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Abstract— In this paper a robust optimization problem of
an energy hub operations is presented. An energy hub is a
multi-generation system where multiple energy carriers input
to the hub are converted, stored and distributed in order to
satisfy energy demands. The solution to energy hub operation
problem determines the energy carriers to be purchased and
stored in order to satisfy the energy requests while minimizing
a cost function. A control approach using Robust Optimization
(RO) techniques is proposed; bounded uncertainties on energy
hub parameters are taken into account and RO methods are
exploited to gain robust solutions which are feasible for all
values, or for a selected subset, of uncertain data. Simulation
results underline the benefits resulting from the application of
the proposed approach to an energy hub structure located in
Waterloo, Canada.

I. INTRODUCTION

In the last few years several innovations have been in-

troduced in the energy sector driven by fast evolution of

the technologies. In this light, the scientific community is

addressing the analysis and planning of distributed energy

resources with widespread approaches, taking into account

technical, environmental, economic and social issues (see [1]

for an exhaustive review).

A relevant number of recent works (see [2] and reference

therein) deal with characterization, planning, evaluation and

optimization of a class of decentralized multi-generation

energy systems named energy hubs, which can be considered

functional units where multiple energy carriers are converted,

stored, and dissipated [3]. From a system point of view, an

Fig. 1. General scheme of an energy hub: a multi-source multi-product
system.

energy hub is a unit supplied by multiple energy carriers

at its input ports and provides required energy services (i.e.

electricity, heating, cooling, compressed air), also referred

to as energy hub loads, at the output ports [3]. Figure 1
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illustrates an example of an energy hub exchanging elec-

tricity, natural gas and heat through three converters; output

energy carriers (electricity and heat) could be stored in two

devices. In this paper the modeling and the operational

scheduling of an energy hub in an uncertain environment is

studied. The energy hub operational scheduling addresses the

optimal energy carriers purchase and storage utilizations over

short time periods [4]. Uncertainties are mainly due to the

energy costs dynamics, the energy demand fluctuations, com-

ponents’ availability and efficiencies. Literature on energy

hub operational scheduling is rich ([3]). The optimization

problem is frequently set up to minimize the total energy

cost in the system, within a deterministic framework of load

demands, prices, efficiencies and constraints ([3], [2]). If un-

certainty is taken into account the solution is not guaranteed

to be optimal and its achievement can be computationally

demanding ([5], [6]).

In this paper a control-oriented approach to modeling and

optimization of an energy hub is presented. We first provide

a general modeling framework for energy hub which leads to

a mixed integer dynamic model. Then a short term operation

scheduling problem is posed considering both a deterministic

environment and uncertain scenario. We then introduce pa-

rameter uncertainty and we provide a robust solution to the

hub scheduling problem. The provided solution is feasible

in all scenarios that uncertain parameters’ variations could

define, although it is more costly. Thus, we also solve

an optimization problem where the level of robustness is

controlled by a set of parameters which regulates the degree

of uncertainty in the problem data. This approach is based

on the idea of Bertsimas and Sim [7].

Although we remark that the main contribution of our work

is the robust solution to the energy hub operation scheduling

problem, we also consider the hub modeling framework we

here propose an interesting contribution which extends the

work of [4], [3] to more complex hub structures enabling

couplings and interactions between converters while keeping

a relatively simple mathematical structure (the resulting

model is a mixed integer linear model). Simulations show

the benefits resulting from the application of the proposed

approach to an energy hub located in Waterloo, Canada.

II. ENERGY HUB MODEL

We consider an energy hub made of C devices converting

Pα, α = 1, . . . , N , input power flows into Lβ , β =
1, . . . ,M , output power flows. Without loss of generality

we will consider storing devices located only on the output

power flows; therefore the number of storing devices will be

equal to M . Moreover we suppose that B converters (out of
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the C converters) are located in series to the C converters,

that is the input to the B converters are output of the C
converters.

• the system is considered to be in steady state;

• within energy hubs, energy losses occur only in con-

verters and storage elements.

A. Converter Model

The most general form of a converter has multi inputs

and multi outputs power flows. For each input power flow

we introduce as many variables as converters. Thus for the

input power flow Pα we introduce P 1
α . . . PN

α variables with

Pα =
C

∑

j=1

P j
α.

