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Abstract— We consider a constrained Nash-Cournot
oligopoly where the demand function is linear. While cost
functions and capacities are public information, firms only
have partial information regarding the demand function.
Specifically, firms either know the intercept or the slope of
the demand function and cannot observe aggregate output.
We consider a learning process in which firms update their
profit-maximizing quantities and their beliefs regarding the
unknown demand function parameters, based on disparities
between observed and estimated prices. A characterization of
the mappings, corresponding to the fixed point of the learning
process, is provided. This result paves the way for developing
a Tikhonov regularization scheme that is shown to learn the
correct equilibrium, in spite of the multiplicity of equilibria.
Despite the absence of monotonicity of the gradient maps, we
prove the convergence of constant and diminishing steplength
distributed gradient schemes under a suitable caveat on the
starting points. Notably, precise rate of convergence estimates
are provided for the constant steplength schemes.

I. INTRODUCTION

The Nash solution concept [7] has been extensively an-
alyzed and applied in economics, engineering and applied
sciences and finds relevance in the examination of strategic
behavior in noncooperative games. In such settings, the Nash
equilibrium is a tuple of strategies from which no player can
profit from unilaterally deviating. In this paper, we consider
a deterministic Nash-Cournot game, in which a common
homogeneous commodity is being produced by several firms
and its price is specified completely by a function of the
aggregate output. In such a game, the ith player solves
Opt(x−i), defined as

min fi(x; θ) ,
(
ci(xi)− p(X; θ)xi

)
subject to xi ∈ Ki,

where x , (x1, . . . , xN )T , xi denotes the output of firm i,
ci(·) denotes firm i’s cost function, and Ki , [0, Capi] with
Capi being the capacity of firm i. The price function of the
commodity, denoted by p(X; θ), is defined as

p(X; θ) , a∗ − b∗X,

where X =
∑N

i=1 xi and θ = (a∗, b∗). The associated Nash-
Cournot equilibrium is given by a tuple x∗ = (x∗i )

N
i=1 where

x∗i ∈ SOL(Opt(x∗−i)) for i = 1, . . . , N, SOL(Opt(x∗−i))
denotes the solution of Opt(x−i) and x−i = (xj)j 6=i.
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Cournot models predate the Nash solution concept and
a host of variants have been analyzed [8], [9]. An oft-
used assumption in game-theoretic models is one which
requires that player payoffs are public knowledge and every
player is able to forecast the choices of his adversaries.
As noted by Kirman [5], a firm’s information sets may be
incomplete as manifested by a regime where firms have
imperfect information of the payoffs of their adversaries. In a
Cournot setting, firms may have an incorrect specification of
the demand function. Naturally, firms can ascertain that their
estimates differ from observations, leading to an adjustment
process. In effect, firms learn the parameters of the game
while participating in the game.

Our work is inspired by a series of papers by Szidarovszky,
Bischi and their coauthors [2], [3], [10] where firms com-
peting in a Nash-Cournot attempt to learn a parameter of
the demand function while playing the game. In [1], in an
unconstrained regime with linear costs, the authors examine
the stability of learning the equilibrium and one of the
unknown parameters of θ (either a∗ or b∗). In particular,
they consider two cases:

(Case 1): The slope b∗ is known, but a∗ is unknown.
(Case 2): a∗ is known, but the slope b∗ is unknown.

It is shown that this process is globally stable for case 1 and
unstable when considering case 2.

In this paper, we consider the learning of equilibria when
one component of θ is unknown and the aggregate output X
is unobservable by the firms. In particular, if b∗ and X are
unknown, then our goal lies in developing algorithms that
construct a sequence zk = (xk, bk) such that

lim
k→∞

zk = z∗,

where z∗ = (x∗, b∗).
Broadly speaking, our focus is on constrained Nash-

Cournot problems; such an extension is not a trivial one in
that gradient-based learning now involves introduces the use
of a projection operator. In such a regime, we prove that
the mappings associated with the variational problems are
P and P0 maps for cases 1 and 2, respectively. Notably,
while such a variational problem has a unique solution in the
context of Case 1 while such uniqueness cannot be claimed
when learning b∗ (Case 2). Despite this lack of unique-
ness, we develop a Tikhonov regularization scheme that is
guaranteed to converge to the correct equilibrium, under
suitable conditions. The convergence of standard gradient-
based distributed schemes cannot be immediately claimed
since the mappings are not monotone (but admit a weaker
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P0 property). However, by imposing a condition on the
starting points, we demonstrate that constant and diminishing
steplength schemes are convergent. Of particular importance
is the rate estimate provided in a constant steplength regime.

