
Asynchronous Auction for Distributed Nonlinear Resource Allocation

Ajay Kumar Bangla and David A. Castañón

Abstract— Nonlinear Resource Allocation Problems are con-
cerned with the optimal allocation of N continuous resources to
M missions/tasks with nonlinear utilities. Numerous problems
from diverse fields such as search theory, statistics, finance,
economics, logistics, sensor and wireless networks fit this
formulation. Several centralized/synchronous algorithms are
available for solving this problem including RAP Auction [1]
which was proposed by the the authors. RAP Auction finds a
near optimal solutions with pseudo-polynomial complexity for
generalized class of monotonic convex cost functions including
non-differentiable and/or non-strictly convex functions. In this
paper, we present and discuss asynchronous version of RAP
Auction. This algorithm supports the computation framework
in which nodes behave as autonomous agents making local
decisions without waiting for each other.

I. INTRODUCTION

Nonlinear resource allocation problems (RAP) are a class
of optimization problems where heterogeneous resources
have to be allocated to a diverse set of tasks. The underlying
performance of executing a task is a nonlinear function of
the bundle of resources assigned to it. Interest in RAP is
motivated by diverse applications such as in search theory
[2]–[4], weapon target assignment [5], [6], sensor manage-
ment, market equilibria [7], production planning [8], [9],
scheduling of mass screening tests [10] and allocation of
software-testing resources [11]. The linear cost generalized
assignment [12] and transportation [13] problems can be seen
as special cases of these problems.

The history of RAPs dates back to Koopman [14], who
considered distribution of a single resource to two activities,
Single RAP (SRAP). Luss and Gupta [15] considered RAP
as an extension of SRAP and proposed a method called
Resource-Wise Optimization Algorithm (RWOA). Since then
several types of algorithms have been proposed. From finite
time simplex type algorithms [4], [16] to polynomial network
flow based techniques [7], [17] for exponential, quadratic, or
logarithmic cost functions. In [1], [18], [19], we developed
a new class of pseudo-polynomial algorithm called RAP
Auction. This algorithm, inspired by success of the auction
algorithm for linear assignment problems, exploits the unique
graph structure present in RAPs combining ideas from con-
vex and combinatorial optimization. In essence, there is a
price for each task node and in each iteration, source nodes
with surpluses bid for their best tasks. The task node being
bid for, decides on how much resource to accept from the
bidding source node. This simple compute structure inher-

This work was supported by AFOSR grants FA9550-07-1-0361 and by
ODDR&E MURI Grant FA9550-06-1-0324

The authors are with the Dept of Electrical & Computer Eng., Boston
University, ajay@bu.edu, dac@bu.edu

ently makes this algorithm suitable for distributed imple-
mentation. Unlike most previous techniques, it works for all
convex monotonic utilities including non-differentiable and
non-strictly convex functions. All the above methods have
been proposed for synchronous/centralized implementation.
If implemented in distributed networks, they may require
excessive information exchange and overhead.

In a distributed framework, we consider the problem as
one in which a set of autonomous agents with resources
collaborate to reach globally optimal allocation of their
resources to a set of tasks. In spite of limited, unreliable,
delayed communication or memory access capabilities and
with no or minimum coordination, algorithms must converge.
The foundations of asynchronous techniques and their con-
vergence for strictly convex optimization problems are dis-
cussed in [20]. Two models for asynchronous computation,
total or partial asynchronism, have been defined based on
whether the delays are unbounded or bound, respectively.
RAP Auction has a very simple and separable computation
structure which makes it a natural candidate for distributed
implementation. In this paper, we propose totally asyn-
chronous implementations of RAP Auction for distributed
RAP and prove its convergence. In this version, nodes make
decisions about their allocations at arbitrary times based on
outdated information.

The remainder of this paper is organized as follows.
Section II formulates the RAP and briefly discusses duality.
In section III, we propose asynchronous RAP Auction. Its
validity is established in section IV. Section V discusses
summarizes our results.