Moreover we denote with ηj
αβ the jth converter efficiency

when transforming the input power of type α into output

power of type β.

Summarizing in a column vector all variables denot-

ing input power flow P=[P
′

1, . . . ,Pα

′

, . . . ,PN

′

]
′

, where

Pα=[P 1
α . . . PC

α ]
′

, and the output power flow in a column

vector L=[L1, . . . , LM ]
′

, the resulting formulation for the

multi-input multi-output converter is







L1

...

LM






= Θ







P1

...

PN.






(1)

where matrix Θ is called the converter coupling matrix;

it is an MxNC matrix whose elements could be zeros,

efficiencies or product of efficiencies.

A ’zero’ in the θi,j element implies that no conversion ex-

ists between Pj and Li. If the input power Pj is transformed

in the output power Li in one of the C converter, say c, then

the corresponding element in the Θ matrix is equal to the

efficiency ηi,j . Finally if the input power Pj is transformed

in the output power Li through c (one of the C converters)

and b (one of the B converters in series to C), then the θi,j-

th element of matrix Θ is equal to the product of converters

efficiencies c and b.

We remark that the converter model we here propose

differs from the in [3], [8] where the dispatch factors are

introduced. Since the total input of one energy carrier may

split up to several converters (at input junction) the dispatch

factors define the fraction of the energy carrier input to the

converter. We refer to [3], [8] for further details. Our idea is

to define a variable for each power input to each converter; in

this way the hub model is linear. Moreover the power flows

can become decision variables in an optimization problem

aimed at deciding how to split input power at each converter.

The input powers are constrained by minimum and maximum

capacity limits

Pmin ≤ P ≤ Pmax (2)

where inequalities are meant component-wise.

B. Storage Model

Energy hubs may include storage elements to store any

input or output energy of any converter.

If storing elements are considered in the hub model, the

dependance on time of all model variables must be taken into

account. We model storing devices through a discrete time

system. The equation governing the power flow dynamic of

the m-th storing device is:

Em(k+1) = Em(k)+ηch
m Qch

m (k)−ηdis
m Qdis

m (k)−Em (3)

with the uniform sampling time equal to ∆T = tk+1 − tk.

We denote by Em(k) the level of the energy stored in

the m-th device at time k. We also denote by Qch
m (k)

the power flowing through the m-th storing device at

time k if, in ∆T , energy is stored into the device and

by Qdis
m (k) the power exchange with the m-th storing

device at time k if, in ∆T , energy is discharged from the

device. We model charging and discharging energy storing

’efficiencies’, respectively ηch
m and ηdis

m , to consider losses

due to the transformation from the energy carrier to the

energy stored. Finally we denote by Em a constant stored

energy degradation in the sampling interval. In this work a

scaled model will be used, i.e. Em(k) denotes energy stored

in the m-th device at time k divided by ∆T . We denote

by the column vectors Qch(k)=[Qch
1 (k), . . . , Qch

M (k)]
′

and Qdis(k)=[Qdis
1 (k), . . . , Qdis

M (k)]
′

the power

exchanged with M storing devices at time interval k,

E(k)=[E1(k), . . . , EM (k)]
′

the energy stored at time k, and

with E=[E1, . . . , EM ]
′

the energy loss per time unit. We also

introduce a diagonal matrix Ach= diag(η1 . . . ηM ) for the

charging efficiency of each storing device and a diagonal

matrix Adis= diag(1/η1 . . . 1/ηM ) for the discharging

’efficiency’. The equation describing the storage dynamics

in matrix form is:

E(k + 1) = E(k) + AchQch(k) − AdisQdis(k) − E. (4)

Since a storage cannot be charged and discharged at the same

time, we introduce two binary variables δch
i (k) and δdis

i (k),
for each storing device and for each time k, subject to the

following logical conditions:

Qch
i (k) > 0 ⇐⇒ δch

i (k) = 1

Qdis
i (k) > 0 ⇐⇒ δdis

i (k) = 1

with i = . . . ,M . Then we pose the constraint δch
i (k) +

δdis
i (k) ≤ 1 in order to force only one of the two variables

Qch
i (k) and Qdis

i (k) to be greater than zero at the same time

k. In addition, we need to assume the following constraints

on the capacity and exchange power of each storage:

Cmin ≤ E(k) ≤ Cmax, (5)

0 ≤ Qch
i (k) ≤ δch

i (k)Qmax
i (k) (6)

0 ≤ Qdis
i (k) ≤ δdis

i (k)Qmax
i (k) (7)

with i = . . . ,M .
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C. Complete Energy Hub Model

Based on the previous considerations, the flows through an

energy hub at a given time k are modeled by the following

discrete time, mixed integer, dynamical system:

L(k) = ΘP(k) − Qch(k) + Qdis(k), (8)

E(k + 1) = E(k) + AchQ(k)ch − AdisQ(k)dis − E. (9)

where we denote as P(k) and L(k) the power input and

output vector at time k. These equations, combined with

technical constraints, (2), (5), (6), (7) are the basis for

operational and structural hub optimization.

D. Example
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Fig. 2. Example of an energy hub located in Waterloo, Canada, for the
supply of commercial load. Note that both Qch

H
, Qdis

H
and Qch

h
, Qdis

h

cannot be greater than zero simultaneously.

Consider the hub shown in Figure 2 (see [8]); it represents

the structure of an energy hub located in Waterloo, Canada.

It consists of five converters and two storage devices. The

input power flows are the electricity and the natural gas

carriers: the electricity is an input to the hydrogen production

plant and to the transformer; the corresponding variables are

denoted with PP
e and PT

e . The natural gas is an input to

the cogeneration system (i.e. gas turbine), PCHP
g , and to

the furnace, PF
g . Output power flows are hydrogen, LH ,

electricity, Le, and heat, Lh. Note that the hydrogen power

plant and the fuel cell converters are connected in cascade,

but the input to the fuel cell cannot be derived directly

from the node balance equation due to the portion of power

flowing as hydrogen. In this peculiar case, we need to

introduce a new decision variable, PFC
H .

The hydrogen production plant transforms the electricity into

hydrogen, oxygen and heat; it is characterized by its electric-

heat and electric-hydrogen efficiencies ηP
eh and ηP

He respec-

tively. The fuel cell transforms the hydrogen into electricity

and heat with efficiencies ηFC
He and ηFC

Hh respectively. We

denote with PFC
H the hydrogen input power flow to the fuel

cell and with QH the hydrogen input to the storing device

with efficiency ηH . The following equation relates output

hydrogen power flow to hub input and to the stored quantity

in the storing device:

LH = ηP
eHPP

e − PFC
H − Qch

H + Qdis
H . (10)

The electricity power flow is input to the transformer; its

output is the electricity power flow (reduced in voltage

magnitude); its efficiency is denoted with ηT
ee. The gas

turbine (CHP) is characterized by its gas-electric and gas-

heat efficiencies ηCHP
ge and ηCHP

gh respectively. The furnace

transforms natural gas in heat and operates with efficiency

ηF
gh. Finally produced heat can be split in the hub output or

stored in the heat storing device with efficiency ηh. Portion

of stored heat is denoted with Qh. We can pose equations

regulating input power flow and electricity and heat output

power flow (note that we drop the dependency from time to

simplify the notation):

Le =ηT
eeP

T
e + ηCHP

ge PCHP
g + ηFC

eH PFC
H , (11)

Lh =ηP
ehηhPP

e + ηCHP
gh ηhPCHP

g + ηF
ghηhPF

g +

ηFC
Hh ηhPFC

H − Qch
h + Qdis

h . (12)

The vectors for the input and output flows and power stored

can be strictly derived according to the notation adopted in

the model section.

The converter coupling matrix derived from equations

(10), (11) and (12) is equal to:

Θ =





0 ηT
ee ηCHP

ge 0 ηFC
eH

ηP
eH 0 0 0 −1

ηP
ehηh 0 ηCHP

gh ηh ηF
ghηh ηFC

Hh ηh



 .

III. OPERATION SCHEDULING IN ENERGY HUB

The design of optimal energy hub operations consists in

determining how much of each energy carrier should be

bought/generated depending on the current load situation and

on the energy carriers costs. Moreover if the hub includes

storage elements, decisions on the quantity of stored energy

should be taken and they will affect successive time periods.