The rest of the paper is organized as follows. In Section II,
we provide an equivalent variational inequality condition for
the Nash-Cournot equilibrium. In Section III, we propose
the fixed-point problems for learning both equilibria and un-
known parameters for both case 1 and case 2. The properties
of the mappings associated with the fixed-point problems
are also analyzed. Section IV focuses on a centralized
Tikhonov regularization scheme, while Section V deals with
a distributed scheme under some initial conditions. Some
numerical results are provided in Section VI.

Throughout the paper, we use ‖x‖ to denote the Euclidean
norm of a vector x, i.e., ‖x‖ =

√
xT x. We use ΠK to

denote the Euclidean projection operator onto a set K, i.e.,
ΠK(x) , argminy∈K ‖x − y‖. A square matrix H is said
to be a P-matrix if every principal minor of H is positive.
Similarly, H is a P0-matrix if every principal minor of H
is nonnegative.

II. PROBLEM DESCRIPTION

Under the convexity of the cost function, the equilibrium
conditions of the game are sufficient and can be compactly
stated as a variational inequality VI(K, F ), given a closed
and convex set K ⊆ Rn and a mapping F : Rn → Rn.
Recall that VI(K, F ) requires an x ∈ K satisfying

(y − x)T F (x) ≥ 0, for all y ∈ K. (1)

In the current setting, the set K is given by K ,
∏N

i=1 Ki,
and the mapping F (x) is defined as

F (x) ,

 c′1(x1) + b∗(X + x1)− a∗

...
c′N (xN ) + b∗(X + xN )− a∗

 , (2)

where a∗ and b∗ are assumed to be available and X is
observable by every agent. Furthermore, F (x) can be easily
shown to be Lipschitz continuous (with constant L) and
strongly monotone where the latter implies that there exists
an η > 0 such that for all x, y ∈ K, we have that (F (x) −
F (y))T (x − y) ≥ η‖x − y‖2. The strong monotonicity and
Lipschitz continuity allow for developing a simple distributed
scheme of the form:

xk+1 = ΠK

(
xk − γF (xk)

)
. (3)

In fact, if γ < 2η/L2, then the sequence {xk} produced by
(3) converges to the unique solution of the VI(K, F ).

However, in this paper, our interest lies in learning the
equilibrium when either a∗ or b∗ is unknown. Instead, the
prices can be observed but the aggregate output is not
available to any agent. We denote ai and bi as the estimates
of a∗ and b∗, respectively, by the ith player. Since, the
aggregate output is not observable by any player, every player
builds an estimate of adversarial decisions. We denote xij as

the estimate of the jth player’s output by the ith player and
xii as the ith player’s true output. Given the price p, every
player i adjusts his belief regarding a∗ or b∗ as well as his
belief regarding adversarial outputs.

In accordance with standard assumptions in a noncoop-
erative game, we assume that the costs and capacities are
common knowledge across all players. It is worth noting
that a host of distributed algorithms for computing equilibria
impose a different informational assumption in that players
only know their payoffs and strategy sets and can observe
aggregate output X; In contrast, in this setting, players do
not know their payoffs perfectly (since either a∗ or b∗ are
unknown) and X cannot be observed.

III. CHARACTERIZATION OF LEARNING PROBLEMS

In this section, we propose a learning scheme in which
firms compute profit-maximizing production levels for them-
selves and their adversaries, given their current beliefs re-
garding the unknown parameter. Simultaneously, they also
update their belief based on differences between observed
and estimated prices. In this section, we characterize the
mapping associated with the fixed point of the adjustment
process. In fact, this characterization proves crucial in the
development of a Tikhonov scheme in Section IV.

Assumption 1 (A1): Suppose the cost functions ci are
convex and twice continuously differentiable functions for
i = 1, . . . , N and Ki = [0, Capi] for i = 1, . . . , N.

Assumption 2 (A2): Suppose the demand function is de-
fined as p(X; θ) = a∗ − b∗X where θ = (a∗, b∗) > 0.