II. NONLINEAR RESOURCE ALLOCATION

Consider a bipartite graph G = (W,T,E), a triple,
consisting of a set of N source nodes, a set of M sink
nodes and a set of arcs, respectively. We are given, for
each source i ∈ W , a scalar si (supply of i), for each arc
(i, j) ∈ E, a positive scalar cij (gain of (i, j)) and at each
sink j ∈ T a non-increasing, closed, convex cost function
fj : <+ 7→ <. We now define the nonlinear Resource
Allocation Problem (RAP) as

minimize f(z) :=
∑
j∈T

fj(zj) (1a)

subject to
∑
j∈Ti

xij = si ∀ i ∈W (1b)∑
i∈Wj

cijxij = zj ∀ j ∈ T (1c)

x ≥ 0, z ≥ 0 (1d)

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 4467

where Ti = {j : (i, j) ∈ E} is the set of sinks connected to
the ith source, Wj = {i : (i, j) ∈ E} is the set of sources
connected to jth sink, the real variable xij is referred to as
the flow of the arc (i, j) and the vector x , {xij |(i, j) ∈
E} is referred to as the flow vector. Note zj’s are auxiliary
variables which can be viewed as demand for each sink and
z , {zj |j ∈ T}. A flow vector, x, is said to be primal
feasible if demand, z, is implicitly defined by (1c) and the
pair (x, z) is primal feasible (satisfies (1b), (1c), and (1d)).

The structure of the general problem is as follows (see
Fig. 1). The sink nodes can be seen as different tasks or

1

Resources/Sources

2

N

1

2

M

i
j

Tasks/Sinks
f1(z1)

s1

s2

si

sN

Linear	 Part

Nonlinear	 Part

c11

cij

f2(z2)

fj(zj)

fM(zM)

Fig. 1: Structure of Resource Allocation Problem.

missions competing for the resources of the source nodes
with the objective of minimizing the overall cost. The arc
gains cij model the effectiveness of assigning a particular
resource to a task. In essence RAP is a nonlinear bipartite
matching problem.

Introducing multipliers µi and pj (also called sink prices)
for the flow conservation constraints at the source W and
sink T nodes, respectively, we get the dual of RAP as

max
µ,p

q(µ,p)

where the dual function q is given by

q(µ,p) =
∑
j∈T

qj(µWj
, pj)− µ′s

and qj is defined as

qj(µWj
, pj) = inf

zj≥0
{fj(zj) + pjzj}

+
∑
i∈Wj

inf
xij≥0

{(µi − cijpj)xij}

Strong duality, existence of both primal and dual optimal
solutions and existence of multipliers which satisfy Com-
plementary Slackness (CS) for any primal feasible solutions
were established in [1].

Following [1], we say that a flow-demand-price vector
triple (x, z,p) satisfy ε-CS, where ε is any positive scalar,

if x ≥ 0, z ≥ 0, p ≥ 0, and

cijpj ≥ max
k∈Ti

cikpk − ε ∀ {i, j} ∈ E with xij > 0 (2)

− f+
j (zj) ≤ pj ≤ −f−j (zj) ∀ j ∈ T (3)

where f−j (zj) and f+
j (zj) are the left derivative and right

derivative of fj at zj , respectively. This can be broken down
in two conditions one related to the arcs and one related to
the sinks:
• The flow-price pair (x,p) satisfies ε-CSarc if x ≥ 0,

p ≥ 0, and (2).
• The demand-price pair (z,p) satisfies CSsink if z ≥ 0,

p ≥ 0, and (3).
The triple (x, z,p) satisfies ε-CS iff (x,p) and (z,p) satisfy
ε-CSarc and CSsink, respectively. This is illustrated in Fig. 2.

xij

cijpj

maxcijpj ϵ

(a) ε-CSarc

pj

zj

-‐∂fj

(b) CSsink

Fig. 2: Illustration of ε-CS. (a) All pairs of arc flows xij and
cijpj should lie in the blue region, (b) All pairs of demand
zj and pj should lie on the blue line.

The intuition behind the ε-CS conditions is that a feasible
flow-price pair is ”approximately” primal and dual optimal if
the ε-CS conditions are satisfied as shown in this proposition
which is proved in [18].

Proposition 1: Let (x∗, z∗,p∗) be a flow-demand-price
triple satisfying ε-CS such that (x∗, z∗) is primal feasible,
then

0 ≤ f(z∗)− q(µ∗,p∗) ≤ ε s′1

where µ∗ is defined as µi , maxj∈Ti
cijpj ∀ i ∈W .

