position the robot as good
as any smartphone.

B. Server

The server used is a HP Z800 workstation with two 6 core
processors with 384 kB of L1 cache, 1536 kB of L2 cache
and 12288 kB of L3 cache per processor. Being able to test
algorithms on as many cores as 12 is important since the
advantages of parallelism and such effects as false sharing
or super linear speedup can be better observed with more
parallel processes running. Embedded platforms in the future
will probably contain many more cores than 12, but the
present solution makes a sufficient test case for algorithm
scalability.

III. IMPLEMENTATION

A. Problem description

As an illustration, the mobile sensor nodes, together
with the server, are set to solve a bearings-only tracking
problem. The main task is to estimate the position of a
non-cooperating target out of angle measurements (bearings)
obtained by the mobile robots. Measurements are obtained
by the video cameras attached to micro-controllers for image
analysis (the so-called NXTCams). To estimate the position
of the sensor nodes, the robots move inside a predefined
space (called the arena) with landmarks positioned at given
locations, as shown in Fig. 1. A regulator issuing movement
commands to the robots is used to increase the accuracy of
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Fig. 1. Overview of a part of the arena showing the non-cooperating target
following a path surrounded by three sensor nodes. At the upper left corner,
a landmark can be seen.

Fig. 2. Mobile robot with actuated video camera (sensor node)

the information collected by each sensor. The implemented
system is described in more detail in [9].

B. System design

Of the available hardware, three motors and one camera
are used for building each robot, as shown in Fig. 2. The
camera is used to locate the target and the landmarks. Two
of the motors move the robot and one motor is used to
actuate the camera. Each motor has a tachometer providing
information on distance travelled, angles turned, and camera
heading.

The server software is written in Java and has a simple
graphical interface through which movement commands
could be issued and internal data could be viewed. Ubuntu
Linux is used as operating system.

Sensors

Preprocessing filter Phase 1 filter

Phase 2 filter

RegulatorMotors

1.

2. 3.

4.

5.

Sensor side Server side

Fig. 3. The implemented system from a control loop perspective (section
III-D)

C. Development strategy

A disadvantage of the Mindstorms platform under leJOS
is the lack of relevant debugging tools. This would not
have been a big problem if some unsophisticated software
were to be implemented. However, the developed system
needs multiple threads on the NXT and an advanced data
processing pipeline on the server. Uploading the compiled
code to the sensor node took about 25 seconds and the
camera heading would have to be reset manually.

To cut down on the development time, a simulation
environment was implemented where filtering and regulator
components could be tested and debugged before being
uploaded to the robots. This simulation environment only
served as a debugging tool and not for data collection. When
a component could be considered mature enough, the code
was copied into the production repositories.

D. The control loop

A view of the system as a networked control loop is shown
in Fig. 3. The link between the motor and sensor block in
the figure is dashed indicating that the motors influence the
sensors ability to collect data and in that way complete the
loop. Solid arrows indicate direct communication. The block
numbers in Fig. 3 correspond to the numbers in the following
subsections.

1) Data acquisition: The sensors of the mobile robots
collect data on their environment and on motor status. This
provides information on the bearing to a tracked object
(landmark or robot) in the sensors own reference system.
The robots also measure the angles turned and the distance
travelled. The data from the motor and camera controller
thread are packaged together, time stamped, and pushed to
an internal buffer. The buffer is sorted according to the time
stamps of the data packets.

2) Preprocessing: The preprocessor reads packages from
the internal buffer at even intervals and prepares the sensor
data for upload to the server. Data packages in the buffer have
high temporal resolution that is not requested on the server
side. To decrease network strain, information is aggregated
into fewer packages. Finally, data from the preprocessing
filter are serialized and written to the network stream.
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3) Filtering (first phase): The server receives the data and
after deserialization passes it to the first phase of filtering.
There is one instance of this filter for each sensor node.
These filters estimate the position of each node relative to
the known landmarks as a part of the state vector consisting
of the position in the arena plane and the heading angle.
Estimations are performed by a particle filter and also
provide the certainty of the estimated state vector evaluated
through the estimated probability distributions.

4) Filtering (second phase): The second filtering phase
uses information from all the sensor nodes to find the
position and velocity of the tracked target. It is implemented
using a particle filter in an external process. The filtering in
the external process is not constrained by the Java virtual
machine and can utilize the full power of the multi-core
server.

5) Regulation: If the certainty in the estimation of the first
and second filter phases is not high enough, the regulator
adjusts the positions of the mobile robots by commanding
them to move. The commands contain information on the
sensor nodes position and where to go.

A regulator has been implemented that uses a set of rules
to try to move each robot to increase the information acquired
by the whole system. These rules were set to move the robots
to surround the target and be close enough for good camera
readings but still not risk a collision (see Section III-G).

Each of the steps 2-5 is implemented as a separate
component inheriting a base class for each type of problem.
The base class provided interfaces to the system to facilitate
further development of new components.

E. Communication

1) Data transmission: Communication between the
sensor nodes and the server is implemented via bluetooth.
Data are put in container classes and serialized to a byte
array that is transmitted. All communication is performed
through the server.