We consider the case where a∗ is known, but b∗ is
unknown (case 2). The analysis of the case when b∗ is known
but a∗ is unknown (case 1) is similar and simpler. Therefore,
we only consider case 2 in the present and following sections.
Via a projected gradient step, the ith firm updates its strategy
xii and its belief of the jth firm’s strategy, namely xij , based
on bk

i . Furthermore, bk
i is modified as per the difference

between estimated and observed prices. Our goal lies in the
development of single timescale schemes where both updates
occur simultaneously. Therefore, the associated fixed-point
problem is

Next, we consider the case where a∗ is known, but b∗ is
unknown. An analogous learning process has a fixed point
given by the following:

xij = ΠKj

(
xij − γ∇xij

fi(x; bi)
)
,

bi = ΠR+

(
bi − γ

(
p(X̄; b∗)− p(Xi; bi)

))
,

(4)

for i, j = 1, . . . , N , succinctly stated as z = ΠK(z−γF (z)),
where z = (x, b),

K , K̂ × · · · × K̂︸ ︷︷ ︸
N terms

with K̂ ,
N∏

j=1

Kj × R+, (5)

and F (z) is defined as

F (z) =
(

(∇xij fi(xi; bi))i,j

(p(X̄; b∗)− p(Xi; bi))i

)
. (6)
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The equivalent variational inequality VI(K, F ) is given by

Find z∗ ∈ K : (z − z∗)T F (z∗) ≥ 0, z ∈ K. (7)

Next, we show that the mapping F associated with VI
(7) is a P0-mapping on K (Proposition 3), i.e., the Jacobian
matrix ∇F (z) of the mapping F is a P0-matrix for all z ∈
K. Let Ai = bi(I + eeT ) + Ei, Bi = (xi + (eT xi)e)eT

i ,
Ci = bieie

T − b∗eeT
i , and D =

∑N
i=1(e

T xi)eie
T
i , where

xi = (xi1, . . . , xiN )T , e and ei are the column of ones and
the ith unit vector in RN , respectively, and Ei is an N ×N
diagonal matrix with c′′j (xij) as its jth diagonal entry. Let
H(z) = ∇F (z) for all z ∈ K. Then,

H(z) =
(

A B
C D

)
,


A1 B1

. . .
...

AN BN

C1 · · · CN D

 , (8)

and thus det(H(z)) = det(A) det(D−CA−1B). For showing
H(z) is a P0-matrix for all z ∈ K, we consider two cases:
(1) Every component of b is positive (Lemma 1) (2) Some
component of b is zero (Lemma 2) to claim the final result.

Lemma 1: Suppose (A1) and (A2) hold and F (z) and
K are defined by (6) and (5), respectively. Additionally,
suppose b > 0. Then the mapping F is a P0-mapping on K.

Proof: It suffices to show that H(z) defined in (8) is
a P0-matrix for all z ∈ K when b > 0. Given z = (x, b),
let H = H(z). Since z ∈ K, it follows that x ≥ 0. Note
that the matrix Ei is a diagonal matrix with nonnegative
diagonal entries for all i as a result of convex cost functions.
Also recall that the sum of a diagonal positive semidefinite
matrix and a P0-matrix is a P0-matrix. Therefore, we only
need to show that H is a P0-matrix when Ei = 0 for all i.

We consider any principal submatrix of H denoted by
Hαα, where α = ∪N+1

i=1 αi and αi ⊆ {(i−1)N +1, . . . , iN}
are non-overlapping index sets. Then, Hαα is given by(

Ã B̃

C̃ D̃

)

,


Aα1α1 Bα1αN+1

. . .
...

AαN αN
BαN αN+1

CαN+1α1 · · · CαN+1αN
DαN+1αN+1

 .

Thus, det(Hαα) = det(Ã) det(D̃−C̃Ã−1B̃). Let Ini and eni

denote the identity matrix and the column of ones in Rni×ni

and Rni , respectively, where ni = |αi|, i = 1, . . . , N + 1.
Also, for i = 1, . . . , N and j ∈ {i,N + 1}, let e

nj

i denote
the i(j)-th unit vector in Rnj , where i(j) is the position of
(j − 1)N + i in αj . Then, assuming Ei = 0, we have for
i = 1, . . . , N ,

Aαiαi = bi(Ini + eni(eni)T ),

BαiαN+1 = (xαi + (eT xi)eni)(enN+1
i )T ,

CαN+1αi = bie
nN+1
i (eni)T − b∗enN+1(eni

i )T ,

DαN+1αN+1 =
N∑

i=1

(eT xi)e
nN+1
i (enN+1

i )T .