III. ASYNCHRONOUS RAP AUCTION

In [1], [18], [19], we proposed a new algorithm RAP
Auction. It was proposed as a synchronous algorithm as
there is a strict separation between bidding and allocation
phases. Delays are incurred when source nodes calculating
their bids have to wait to make sure that up-to-date prices
are available, and when the sinks calculating the allocations
wait for all bids to come in. These penalties may be reduced
by asynchronous implementation. In the asynchronous algo-
rithm, each node can be seen as an autonomous decision
maker. Sources with surpluses should be free to make bids
at arbitrary times based of outdated prices and sinks allocate
without waiting for all sources to submit their bids. The
prices may be out-of-date because the computations of the
previous phase are incomplete or communication delays. The
sink nodes accept bids, update and broadcast their prices.

RAP Auction is a primal-dual method iterating simulta-
neously over flows and prices while preserving ε-CS. So

4468

we need a map Φj : Zj 7→ Pj where Zj = <+ is the
demand space and Pj = Φj(Zj) is the price space and its
inverse Θj : Pj 7→ Zj consistent with (3). For continuously
differentiable and strictly convex cost functions, Φj = −∇fj
and Θj = ∇fj−1 ◦ −1 which is illustrated in Fig. 3. In
[18], we show how to define these mappings without these
assumptions.

f1

f

z

f2

(a) Sample cost functions

p

z

Φ2

Φ1

(b) Forward mapping Θj

Fig. 3: Forward mapping for differentiable and strictly con-
vex cost functions.

We use the following notation to formulate totally asyn-
chronous RAP Auction:
• pj(t): price of sink j at time t,
• zj(t): demand at sink j at t,
• xij(t): flow allocated to sink j from source i at t,
• gi(t): surplus at source i at t,

gi(t) , si −
∑
j∈Ti

xij(t) ∀ i ∈W.

• U(t): set of all sources with positive surplus at t,
• R(t) ⊂ U(t): set of sources with a ’ready bid’ at t.

We assume that these quantities can change only at integer
times t; this involves no loss of generality, since t may be
viewed as the index of a sequence of physical times at which
events of interest occur. Sources with positive surplus enter
the set R(t) and become eligible to bid. At each time t, if
R(t) is empty nothing happens. If R(t) is nonempty then a
nonempty subset of R(t) bid. We assume that at time t, a
source i ∈ R(t) has used the prices pj(τij(t)) from some
earlier (but otherwise arbitrary) times τij(t) ≤ t to compute
its bid using the Bidding Procedure. Note t − τij(t) is the
delay in source i’s copy of price of sink j at time t.

Bidding Procedure:

1) Find sink offering best value

j = arg max
k∈Ti

cikpk(τij(t)),

and the second best value

vsec =

{
maxk∈Ti\j cijpk(τij(t)) #Ti ≥ 2

pmin else
. (4)

2) Compute i’s bid price for j as

bi = (vsec − ε)/cij . (5)

This bid price denotes the lower bound on the price of
j below which flow has to be reversed (xij set to zero).

As long as pj ≥ bi, arc (i, j) satisfies ε-CSarc i.e., sink
j provides almost the best value to source i.

3) Compute i’s bid surplus yi = cijgi(t). This is the
maximum additional flow that i can provide to j.

4) Submit {yi, bi} to sink j and set gi(t+ 1) = 0.

The bidding procedure is illustrated in Fig. 4. A bid if
accepted results in non-zero flow augmentation on arc (i, j).
If at any point pj falls below bi, then the flow on arc (i, j)
has to be reversed.

Values	 of	 sinks	
for	 source	 i	

vbest	 =	 cijpj(τij₍t₎₎

ϵ

j

js
jk

cijb	 :	 below	 this	 j	 stops	
	 	 	 	 	 	 	 	 	 	 being	 nearly	 the	 best

vsec	 =	 cijspjs(τijs₍t₎₎

Fig. 4: Illustration of the bidding phase involving a source i. Sinks
j and js that offer the best and second best value, respectively, are
determined. Source i bids for j with bid price b.