In these cases the design of optimal operations should be

performed over multiple time periods and should provide

decisions on energy quantities to be purchased and stored

at each point in time. We consider a planning horizon of

T periods; at each point in time (k = 1 . . . T ), decision

variables are the purchase of energy input carriers and

dispatching between converters (P(k)) as well as energy to

be stored in storing devices (E(k)).
We consider energy purchasing costs for each energy input

varying at each point in time k of the planning horizon; costs

are measured in monetary unit (mu) per unit and are denoted

with the row vector c(k). Problem constraints are hub and

energy storage equations (8), storage capacity constraints (5),

power and energy limits (2), (6), (7). We also impose the

equality of the stored energy at the beginning and at the

end of the planning horizon. Thus we pose the following

scheduling problem:
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Problem 1 (Energy hub scheduling problem):

min
T−1
∑

k=0

c(k)
′

P(k)

s.t.

E(k + 1) = E(k) + AchQch(k) − AdisQdis(k) − E

L(k) = ΘP(k) − Qch(k) + Qdis(k)

P(k)min ≤ P(k) ≤ P(k)max

0 ≤ Qch
i (k) ≤ δch

i (k)Qmax
i (k) i = 1, . . . ,M

0 ≤ Qdis
i (k) ≤ δdis

i (k)Qmax
i (k) i = 1, . . . ,M

δch
i (k) + δdis

i (k) ≤ 1 i = 1, . . . ,M

E(k)min ≤ E(k) ≤ E(k)max

E0 = ET

where E0 is a vector denoting the quantities in the storing

devices at time k = 0. The output of the problem is a

plan specifying for each point in time over the planning

horizon, the energy carriers purchases, their dispatch among

converters and the energy stored.

IV. ROBUST OPERATION SCHEDULING IN ENERGY HUB

So far we have solved the problem of determining optimal

input energy purchases and storage in order to fulfill hubs’

loads. If some parameters are uncertain the solution to

Problem 1 could not be feasible anymore. In this section we

apply some robust optimization techniques to the energy hub

scheduling problem in order to take uncertainty into account.

In particular we apply a well-known Robust Optimization

(RO) technique [7], [9] to produce robust solutions which are

in a sense ’immune’ against bounded uncertainty. We assume

that the efficiencies parameters of the coupling matrix Θ, θij ,

are uncertain. We suppose that θij are independent random

variables taking values according to a symmetric distribution

over the interval [θ̄ij − θ̃ij , θ̄ij + θ̃ij ].
We remark that the proposed technique can also be applied

with uncertain data on the energy loads or on energy costs. In

this case the hypothesis of the independence among random

variables is less realistic. Despite this we believe that the

adoption of the RO technique to the energy hub is still a

new and promising technique.

A. Handling Equality Constraints

In deterministic optimization problems equality constraints

need to be strictly satisfied to obtain a feasible solution.

In robust problems, however, it could be impossible to

satisfy equality constraint ’robustly’, i.e for every possible

determination of the uncertain parameter. If we suppose that

Θ has uncertain parameters Problem 1 contains uncertain

equality constraints; thus we adopt the approach outlined

in [10] to prevent the possible infeasibility of a solution.

Note that the authors in [10] replace the equality constraint

by two inequalities that keep the original constraint satisfied

to the maximum possible extent. Following this approach,

for each time step k we convert each group of M equality

constraints into inequality constraints:

−Σ(k) ≤ ΘP(k) − Qch(k) + Qdis(k) − L(k) ≤ Σ(k),

where Σ(k) ∈ R
M is a vector of auxiliary variables intro-

duced to account for equality constraints violations. It has to

be kept as small as possible.

V. ROBUST FORMULATION

The methodology proposed by Bertsimas and Sim consists

in choosing among the set of uncertain coefficients those

that are more likely to vary. The optimal robust solution

will be robust only against the uncertainty of this subset of

coefficients. The limit case where all uncertain parameters

can deviate is known as the robust Soyster’s model [11].