Since A−1
αiαi

= 1
bi

(Ini − 1
ni+1eni(eni)T ), C̃Ã−1B̃ is given

by
N∑

i=1

CαN+1αiA
−1
αiαi

BαiαN+1

=
N∑

i=1

1
bi

[
(bie

nN+1
i (eni)T − b∗enN+1(eni

i )T )

× (Ini −
1

ni + 1
eni(eni)T )(xαi + (eT xi)eni)(enN+1

i )T

]
=

N∑
i=1

1
bi

[
(bie

nN+1
i (eni)T − b∗enN+1(eni

i )T )

× (xαi −
1

ni + 1
eni(xT

αi
eni) + (eT xi)eni

− ni

ni + 1
eni(eT xi))(e

nN+1
i )T

]
.

Further simplification of this expression leads to
N∑

i=1

[
(enN+1

i (eni)T − b∗

bi
enN+1(eni

i )T )

× (xαi +
1

ni + 1
eni(eT xi − xT

αi
eni))(enN+1

i )T

]
=

N∑
i=1

[
e
nN+1
i (enN+1

i )T (xT
αi

eni)

+
ni

ni + 1
e
nN+1
i (enN+1

i )T (eT xi − xT
αi

eni)

− b∗

bi
enN+1(enN+1

i )T (xT
αi

eni
i )

− b∗

(ni + 1)bi
enN+1(enN+1

i )T (eT xi − xT
αi

eni)
]
.

This implies that D̃ − C̃Ã−1B̃ is

=
N∑

i=1

1
ni + 1

e
nN+1
i (enN+1

i )T (eT xi − xT
αi

eni)

+
N∑

i=1

b∗

bi
enN+1(enN+1

i )T (xT
αi

eni
i +

1
ni + 1

(eT xi − xT
αi

eni)).

(9)

Since eT xi ≥ xT
αi

eni for all i = 1, . . . , N , the first item on
the right hand side of equation (9) is a diagonal matrix with
nonnegative diagonal entries. The second item is a matrix
of rank 1 with all elements being nonnegative, and thus
is a P0-matrix. Recall that the sum of a diagonal positive
semidefinite matrix and a P0-matrix is a P0-matrix. There-
fore, D̃− C̃Ã−1B̃ is also a P0-matrix and has nonnegative
determinant. Since det(Ã) =

∏N
i=1 det(Aαiαi) ≥ 0, we

have det(Hαα) = det(Ã) det(D̃ − C̃Ã−1B̃) ≥ 0 for all
α = ∪N+1

i=1 αi with αi ⊆ {(i − 1)N + 1, . . . , iN}, i.e., H
is a P0-matrix.

We now show that the mapping is also P0 when at least
one component of b is allowed to be zero.

Lemma 2: Suppose (A1) and (A2) hold and F (z) and
K are defined by (6) and (5), respectively. Additionally,
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suppose b ≥ 0 with bi = 0 for i ∈ I where I , {i : bi = 0}
and |I| > 0. Then the mapping F is a P0-mapping on K.

Proof: It suffices to show that H(z) defined in (8) is a
P0-matrix for all z ∈ K when b ≥ 0 with bi = 0 for i ∈ I.
We use the notation in Lemma 1. Given z = (x, b), let H =
H(z). Consider the structure of the principal submatrix Hαα

of H when Ei = 0 for all i. It is obvious that det(Hαα) = 0
if at least two components of b are zero, or if ni ≥ 2 for
some i with bi = 0. Therefore, we only need to consider the
case when bl = 0, bi > 0 for i 6= l and nl = 1 for some
l ∈ {1, . . . , N}.

