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Abstract— In this work, the problem of nonlinear regulation
of an underactuated system is treated by means of sliding
mode continuous control actions combined with block control
technique. The sliding mode state feedback output regulator
based on the super twisting algorithm, is applied to the
Pendubot system. The transformation of the original system
to regular form and then block control technique are used to
design a sliding manifold with asymptotically stable motion.To
verify the effectiveness of the method, simulations are carried
out.

I. INTRODUCTION
The system Pendubot is an eletromechanical system whose

name comes from short for pendulum robot. The device
consists of two planar, rigid and rotational links of two
degrees of freedom. The Pendubot has an actuator local-
ized on the shoulder (first joint) controlled by mean of a
DC motor, while the second joint moves freely along the
first joint movement given by the coupling between both
joints. The main purpose of the pendulum is research and
education within the nonlinear systems framework. With the
Pendubot, concepts like nonlinear dynamics, linearization,
robotics and control systems design, can be achieved. Some
of the principal control problems for the Pendubot are swing-
up, stabilization and tracking.
In [1], a swing up and balancing control via model orbit

stabilization synthesis is proposed, a modified Van der Pol
oscillator is involved into a quasi-homogeneous synthesis as
a reference model combined with partial feedback lineariza-
tion and the so-called homogeneous twisting controller to
locally stabilize the Pendubot about the vertical.
In this work we will be centered in the problem of the sec-

ond link tracking of a sinusoidal shape signal. The trajectory
tracking problem plays a central role in output regulation
theory [2]. Therefore, it is of great interest the design of
output regulators for the Pendubot. In [3], it is presented
an approach to achieve trajectory tracking for nonlinear
systems, combining linear regulator theory with the Takagi-
Sugeno fuzzy methodology, and a real time application of
the Pendubot is discussed. In [4], the application of error
feedback sliding mode (SM) output regulation technique
is applied to the Pendubot, stabilizing the sliding mode
equation by means of Jacobian linearization of the complete
SM dynamics.
In this work, the Pendubot system model is first trans-

formed into regular form such that the SM equation is not
affected directly by the control input. Then the Block Control
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[jserrano,louk,edb]@gdl.cinvestav.mx

(BC) linearization technique [5] is applied to introduce
desired dynamics for a part of the SM equation. The rest
SM dynamics part, which coincides with zero dynamics, is
linearized via Jacobian linearization. A sliding manifold then
is formulated such that the equilibrium point of the complete
SM dynamics is locally asymptotically stable. To ensure
the designed sliding manifold be stable and eliminate the
chattering effect, the continuous SM super-twisting control
algorithm [6], is implemented. The effectiveness of the
proposed control scheme is verified via simulations. Note
the SM regulator problem has been considered in [7] for
a class of nonlinear systems with relative degree one only
while the control scheme proposed in the present paper can
be implemented for systems with arbitrary relative degree.
An important contribution of this work is to provide

an algorithm, simpler than the classical regulator theory
(based on the full information regulator since most of elec-
tromechanical rotational systems include encoders to sense
position and velocity of its joints), to permit increase the
region of attraction around the desired equilibrium of the
Pendubot, then perform a tracking reference signal about
its vertically upright position, using a continuous nonlinear
controller (to reduce the non desirable chattering issue) and
reducing the linearization error making use of the partial BC
linearization technique.

II. PENDUBOT MODEL

The Pendubot system consist of two links, the first has a
motor, and the second is like a simple pendulum. Consider
the system shown in Figure 1, where the generalized coor-
dinates needed to describe the motion of the system are the
angular displacement of the first and second link, q1 and q2,
respectively. The motion equation can be described by the
general equation [8]

D (q) q̈+C (q, q̇) +G (q) + F (q̇) = τ,

where q = (q1,q
T
2 ) ∈ R

n, q1 ∈ R
m represents the

actuated joints, and q2 ∈ R
n−m represents the unactuated

ones. D (q) is the n × n inertia matrix, C (q, q̇) is the
vector of Coriolis and centripetal torques,G (q) contains the
gravitational terms, F (q̇) is the vector of viscous frictional
terms, and τ is the vector of input torques. For the Pendubot
system, the dynamic model is particularized as
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where D11 (q2) = m1l
2
c1 + m2

�

l21 + l
2
c2 + 2l1lc2 cos q2

�

+
I1 + I2, D12 (q2) = D21 (q2) = m2

�

l2c2 + l1lc2 cos q2
�

+ I2,
D22 = m2l

2
c2+ I2, C1 (q2, q̇1, q̇2) = −2m2l1lc2q̇1q̇2 sin q2−

m2l1lc2q̇
2
2 sin q2, C2 (q2, q̇1) = m2l1lc2q̇

2
1 sin q2,

G1 (q1, q2) = m1glc1 cos q1 + m2gl1 cos q1 +
m2glc2 cos (q1 + q2) , G2 (q1, q2) = m2glc2 cos (q1 + q2) ,
F1 (q̇1) = µ1q̇1, F2 (q̇2) = µ2q̇2,

withm1 andm2 as the mass of the first and second link of
the Pendubot respectively, l1 and l2 are the length of the first
and second link respectively, lc1 and lc2 are the distance to
the center of mass of link one and two respectively, g is the
acceleration of gravity, I1 and I2 are the moment of inertia
of the first and second link respectively about its centroids,
and µ1 and µ2 are the viscous drag coefficients.