2) Clock synchronisation: It was obvious from the be-
ginning of the project that a shared time reference would
be needed. This is a common problem in distributed sys-
tems. The standard approach used in time synchronization
protocols, such as the Berkeley and NTP protocols, is to
use Christian’s algorithm [10]. In Christian’s algorithm, it is
assumed that the transmission time of sending a request from
one network node to another is approximately the same as
the transmission time of receiving the answer, and that the
request processing time is much lower than the latency. These
are valid assumptions here since there are only a few nodes
on the piconet (bluetooth network) used.

F. Filtering

Several particle filtering methods have been implemented,
some of them in native Java and some in C++ with OpenMP
for parallelism. The parallel particle filters implemented in
C++ are described in [11].

1) Preprocessing: A preprocessing filter on the NXT
was implemented to reduce network traffic and to remove
excessive noise. Sometimes the camera would see something
in its environment, for instance a reflection of the sun, and
interpret it as a landmark. These erroneous bearings lead to
faulty sensor position estimates and have to be removed. To
classify which bearings to keep, the robot keeps track of its
estimated position. The local estimate is updated every time
a regulator command is issued. By knowing the robot’s own
position and the landmark positions, a bearing resulting in
a position estimate that is too far from the previous value
could thus be ignored. This has proven itself to be a viable
strategy to reduce extreme noise to a reasonable level.

2) Filtering pipeline: The first phase of filtering estimates
the states of each sensor node using the camera and motor
information. The estimated states are the position in the x−y
plane and the heading angle, all relative to the arena. The
sensor nodes try to track their own movements but their
estimates could not be considered reliable since they assume
information from the motors to be exact. Hence all uploaded
data are set in each sensor node’s own reference system. The
code for the first filtering phase is written in Java and only
two filtering techniques have been tested.

The noise distribution in the bearings of landmarks and
the target is approximated as Gaussian. This approximation
has worked well for tracking and is also confirmed later by
studying the actual distributions.

The second phase of filtering estimates the position and
velocity of the target using an number of particle filtering
techniques. A filtering component is written in Java to spawn
an external process. The external process is connected to the
virtual machine through the standard input and output pipe
of the process. Using this technique, efficient inter-process
communication could be set up and allow for filters being
implemented in any programming language. The external
filters are written in C++ and utilize OpenMP that is a
package to facilitate the use of many different threads for
computations. The communication protocol is a byte protocol
using Google protocol buffers [12] for serialization of data.

3) Methods: Three types of filters have been implemented
in C++/OpenMP and later modified to fit the communication
model used in the present platform. The filtering methods
used are briefly described below, for more details see [11].

All parallelization here is implemented using a man-
ager/worker model where each worker thread is assigned
tasks by the manager thread. The manager thread performs
all sequential steps.

In the first phase of filtering, no parallelization is used.
The following parallel filters have been used in the second
phase of filtering:

a) Gaussian particle filter: The Gaussian particle filter
assumes the a priori and a posteriori probability density
function of the state variable to be Gaussian. This gives a
very simple parametrization for the information carried out
from one iteration to the next one. It is also easy for all
threads to take part in re-sampling and calculation of the
mean. An important advantage with this approach is that, if
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correctly implemented, all particles might live in the cache
of the processor indifferent of the total amount of particles.
When implemented on many physically separate nodes, the
network bandwidth demand is kept low since the only data
needed to be exchanged is the parameters of the a posteriori
distribution. The disadvantage being that any significantly
non-Gaussian distribution is harder to estimate.

b) Globally distributed particle filter: The globally
distributed particle filter takes full advantage of a shared
memory environment. All particles can be accessed by
any thread at any time. To stop threads from using the
same particles, each worker thread is assigned an interval
of particles to work with. Propagation and evaluation of
the particles can be done in parallel while re-sampling is
performed by a manager thread. Any distribution can be
represented by this filter but the implementation here is
restricted to a unimodal probability distribution.

c) Locally distributed particle filter: The locally dis-
tributed particle filter is a method for distributed calculation
without a shared memory. Every node creates its own particle
set on which to perform propagation, evaluation, re-sampling
and calculation of an estimate. To keep the threads together
as one filter, each node exchanges a portion of its particles
on every iteration with other nodes. Local estimates are
transmitted together with a weight to form a global estimate.
This approach is suitable when many physically separated
networked nodes collectively perform the filtering and a non-
Gaussian distribution is being estimated. As with the globally
distributed particle filter, any distribution can be represented.

G. Regulator

The most basic approach to the regulator problem was to
make a simple set of rules for sensor movement to improve
estimation performance. Solving a control problem in this
way can be quite tricky since stability and convergence of
the resulting regulator are hard to prove. The problem that
is solved here is however very intuitive and the achieved
control performance is supposed to establish some kind of
lower bound by keeping the system functional. More ad-
vanced controllers based e.g. on the model-predictive control
machinery are expected to exhibit better performance.