By doing a column transformation, we can get
the new CαN+1αi denoted by ĈαN+1αi

, where
ĈαN+1αi = bie

nN+1
i (eni)T for i 6= l, and

ĈαN+1αl
= −b∗enN+1(enl

l )T . By doing a row
transformation, we obtain the new Aαlαi denoted by
Âαlαi

, where

Âαlαi
= −BαlαN+1D

−1
αN+1αN+1

ĈαN+1αi

=
{

0, for i 6= l,
v, for i = l,

for some scalar v > 0. Furthermore, we get the new BαlαN+1

denoted by B̂αlαN+1 , where B̂αlαN+1 = 0, and DαN+1αN+1

remains the same. Let Â, B̂, Ĉ and D̂ denote the associated
matrices for Ã, B̃, C̃ and D̃ after transformations. Then,

D̂− ĈÂ−1B̂ =
∑
i 6=l

1
ni + 1

e
nN+1
i (enN+1

i )T (eT xi−xT
αi

eni).

Since eT xi ≥ xT
αi

eni for all i, we have det(D̂− ĈÂ−1B̂) ≥
0. Also, det(Â) =

∏N
i=1 det(Âαiαi

) > 0. Therefore,
det(Hαα) = det(Â) det(D̂ − ĈÂ−1B̂) ≥ 0 for all α, i.e.,
H is a P0-matrix.

Proposition 3: Suppose (A1) and (A2) hold and F (z) and
K are defined by (6) and (5), respectively. Then the mapping
F is a P0-mapping on K.

Proof: It follows from Lemma 1 and Lemma 2.

IV. A TIKHONOV-BASED LEARNING SCHEME

Having analyzed the mapping associated with the learning
process, we now examine the convergence properties of
learning equilibria through such an avenue. In particular,
we consider a Tikhonov regularization scheme which neces-
sitates computing a sequence {zk}, of which each iterate
is defined by the solution of the regularized fixed point
problem:

zk = ΠK(zk − γ(F (zk) + εkzk)), (10)

where {εk} is a sequence of regularization parameters con-
verging to zero. It is known that if the mapping F is
a continuous P0-mapping on K and the solution set of
VI(K, F ) is nonempty and bounded, then the limit points
of the sequence {zk} generated by the Tikhonov algorithm
are all solutions to VI(K, F ) [4].

In the context of learning b∗, it is hard to make a
conclusion about the “true” convergence, since the mapping
is a P0 mapping and there may be multiple solutions to the

fixed point problem. Of these, the one of interest is (x∗, b∗).
Developing the convergence theory to such a point requires
a result from [6], that uses the following condition.

Condition 1: (Condition A in [6]) There exists a
nonempty compact set D such that, for any point z ∈ K\D,
there is a point z′ ∈ K ∩D that satisfies (z−z′)T F (z) ≥ 0.

Lemma 4: (Theorem 3 in [6]) If F is a continuous P0-
mapping, K is nonempty, convex and closed, and Condition
1 is satisfied, then the following assertions hold true:
(a) VI(K, F ) has a solution.
(b) For every ε > 0, VI(K, F + εI) has a unique solution.
(c) The sequence {zk} generated by the Tikhonov algorithm
has limit points, which are all solutions to VI(K, F ).

We also make the following assumption.
Assumption 3 (A3): The aggregate output of all firms has

a small positive lower bound, i.e.,
∑N

i=1 xii ≥ ε for some
ε > 0.

If we learn b∗, the associated VI(K, F ) satisfies Condition
1 by the following lemma, which we can use to conclude the
convergence of the Tikhonov scheme.

Lemma 5: Suppose (A1), (A2) and (A3) hold and F (z)
and K are defined by (6) and (5), respectively. Then F and
K satisfy Condition 1.

Proof: Omitted.

However, since F is a P0-mapping, VI (7) may have
more than one solution; However, the following result shows
that the Tikhonov sequence converges to (x∗, b∗), the correct
equilibrium.

Theorem 6: Suppose (A1), (A2) and (A3) hold and F (z)
and K are defined by (6) and (5), respectively. Then the
sequence generated by (10) converges to (x∗, b∗), where
(x∗ii)

N
i=1 is a solution of the variational inequality (1).
Proof: By Proposition 3 in Section III, the mapping

F associated with VI (7) is a P0-mapping on K. Also,
Condition 1 is satisfied by Lemma 5.

By Lemma 4, the solution set SOL(K, F ) of VI (7)
is nonempty, and the sequence generated by the Tikhonov
algorithm has limit points, which are all solutions to VI (7).
Let (x∗, b̃∗) be such a limit point, where b̃∗ = (b̃∗1, . . . , b̃

∗
N )T .