When a sink receives a new bid {ynew
i , bnew

i }, it is possible
that bnew

i > pj(t) as bnew
i was computed using outdated prices

and such bids have to be obviously rejected. However only
rejecting bids above p(t) is not sufficient for finite termina-
tion. Bids should only be accepted if pj(t) ≥ bnew

i + ε/cij .
We call such bids substantive. This ensures that between flow
augmentation and reversal on a arc (i, j), the price of j has
to drop by at least ε/cij . This property will be crucial in
the proof for finite time termination. For ease of exposition
on how substantive bids are allocated, we use the following
representation for previously accepted and still valid bids at
a given sink j:
• Bj = {bi1 , bi2 , . . . , bin}: List of accepted bid prices in

order of decreasing value, i.e.

pj(t) ≥ bi1 ≥ bi2 ≥ . . . ≥ bin ,

• Yj = {yi1 , yi2 , . . . , yin}: List of flows received where
yik is an alias for cikjxikj(t) with bik as the correspond-
ing bid price.

• We use bi0 as an alias for pj(t).
A source ik’s bid {yik , bik} is valid if pj ≥ bik and yik > 0.
The state at the sink j at the beginning of the allocation
phase is illustrated in Fig. 5. As flow starts getting accepted
from i during the current iteration, the demand zj increases
and the demand-price pair slides to the right of ’A’ along the
blue curve. We call this mode of acceptance as absorption.
Up to δ0 of flow can be absorbed before reaching ’B’. This
is called as the demand margin between successive prices pj
and bi1 . In general, we define demand margin, δk, as

δk := Θj(bik+1
)−Θj(bik)

4469

Φj

bi1

λ

τ

pj(t)

δ0

A

zj(t)

B

Θj(bi1)

bin

bi
new

bin'-1

bin''

D

C

Θj(bin'') Θj(bin'-1) Θj(bi
new)yi1Y

yin'' yin'-1

yin

δn'-1 E

Fig. 5: State of sink j at the beginning of allocation phase.
’A’ corresponds the current demand-price pair (zj(t), pj(t)) at
the beginning of the allocation procedure. bnew

i and {bi1 , . . . , bin}
correspond to the current and old bid prices, respectively, with
corresponding flows {yi1 , . . . , yin}.

If ynew
i > δ0, then the demand-price pair will reach ’B’. At

’B’, flow can’t be absorbed as before since the source i1’s
bid will become invalid if pj falls below bi1 . So while at ’B’
flow from i is accepted by reversing flow to i1. We call this
mode of flow acceptance as reversal. The price and demand
don’t change during this mode. If ynew

i ≥ δ0 + yi1 , then this
bid is completely reversed. Now between bi1 and bi2 upto
δ1 can be absorbed before reversing i2’s bid and so forth till
either pj drops to bnew

i or all of ynew
i is accepted (exhausting

push). This logic is carried out in the allocation procedure
which is executed when a sink j receives a bid {ynew

i , bnew
i }.

Allocation Procedure

1) If pj(t) ≥ bnew
i + ε/cij

a) If sink j has previously accepted bid from i

i) Update bi = bnew
i and re-sort Bj and Yj , accord-

ingly.
b) Else insert bnew

i and 0 in Bj and Yj , respectively, in
sorted order and let n′ be the index such that i′n = i.

c) If ynew
i ≥ ymax where

ymax =

n′−1∑
k=1

yik + Φj(b
new
i)− zj(t).

Non-exhausting push:
i) Reverse bids from sources {i1, . . . , in′−1} while

accepting ymax from source i,
ii) Set pj(t+ 1) = bnew

i and zj(t+ 1) =
∑n

k=n′ yik .
iii) Set unaccepted surplus y = ynew

i − ymax.
d) Else

Exhausting push: Determine the set of sources {ik :

1 ≤ k ≤ n′′} whose bids have to be completely
reversed where n′′ < n′. Source ik’s bid has to be
reversed if k < n′ and

k∑
l=1

(yil + δl−1) ≤ ynew
i .

i) If ynew
i ≤

∑n′′

k=1(yik + δk−1) + δn′′

Allocation with complete reversals and absorp-
tions:
A) Reverse bids from {i1, . . . , in′′} completely

while accepting ynew
i from i,

B) Set zj(t+ 1) =
∑n

k=n′′+1 yik and
pj(t+ 1) = Φj(zj(t+ 1)).

ii) else
Allocation with at least one partial reversal:
A) Reverse {i1, . . . , in′′} bids completely and

bin′′+1
partially while accepting ynew

i from i,
B) Set zj(t+1) =

∑n
k=n′′+1 yik and pj(t+1) =

bin′′+1
.

iii) Set unaccepted surplus y = 0.
2) Else set unaccepted surplus y = ynew

i .
3) If y > 0, return unaccepted surplus y to i.