Recall that we denote by M the number of output power

flows and by N the number of input power flows. Following

the notation in [7], we denote by Ji the set of random

coefficients θij 6= 0, j ∈ Ji, i = 0, . . . ,M , and by

Γi an integer parameter taking values in [0, |Ji|]. The aim

of the proposed approach is to be insensitive against the

deviation of at most Γi converter efficiencies. Then we can

state a tractable formulation of the Problem 1 and solve a

classic robust control problem. Consider the planning horizon

T ∈ N+ and define:

L =
[

L
′

0, . . . ,L
′

T−1

]
′

∈ R
TM

P =
[

P
′

0, . . . ,P
′

T−1

]
′

∈ R
TN

Qch =
[

Qch
′

0, . . . ,Q
ch

′

T−1

]

′

∈ R
TM

Qdis =
[

Qdis
′

0, . . . ,Q
dis

′

T−1

]

′

∈ R
TM

O = IT ⊗ Θ, Ō = IT ⊗ Θ̄, Õ = IT ⊗ Θ̃,

Σ̃ =
[

Σ
′

0, . . . ,Σ
′

T−1

]
′

∈ R
TM

where ⊗ is the Kronecker product, IT is the identity matrix ∈
R

T×T , Θ̄ and Θ̃ are the coupling matrix where each uncer-

tain element is replaced by respectively its mean value and its

deviation. Then the equality constraints ΘP(k)−Qch(k) +
Qdis(k) − L(k) = 0, over the whole planning horizon, can

be written as OP − Qch + Qdis − L = 0. Employing the

Proposition 1 in [7] and the dualization theory, each equality

constraint can be reformulated as a linear constraint and

therefore it is tractable, although several auxiliary variables

must be added. Precisely, the overall number of auxiliary

variables that are introduced is TM + TMN + TN . The

robust formulation of the Problem 1 can be stated as follows:
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Problem 2 (Robust energy hub scheduling problem):

min
T−1
∑

k=0

c(k)
′

P(k) + ρ‖Σ(k)‖2
2

s.t.

E(k + 1) = E(k) + AchQch(k) − AdisQdis(k) − E

P(k)min ≤ P(k) ≤ P(k)max

0 ≤ Qch
l (k) ≤ δch

l (k)Qmax
l (k) l = 1, . . . ,M

0 ≤ Qdis
l (k) ≤ δdis

l (k)Qmax
l (k) l = 1, . . . ,M

δch
l (k) + δdis

l (k) ≤ 1 l = 1, . . . ,M

E(k)min ≤ E(k) ≤ E(k)max

E0 = ET
∑

j

ŌijPj −Qch
i + Qdis

i − ziΓi −
∑

j

pij ≥ Li − Σ̃i

zi + pij ≥ Õijyj

− yj ≤ Pj ≤ yj

with ρ is a penalty weight, i = 1, . . . , TM , j = 1, . . . , TN
and k = 0, . . . , T − 1. All the auxiliary variables introduced

because of the robust formulation, zi, pij , yj ∀i, j, are

forced to be greater than or equal to zero. The term in

the objective function is a feasibility penalty factor: this

is introduced to account for the fact that it is not always

possible to find a feasible solution for all data realizations

and infeasibilities inevitably arise. The resulting RO problem

is then quadratic. Note that, by varying Γi = [0, |Ji|], the

level of conservatism of the solution, and then the increase

in cost, can be controlled. It is guaranteed that the computed

solution is always feasible if less than the prescribed number

of coefficients change.

VI. SIMULATION RESULTS

We consider the hub shown in Figure 2 and we pose the

optimization problem as in the previous section, exploiting

the hub model proposed in Section II. Converter efficiencies

are uncertain: for each converter the efficiency is supposed

to vary within an interval of ±10% of its nominal value.

Then we apply both the nominal and the RO approaches

and we compare the purchase schedules in terms of costs and

sensitivity to deviations of the efficiencies from their nominal

values. The nominal schedule is computed by solving Prob-

lem 1. We consider a short-term planning horizon (T = 24).

The demands of electricity, hydrogen and heat to be satisfied

over the planning horizon are depicted in Figure 3 (M = 3).