Then, we will show that b̃∗i = b∗, and x∗ii = y∗i for all i,
where y∗ = (y∗1 , . . . , y∗N )T is the solution of VI (1), i.e., the
sequence has a unique limit point, which is just the original
equilibrium.

The solution (xk, bk) to the kth iteration satisfies the
following coupled fixed point problems:

x
k
ij = ΠKj

0@x
k
ij − γ

0@c
′
j(x

k
ij) + b

k
i x

k
ij + b

k
i

NX
j=1

x
k
ij − a

∗ + εkx
k
ij

1A1A ,

b
k
i = ΠR+

0@b
k
i − γ

0@0@a
∗ − b

∗
NX

i=1
x

k
ii

1A −

0@a
∗ − b

k
i

NX
j=1

x
k
ij

1A + εkb
k
i

1A1A ,

(11)

for all i. Fix l ∈ {1, . . . , N}. Then, we have

x
k
lj = ΠKj

0@x
k
lj − γ

0@c
′
j(x

k
lj) + b

k
l x

k
lj + b

k
l

NX
j=1

x
k
lj − a

∗ + εkx
k
lj

1A1A ,

b
k
l = ΠR+

0@b
k
l − γ

0@0@a
∗ − b

∗
NX

i=1
x

k
ii

1A −

0@a
∗ − b

k
l

NX
j=1

x
k
lj

1A + εkb
k
l

1A1A .

(12)

Let x̄k
ij = xk

lj and b̄k
i = bk

l for all i, j. Then, for all i,
(x̄k

i , b̄k
i ) is a solution of (12), and thus satisfies the fixed
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point problem (11). Therefore, (x̄k, b̄k) is a solution to (11).
Since the mapping associated with (11) is a P-mapping, the
fixed problem (11) has at most one solution (see Proposition
3.5.10 in [4]), and thus the solution must be (x̄k, b̄k), where
x̄k

i = xk
l and b̄k

i = bk
l for all i.

As the limit point of {(x̄k, b̄k)}∞k=1, (x∗, b̃∗) must satisfy
x∗i = x∗l and b̃∗i = b̃∗l for all i, which implies

∑N
i=1 x∗ii =∑N

j=1 x∗ij . Since (x∗, b̃∗) is a solution to VI (7), we have

0 =

(
a∗ − b∗

N∑
i=1

x∗ii

)
−

a∗ − b̃∗i

N∑
j=1

x∗ij


= (b̃∗i − b∗)

N∑
i=1

x∗ii,

and thus b̃∗i = b∗, which implies x∗ii = y∗i for all i, where
y∗ is the solution to VI (1).

Remark: Implementing this scheme in a distributed
regime requires obtaining solutions to (10) in a distributed
fashion. If the mapping F , defined in (6) were monotone
(positive semidefinite Jacobians), then distributed projec-
tion schemes (gradient-response) may have been an avenue.
However, since the mapping is P0 such an avenue is not
immediately available. However, in future work, we intend
to examine if a best-response scheme may prove useful.

V. SINGLE-TIMESCALE DISTRIBUTED SCHEME

In this section, we consider a single timescale distributed
learning scheme. We propose two distributed schemes for
computing equilibria. In the interest of brevity, we only
consider the question of learning b∗ and both fixed and
diminishing steplength schemes will be discussed.

Consider the distributed scheme for learning x∗ and b∗

(case 2), defined as follows

x
k+1
ij

= ΠKj

0@x
k
ij − γ1,k

0@c
′
j(x

k
ij) + b

k
i x

k
ij + b

k
i

NX
j=1

x
k
ij − a

∗
1A1A ,

b
k+1
i

= ΠKb

0@b
k
i − γ2,k

0@0@a
∗ − b

∗
NX

i=1
x

k
ii

1A −

0@a
∗ − b

k
i

NX
j=1

x
k
ij

1A1A1A ,

(13)

where Kb is a closed convex set in R+, and i, j ∈
{1, . . . , N}. We make the following additional assumptions
on starting points and second derivatives.

Assumption 4 (A4):
1) For all i, j = 1, . . . , N , b0

i = b0
j and x0

ij = x0
jj .

2) c′′i (·) is bounded with some constant Mi > 0 on the
interval [0, Capi] for all i. Let M = max{Mi}.