Reversing bid to source ik implies setting xkj(t + 1) = 0,
returning surplus yik to ik and deleting bik and yik from Bj

and Yj , respectively. Whenever a source i receives a surplus
y back from sink j then it updates its surplus as

gi(t+ 1) = gi(t) + y/cij .

The algorithm can be started from any (x, z,p) satisfying
ε-CS, (1c) and gi ≥ 0 ∀ i ∈ W . As an initial choice, we
may use

z(1) = 0, x(1) = 0, and
pj(1) = Φj(0) ∀ j ∈ T.

IV. VALIDITY AND CONVERGENCE

To maximize the generality and flexibility of our model,
the precise mechanism by which prices and surplus return
communications are done is left unspecified subject to the
following two assumptions:

Assumption 1: U(t): nonempty ⇒ R(t′): nonempty for
some t′ ≥ t.

Assumption 2: For all i, j, and t,

lim
t→∞

τij(t) =∞.
Clearly an asynchronous algorithm cannot solve the problem
if sources with surplus stop submitting bids, sinks do not
process submitted bids and if old information is not eventu-
ally discarded. This is the motivation for the preceding two
assumptions.

The following propositions establishes the validity of the
asynchronous RAP Auction algorithm.

Proposition 2: The algorithm preserves ε-CS, (1c), and
non-negative source surpluses throughout its execution; that
is, if the allocation and prices at the beginning of the iteration

4470

satisfy ε-CS, (1c), and g ≥ 0, then same is true at the end
of iteration.

Proof: Since flows are rejected or reversed before sink
prices fall below the bid prices, we have

xij(t) > 0⇒ pj(t) ≥ bi
where bi was computed using old prices. Observe that
{z(t)} is a non-decreasing sequence. It increases strictly
during absorption and is unchanged during reversals. From
convexity and monotonicity, it follows that {p(t)} is a non-
increasing sequence. From this monotonicity of prices, (5)
and (4), we have

cijbi ≥

{
maxk∈Ti\j cikpk(t)− ε #Ti ≥ 2

pmin − ε else
.

If pj(t) ≥ bi, then

cijpj(t) ≥ max
k∈Ti

cikpk(t)− ε.

Hence ε-CSarc is preserved on all arcs with positive flows.
Steps 1(c)ii, 1(d)iB and 1(d)iiB in Allocation Procedure
enforce (1c) and CSsink. So for all the arcs and sinks, we
have ε-CSarc and CSsink, respectively. Hence ε-CS holds for
triple (x(t), z(t),p(t)).

Surpluses of bidding sources can decrease at most to zero.
The surpluses at other sources can only increase due to
reversals of their flows. So all the surpluses remain non-
negative.

The algorithm can be stopped as soon as the set of sources
with surplus U(t) is empty. We say that the algorithm
terminates at time t if t is the first time U(t) is empty.
It follows from the above proposition that if the algorithm
terminates, it does so with an ε-CS satisfying flow-demand-
price triple (x∗, z∗,p∗) such that (x∗, z∗) is primal feasible
as the termination criterion g = 0 enforces (1b). So the
validity of asynchronous RAP Auction rests on whether it
terminates finitely.

Proposition 3: The asynchronous RAP Auction termi-
nates in finite time.

Proof: We note the following:
1) By definition (5)

bi ≤ pj (τij(t))− ε/cij . (6)

2) Suppose a sink receives an infinite number of bids
during the algorithm. Then, an infinite subset of
these bids must be substantive; otherwise pj(t) would
stay constant for t sufficiently large, we would have
pj (τij(t)) = pj(t) = pj for t sufficiently large because
old price information is eventually purged from the
system (cf. Assumption 2), and in view of (6), we would
have bi ≤ pj(t)−ε/cij for all times t at which j receives
a bid, arriving at a contradiction.