A set of rules has been constructed where a desirable
distance between the target and each sensor is set and the
intersection angles of the sensors line of sight to the target
are to be maximized (possible only if there are three or more
sensor nodes). Also, any issued command should not be able
to move the sensor node outside the arena. This is made
possible with a safety buffer at the arena edges, to allow for
some errors in the estimated robot positions.

The regulator has to be somewhat conservative with re-
spect to relocation of robots since movements introduce er-
rors in their estimated positions. All movement are subjected
to a threshold preventing the sensor nodes from moving
often for smaller distances. Every movement, however small,
would have to be weighed against the possible advantage of
gaining a better view for the camera.
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Fig. 4. The mean error, using the Gaussian particle filter, measured as
euclidean distance from the reference position to the estimate at a given
time. Some regions in the plot seem black since the series is long and the
estimate varies significantly. New data was received a few times per second
and a new estimate was successfully produced for most of the acquired
bearings (Section IV).

IV. EXPERIMENTS

Experiments were performed to test the implemented
platform and demonstrate its viability.

Even though the calibration of the robot motors has
been hard to perform (parts of the robots would separate
slightly during a data collection session) the estimation of
the positions of the robots is satisfactory. The filters are
able to compensate for errors both under turning and driving
straight. In one test, the robots have been ordered to move
around a hexagonal path for an extensive amount of time,
which mission they carried out without problem. The errors
that were hard to compensate for occurred when the camera
gave an erroneous reading at the same time as a sensor node
drifted more than usual. In these extreme cases, it could take
some time for the sensor nodes to compensate for the errors.

A. Estimation accuracy

The accuracy of the complete setup using the external
tracking filters has been tested. The target was a robot
tracking a closed contour (running track-like path in the
middle of the arena). The regulator was used to prevent
the robots from colliding with the target and keep tracking
accuracy as high as possible. Three sensor nodes were set to
track the target.

The mean accuracy of 50 runs with one data set of
the Gaussian particle filter using 12 threads is shown in
Fig. 4. The estimation accuracy is affected by both filtering
phases and the regulator and should not be interpreted as a
benchmark of only the Gaussian particle filter. Accuracy of
the other filters is similar to that of the Gaussian filter and
can be found in [9].

B. Speedup

The execution time of the external filters as a function of
the number of used cores has been investigated. The speedup
Sp is defined as the execution time when using one core
over the execution time of the filter when using p cores,
i.e. Sp = T1

Tp
. Several data collection sessions have been
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Fig. 5. Speedup of the three external particle filters used in the second
phase of the tracking (Section IV)

performed and processed by each filter 50 times, varying the
number of the used threads while keeping the total amount
of particles fixed to 2000. The evaluated speedup is shown
in Fig. 5, also depicting for reference the linear speedup as
a dashed line.

V. DISCUSSION

The platform described above can be used in an edu-
cational environment for development, testing and bench-
marking of parallel algorithms, giving the tests a realism
that is hard to match in a simulation. The multi-core server
provides, together with the robots, a complete system able to
solve, in a centralised or distributed way, many interdepend-
ent problems encountered in the part of curriculum covering
sensor networks, multi-core and distributed computing.

Extending the implemented platform to a broad range
of control and estimation techniques is easy, which system
property has been an important design goal. The approach
taken here is very suitable for education in automatic control.
Robots made of Mindstorms can effectively demonstrate the
challenges and actual performance of control algorithms.
Many other problems than bearings-only tracking could be
implemented on this kind of platform. The NXT has shown
to be able to handle the computational load of modern control
algorithms and still be responsive. The Mindstorms user
community is large and many projects devoted to control
problems ranging from inverted pendulums and non-linear
estimation problems to simple PID-controllers have been
successfully completed and presented on the internet.

A disadvantage of this implementation is that the network
bandwidth was shown to be quite low. This does not look like
a hardware problem since bluetooth has higher bandwidth
than the experementally measured 3.7kB/s of maximum
throughput. Some work went into improving the bandwidth,
but the results were not satisfactory. To get around this
problem, the preprocessing filter was used to lower the
bandwidth needed, but it also caused a loss of resolution.
Extending the network capabilities to include scatternets

would enable the platform to work with even more advanced
problems using distributed sensor networks.

The speedups of the external filters are shown in Fig. 5.
The Gaussian particle filter and the locally distributed
particle filter have almost no sequential parts and are ex-
pected to run with a close-to-linear speedup. The lower
speedup of the globally distributed particle filter is due to
the relatively larger portion of sequential code, compared to
the other filters. Both normalization of the particle weights
and re-sampling are done sequentially, whereas they are done
in parallel in the other two filters.

Sufficient accuracy of position estimation of the sensor
nodes is crucial for the tracking of the non-cooperative
target. The accuracy in the second phase of the filtering is
highly dependent on whether the first phase of the filtering is
sufficiently accurate or not. As shown in Fig. 4, tests confirm
the platform’s ability to keep track of the non-cooperating
target in runtime. The robots position estimate could easily
be improved provided more sensors were used. Sensor fusion
by adding compasses or accelerometers would improve the
estimate and make online calibration possible.
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