In (A4), (1) states that all firms start from the same point,
while (2) imposes some boundedness condition on cost
functions. Furthermore, Kx, Fx and Fb are defined as Kx =∏N

i=1 Ki,

F (zk) =
(

Fx(zk)

Fb(z
k)

)
, Fx(zk) =

 c′1 + bkxk
1 + bkXk − a∗

...
c′N + bkxk

N + bkXk − a∗

 ,

and Fb(zk) = (bk − b∗)
∑N

i=1 xk
i .

Lemma 7: Suppose (A1), (A2), (A3) and (A4) hold. Then
the distributed scheme (13) is equivalent to

xk+1 = ΠKx
(xk − γ1,kFx(zk)),

bk+1 = ΠKb
(bk − γ2,kFb(zk)).

(14)

Moreover, we have that
∑N

i=1 xk
i ≥ ε.

Proof: Omitted.
Our main convergence result relies on showing that Fx is

strongly monotone and Lipschitz continuous.
Lemma 8: Suppose (A4) holds and b > 0. Then Fx(z) =

Fx(x, b) is strongly monotone in x with constant b and Lip-
schitz continuous in x with constant

√
3(M2 + b2 + N2b2).

Proof: Omitted.
Since the distributed scheme (13) can be reduced to

scheme (14) by Lemma 7, we only need to consider the con-
vergence of the sequence {zk = (xk, bk)} generated by (14).
Two types of the steplength sequence {γk = (γ1,k, γ2,k)} are
considered: (1) γk is fixed for all k; (2) {γk} is a diminishing
sequence. We only show the proof of the convergence when
the steplength is diminishing (Theorem 10). The proof for
convergence of the fixed steplength scheme (Theorem 9) is
similar and simpler, and thus omitted.

Theorem 9: Suppose (A1), (A2), (A3) and (A4) hold. Let
{zk = (xk, bk)} be the sequence generated by (14). If γk ,
(γ1, γ2) for all k and Kb = [b, b̄], where

0 < γ1 <
2b

3(M2 + b̄2 + N2b̄2)
, γ1 <

γ2ε

u
, γ2 <

1
Cap

,

with Cap =
∑N

i=1 Capi > ε, u = ‖X∗e + x∗‖, eT =
(1, . . . , 1), then zk → z∗ = (x∗, b∗) as k →∞, where x∗ is
the solution of VI (1).

Proof: Omitted.

Theorem 10: Suppose (A1), (A2), (A3) and (A4) hold. Let
{zk = (xk, bk)} be the sequence generated by (14). If γ1,k >
0,
∑∞

k=1 γ1,k = ∞,
∑∞

k=1 γ2
1,k < ∞, γ2,k > 2γ1,ku/ε,∑∞

k=1 γ2,k = ∞, and
∑∞

k=1 γ2
2,k < ∞, where u is defined

as in Theorem 9, then zk → z∗ = (x∗, b∗) as k →∞, where
x∗ is the solution of VI (1).

Proof: Since γ2,k converges to zero as k → ∞, we
have for sufficient large k that |1 − γ2,k

∑N
i=1 xk

i | = (1 −
γ2,k

∑N
i=1 xk

i ) ≤ 1− γ2,kε,

and thus |bk+1 − b∗| ≤ |bk − b∗ − γ2,k(Fb(zk)− Fb(z∗))|

= |1− γ2,k

N∑
i=1

xk
i ||bk − b∗| ≤ (1− γ2,kε)|bk − b∗|. (15)

Noting that
∑∞

k=1[1− (1− γ2,kε)] = ε
∑∞

k=1 γ2,k = ∞, we
have bk converges to b∗ as k →∞. The convergence of {bk}
implies the boundedness of {bk}. That is, for sufficiently
large k, b∗/2 ≤ bk ≤ 3b∗/2. Similarly as in the proof of
Theorem 9, we have for sufficiently large k that

‖xk+1 − x∗‖ ≤ αk‖xk − x∗‖+ γ1,ku|bk − b∗|, (16)

where αk =
√

1 + γ2
1,kL2 − 2µγ1,k with µ = b∗/2 and

L2 = (12M2 + 27(b∗)2 + 27N2(b∗)2)/4. Combining (16)
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and (15), we get