Assume now, in order to obtain a contradiction, that the
algorithm does not terminate finitely. Then, because of
Assumption 1, there is an infinite number of times t at which
R(t) is nonempty and at each of these times, at least one sink
receives a bid. Thus, there is a nonempty subset of sink which

receives an infinite number of bids. In view of (2), a subset of
these sinks receive infinite number of substantive bids. From
lemma 1, price of at least one sink drop infinitely often by at
least εmin. But this is a contradiction as the sequence pj(t)
is a non increasing sequence upper and lower bounded by
Φj(0) <∞ and Φj(

∑
i∈Wj

cijsi) > 0, respectively.
Lemma 1: After processing a finite number of substantive

bids, prices drop by at least εmin or the algorithm terminates.
Proof: Assume the contrary that there is a sequence of

infinite successive iterations, denoted by ∆ = {t1, t2, . . . },
such that ∥∥∥p(1)− lim

t 7→∞
p(t)

∥∥∥
∞
< εmin.

Define n(t) = #U(t), number of source nodes with nonzero
surplus at time t and its variation as

∇n(t) = n(t+ 1)− n(t). (7)

Without loss of generality, we assume that only one sub-
stantive bid is processed per time. Since bid processing
across sinks is completely decoupled and sequential within
sinks, this assumption can be easily relaxed by subdividing
each time slot according to the number of substantive bids
processed. During this interval every substantive bid results
in a exhausting push and the bidding source is exhausted.
Based on how the flow is accepted at a sink node, an iteration
can be classified as:

1) Reversal Push: In such iterations, flow is entirely or par-
tially accepted by reversal. Such iterations can decrease
or increase n(t+ 1), i.e.,

∇n(t) ≥ −1.

Flows allocated during ∆, being substantive can’t be
reversed unless the price drops by at least εmin. So at
each sink j, there are only finite number of arcs, say
mj , each with finite flow which can be reserved i.e.,

pj(t0) ≥ bi1 ≥ · · · ≥ bimj
> pj(t0)− εmin

where
{bi1 , . . . , bimj

} ⊂ Bj .

We denote this set of reversible arcs as

Erev = {(i, j) ∈ E : xi,j(t0) > 0 & bij > pj(t0)−εmin}

where t0 = t1 − 1. For any arc in Erev, {xi,j(t)} is a
decreasing sequence. If the flow becomes zero, we say
that the arc has saturated.
We now argue that there can only be finite number of
reversal iterations. Assume that there can be infinite
iterations with reversals. Then there at least one source
i which makes infinite substantive exhausting bids for
at least one sink j and some arc (̂i, j) where flow is
strictly reversed infinite number of times. To be able
to make infinite exhausting bids, there has to be some
sink other than j which reverses flow to i. Continuing
in this manner, we can construct sequence of infinite
circulations in at least one cycle containing forward arc
(i, j) and reverse arc (̂i, j). The gain of any such cycle

4471

where each arc satisfies ε-CSarc is greater than unity
[18]. So after a finite circulations in this cycle, at least
one of the reverse arcs gets saturated. Hence we arrive
at a contradiction.

2) Non Reversal Push (NRP): In such iterations, flow is
completely accepted without any reversal which strictly
decreases the number of sources with surplus, i.e.,

∇n(t) = −1 ∀ t ∈ ∆NRP . (8)

where ∆NRP is the subsequence of ∆ with NRP itera-
tions. We show that there can only be finitely many such
iterations by showing that n(t) can’t increase arbitrarily.
The subsequence of ∆ for which n(t) strictly increases
is defined as

∆+(t) , {t1 ≤ l < t : ∇n(l) > 0}. (9)

This happens if at least two flow reversals (one complete
and one at least partial) take place during a given
iteration as the bidding source is itself exhausted. Since
there are only finite reversible arcs, we have for all
t ≥ t1

#∆+(t) ≤ #Erev

and the positive variation is also bounded as an arc once
saturated remains saturated.∑

l∈∆+(t)

∇n(l) ≤ #Erev. (10)

For any t ≥ t1, from (7)

n(t)− n(t1) =

t−1∑
l∈t1

∇n(l)

=
∑

l∈∆+(t)

∇n(l) +
∑

l∈∆NRP(t)

∇n(l)

≤ #Erev −#∆NRP(t)

where ∆NRP (t) = {l ∈ ∆NRP : l ≤ t}. The last
inequality follows from (10), (8) and

∇n(l) = 0 ∀ l /∈ ∆+(t)
⋃

∆NRP(t).