The variable prices over the planning horizon are depicted

in Figure 4. The computed nominal schedule is shown in

Figure 5: at the current point in time (k = 0), a plan of

power flows to be purchased is formulated for the next 24
hours, based on the demand displayed in Figure 3, which is

assumed to be known. We consider 4 different choices of the

number of components subject to parameter uncertainty and

then solve the robust scheduling problem 2. The choice is

made acting on the parameters Γi of the RO model for each
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Fig. 3. Demand power flows over 24 hours.
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Fig. 4. Electricity and gas spot-prices.

ith row of the matrix Θ: for example, if the efficiency of

one component related to electricity output is known to be

uncertain, we must set Γ1 = 1 and Γ2 = Γ3 = 0. Note that

each row of the matrix Θ is related to a specific load: for

example the electrical load is computed multiplying the first

row of Θ by the scheduled input power flows. The 4 cases

are reported in the following:

1) no component is subject to parameter uncertainty

(nominal case),

2) the efficiency of one component for each type of

demand is uncertain,

3) the efficiencies of two components for electricity and

one for heat are uncertain,

4) all components are subject to parameter uncertainty

(Soyster’s model),

For a robustness analysis, all efficiencies in the energy hub of

Figure 2 are randomly changed within the prescribed range,

considering only negative perturbations. If the optimal input

power flow purchases at a time step k do not fulfill the

deterministic load requirements at that time, we consider the

demand at time k unmet. The robust optimization Problem 2

is solved R = 1000 times with different perturbations of

the predefined number of uncertain efficiencies. We consider

electrical and heat loads. Then the probability of electric-

ity, hydrogen and heat demand satisfaction is calculate as

100 ∗ V
R

, where V is the number of times for which the

demand is unmet: these probabilities are denoted respec-
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Fig. 5. Nominal schedule of input power flows over 24 hours.

tively by pue, puH and puh. The above probabilities are

a measure of how closely each RO formulation satisfies

the required demands at the specified uncertainty level.

The table I reports the result of the robustness analysis.

For this simulation, the auxiliary variables introduced to

TABLE I

Robustness analysis.

Case pue puH puh % increase in cost

1 98.75 75.52 92.84 0

2 31.38 3.35 13.33 7.87

3 0 75.68 13.3 10.25

4 0 0 0 11.48

account for equality constraints violations are found not to

be needed (i.e. they can be set to 0); then they are not

reported here. Note that RO schedule is more costly but

it is also less sensitive to efficiency uncertainty compared

to the nominal schedule. The nominal schedule is the least

expensive one but it doesn’t provide a good protection against

deviations of converter efficiencies from their nominal value.

In presence of uncertainty the RO schedule outperforms the

nominal solution in terms of demand satisfaction. Namely

the robust schedule is more expensive than the nominal one,

but the increase in cost can be controlled by a proper choice

of Γi parameters. In the proposed example, with a small

number of uncertain parameter for each load type, reasonable

schedule performance can be obtained only guaranteeing a

high protection against uncertainty (Case 3 and 4 of the

Table I). Consider the robust schedule obtained in Case 3.

The Figure 6 depicts the energy stored during the planning

horizon of 24h in the heat energy storing device for both

the robust and the nominal schedule. The energy stored in

the heat storing device shows a meaningful difference since,

as expected, the robust schedule requires storing a larger

amount of heat than the nominal one to provide the desired

robustness. All the simulations are run using CPLEX 12.0

and all computations are done on an Intel Core 2 Duo CPU,

2 GHz. Simulation times are less than 1 second.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

5

10

15

20

25

30

35

40

Time [h]

E
n

e
rg

y
 s

to
re

d
 [

M
W

h
]

 

 

Heat − nominal schedule

Heat − robust schedule

Fig. 6. Energy stored during the planning horizon in the heat storage
element, both for the nominal and the robust schedules.

VII. CONCLUSIONS AND FUTURE RESEARCH

In this paper we analyzed and solved the robust opti-

mal scheduling problem of an energy hub. We introduce a

generalized discrete time linear model of energy hub; this

allows to give a mixed integer linear formulation of the

operation scheduling problem. By applying a RO technique,

we obtained robust schedules of input power flows that are

significantly less sensitive to uncertain converter efficiencies

than the nominal schedule. The tractability of the problem is

preserved. More accurate models accounting for uncertainty

in the energy prices and in the energy demand other than in

the converter efficiencies, are under current studies.
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