≤ αk‖xk − x∗‖+ γ1,ku|bk − b∗|+ (1− γ2,kε)|bk − b∗|
= αk‖xk − x∗‖+ (1 + γ1,ku− γ2,kε)|bk − b∗|
≤ αk‖xk − x∗‖+ (1− γ1,ku)|bk − b∗|
≤ qk(‖xk − x∗‖+ |bk − b∗|),

where qk = max{αk, 1− γ1,ku}. Note that γ1,k converging
to 0 implies that there exists some positive integer n such
that γ1,k < 2µ/L2 when k ≥ n. Thus

∑∞
k=1(1− αk) is

=
n−1∑
k=1

(1− αk) +
∞∑

k=n

2µγ1,k − γ2
1,kL2

1 +
√

1 + γ2
1,kL2 − 2µγ1,k

≥
n−1∑
k=1

(1− αk) +
∞∑

k=n

2µγ1,k − γ2
1,kL2

2

=
n−1∑
k=1

(1− αk) + µ

∞∑
k=n

γ1,k −
L2

2

∞∑
k=n

γ2
1,k = ∞,

and
∑∞

k=1[1 − (1 − γ1,ku)] = u
∑∞

k=1 γ1,k = ∞, which
implies

∑∞
k=1(1− qk) = ∞. Therefore, xk → x∗, bk → b∗

as k →∞, and thus zk converges to z∗ as k →∞.

VI. NUMERICAL RESULTS

In this section, we provide numerics for learning b∗ by
using the standard Tikhonov and distributed schemes. For
the standard Tikhonov scheme, let ci(xi) = rix

2
i +gixi +hi,

where ri and gi are randomly chosen from the uniform dis-
tributions U [1, 10] and U [1, 20], respectively. Furthermore,
a∗ = 100. When employing the distributed scheme, ri = 0.
Also, let Capi be chosen from U [2, 20] and x0

ij be randomly
chosen from U [0, 10] for all i, j. Let b0

i be randomly chosen
from U [1, 10] for learning b∗. In all three instances, the
schemes compute the correct equilibrium.

Standard Tikhonov
N b∗ No. of iterations ‖y∗ − x∗∗‖ ‖b− b∗e‖
5 1 8575 1.2×10−4 0.2×10−4

5 2 5115 0.6×10−4 0.8×10−4

5 3 3988 0.4×10−4 2.1×10−4

10 1 21020 0.9×10−4 0.1×10−4

10 2 10548 0.6×10−4 0.5×10−4

10 3 6012 0.8×10−4 1.6×10−4

For the standard Tikhonov scheme, let γ = 0.01, εk = 1/k
and let y∗ denote the solution of original problem and x∗∗ =
(x∗ii)

N
i=1 is the diagonal solution of VI (7). For distributed

scheme with constant steplength, let ε = 0.1, b = 0.2, b̄ =
10, γ1,k = 10−5 and γ2,k = 10−2.

Distributed Scheme
N b∗ No. of iterations ‖y∗ − x∗∗‖ ‖b− b∗e‖
5 1 50146 0 0
5 2 397550 2.1×10−3 0
5 3 278304 1.5×10−3 0

10 1 64803 0 0
10 2 422531 1.3×10−3 0
10 3 292267 9.1×10−4 0

For distributed scheme with diminishing steplength, let ε =
0.1. Let γ1,k = 1/k and γ2,k = 1000/k.

Distributed Scheme
N b∗ No. of iterations ‖y∗ − x∗∗‖ ‖b− b∗e‖
5 1 44988 0 0
5 2 184800 3.7×10−3 0
5 3 74511 8.2×10−4 0

10 1 55713 0 0
10 2 267447 3.8×10−3 0
10 3 96972 7.2×10−4 0

The termination criteria of the schemes is prescribed as ‖zk−
zk−1‖ ≤ 10−7 where zk = (xk, bk).

VII. CONCLUDING REMARKS

We have presented a learning framework for computing
equilibria in constrained Nash-Cournot games. A character-
ization of the learning process is provided and the con-
vergence of the associated Tikhonov-based regularization
scheme is proven. Furthermore, under a suitable require-
ment on starting points, we also prove the convergence
of constant and diminishing steplength distributed schemes.
We contend that the question of computing solutions to
optimization/game-theoretic problems while learning unob-
servable parameters is indeed an important one. The current
work represents a first step towards developing such algo-
rithmic schemes.
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