So

#∆NRP ≤ #Erev − n(t) + n(t0) ≤M(N − 1) +N.

Hence we can only have finitely many iterations without the
prices dropping by at least εmin.

V. CONCLUSION

We have proposed and analyzed totally asynchronous
version of RAP Auction for solving RAPs in a distributed
fashion. This technique views the nodes as autonomous
agents which collaborate with each other to reach a near
optimal allocation.

REFERENCES

[1] A. K. Bangla and D. A. Castañón, “Auction algorithm for nonlinear
resource allocation problems,” Proc. 49th IEEE CDC, Dec. 2010.

[2] B. O. Koopman, “The theory of search. iii. the optimum distribution
of searching effort,” Oper. Res., vol. 5, no. 5, Oct 1957.

[3] A. Charnes and W. W. Cooper, “The theory of search: Optimal
distribution of effort,” Mgmt. Sci., vol. 5, 1958.

[4] A. R. Washburn, “Finite method for a nonlinear allocation problem,”
J. Optm. Theory Appl., vol. 85, no. 3, pp. 705–726, June 1995.

[5] ——, “Sortie optimization and munitions planning,” Military Oper.
Res., pp. 13–18, 1994.

[6] R. K. Ahuja, A. Kumar, K. C. Jha, and J. B. Orlin, “Exact and heuristic
algorithms for the weapon-target assignment problem,” Oper. Res.,
vol. 55, no. 6, pp. 1136–1146, Nov 2007.

[7] N. R. Devanur, C. H. Papadimitriou, A. Saberi, and V. V. Vazirani,
“Market equilibrium via a primal–dual algorithm for a convex pro-
gram,” J. ACM, vol. 55, no. 5, pp. 1–18, 2008.

[8] T. Ibaraki and N. Katoh, Resource Allocation Problems: Algorithmic
approaches. The MIT Press, 1988.

[9] M. Patriksson, “A survey on the continuous nonlinear resource allo-
cation problem,” Eur. J. Oper. Res., vol. 185, no. 1, pp. 1–46, Feb.
2008.

[10] H. L. Lee and W. P. Pierskalla, “Mass screening models for contagious
diseases with no latent period,” Oper. Res., vol. 36, no. 6, pp. 917–928,
1988.

[11] H. Ohtera and S. Yamada, “Optimal allocation and control problems
for software-testing resources,” IEEE Trans. Reliability,, vol. 39, no. 2,
pp. 171–176, Jun 1990.

[12] D. P. Bertsekas, Network Optimization: Continuous and Discrete
Models. Athena Scientific, 1998.

[13] Y. Censor and S. A. Zenios, Parallel Optimization: Theory, Algorithms
and Applications. Oxford University Presss, 1997.

[14] B. O. Koopman, “The optimum distribution of effort,” Oper. Res.,
vol. 1, no. 2, Feb 1953.

[15] H. Luss and S. . K. Gupta, “Allocation of effort resources among
competing activities,” Oper. Res., 1975.

[16] J. M. Einbu, “A finite method for the solution of a multi-resource
allocation problem with concave return functions,” Mathematics of
Oper. Res., vol. 9, 1984.

[17] K. M. Mjelde, “The allocation of linear resources to concave activitiesa
finite algorithm with a polynomial time bounds,” J. Oper. Res. Society,
vol. 33, 1982.

[18] A. K. Bangla and D. A. Castañón, “RAP Auction : Auction algorithm
for nonlinear resource allocation problems,” 2010, CISE Report,
Boston University.

[19] ——, “Pseudo polynomial auction algorithm for nonlinear resource
allocation problems,” to appear in IEEE ACC, June. 2011.

[20] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Compu-
tation: Numerical Methods. Athena Scientific, 1997.

4472