Fig. 1: Schematic diagram of the Pendubot

Choosing variable x =
�

x1 x2 x3 x4
�T

=
�

q1 q2 q̇1 q̇2
�T as the state vector, u = τ1 as the

control input, and x2 as the output, the description of the
system can be given in state space form as

ẋ = f (x) + g (x)u, (1)
y = h (x) , (2)

where h (x) = x2 is the system output,

f (x) =









f1 (x)
f2 (x)
f3 (x)
f4 (x)









=









x3
x4

g3 (x2) p3 (x)
g4 (x2) p4 (x)









,

g (x) =









g1
g2

g3 (x2)
g4 (x2)









=















0
0
D22

D11 (x2)D22 −D2
12 (x2)

−D12 (x2)

D11 (x2)D22 −D2
12 (x2)















,

p3 (x) =
D12 (x2)

D22
(C2 (x2, x3) +G2 (x1, x2) + F2 (x4))

−C1 (x2, x3, x4)−G1 (x1, x2)− F1 (x3) ,

p4 (x) =
D11 (x2)

D12
(C2 (x2, x3) +G2 (x1, x2) + F2 (x4))

−C1 (x2, x3, x4)−G1 (x1, x2)− F1 (x3) .

And, in a admissible region Ω: (−π
2 ≤ x2 ≤ π

2 )

|g4(x2)| > 0 (3)

III. STATE FEEDBACK SLIDING MODE
REGULATOR PROBLEM

Consider the nonlinear system (1), with state x, defined
on a neighborhood X of the origin of R4, and u ∈ R

1, y ∈
R

1. The vector f (x) and the columns of g (x) are smooth
vector fields of class C∞

[t,∞), and in addition, is assumed that
f (0) = 0 and h (0) = 0. The output tracking error e (x, ω)
is defined as the difference between the output of the system,
y, and a reference signal, q (ω), i.e.

e2 = x2 − r (ω) , (4)

where the reference signal, r (ω), is generated by a given
exosystem described by

ω̇ = s (ω) , s (0) = 0, (5)

with ω = (ω1, ω2)
T , and ω2 as the reference signal generated

by the known exosystem (5), with state ω, defined on a
neighborhood W of the origin of R2. So, r (ω) = ω2. The
system 5 is characterized by the following assumption:

H1. The Jacobian matrix S =
�

∂s
∂ω

�

(0)
at the equilibrium

point ω = 0 has all eigenvalues on the imaginary axis
Thus,

s (ω) =

�

αω2
−αω1

�

, α > 0.

Provided that all states of the system are available for
measurement. In [2], it has been shown that the control action
to system (1) can be provided by a smooth state feedback

u = α (x, ω) .

The solvability of the State Feedback Regulator Problem
(SFRP), under assumption H1, can be stated in terms of the
existence of a pair of mappings

x = π (ω) and u = c (ω) , (6)
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with π (0) = 0 and c (0) = 0, both defined in a neighborhood
W ◦ ⊂ W of the origin, which solve the partial differential
equation (Francis-Isidori-Byrnes equations)

∂π

∂ω
s (ω) = f(π (ω))+g(π (ω) c (ω) ,

0 = h (π (ω) , ω) . (7)

Analogously to SFRP, we consider the State Feedback
Sliding Mode Regulation Problem (SFSMRP) which is de-
fined as the problem of finding a sliding manifold

σ(x, ω) = 0, σ (x) = (σ1, ..., σm)
T
, (8)

and a SM controller, in this case applying the super twisting
algorithm [6]

u (x) = −M1 |σ|
1/2 sign (σ) + u1, (9)

u̇1 (x) = −M2sign (σ) , M1 > 0, M2 > 0, (10)

such that the following conditions hold:
• (SMSsf ) (Sliding Mode Stability). The state of the
closed-loop system (1)-(2), with the controller (9)-(10),
converges to the manifold (8) in finite time;

• (Ssf ). The equilibrium x = 0 of the sliding mode
dynamics

ẋ = [f (x) + g (x) ueq(x, ω)]|σ(ξ)=0 ,

is asymptotically stable, where ueq is the equivalent con-
trol derived from condition σ̇ = 0 [9];

• (Rsf ). There exists a neighborhood V ⊂ X ×W of
(0, 0) such that, for each initial condition (x0, ω0) ∈
V , the output tracking error (4) goes asymptotically to
zero,. i.e. lim

t→∞

e (t) = 0.

IV. CONTROL DESIGN

A. Nonlinear systems in Regular Form

To design a SM controller for the nonlinear system (1), it
is more convenient to transform the system via a diffeomor-
phism

x� =

�

ϕ1 (x)
ϕ2 (x)

�

, ϕ1 ∈ R
3, ϕ2 ∈ R

1, (11)

into so-called regular form [10], which consists of two
blocks. The first block not depend on control and the
dimension of the second block coincides with the dimension
of the control.

ẋ�

1 = f1 (x
�

1,x
�

2) , (12)
ẋ�

2 = f2 (x
�) + g2 (x

�)u, (13)

where x� = (x�

1,x
�

2)
T
, x�

1 = (x�1, x
�

2, x
�

3), x
�

2 = (x�4) and
det (g2 (x

�)) �= 0.
The sliding mode control design for systems in the so-

called regular form (12) − (13) becomes simpler, since
the control input is not appeared in subsystem (12). As
result, calculation of the equivalent control ueq to define

SM equation, is not needed. The transformation (11) can
be obtained from the condition ∂ϕ1(x)

∂x g (x) = 0, as follows




x�1
x�2
x�3



 = ϕ1 (x)=





x1
x2

x3−[g3 (x2) g
−1
4 (x2) ]x4



 ,

x�4 = ϕ2 (x) = x4, (14)

where g3 (x2) g−1
4 (x2) = D22D

−1
12 (x�2), more details can be

found in [9]. Using (14) and (1), the regular form (12)−(13)
becomes

ẋ�

1 =





f1 (x
�)

f2 (x
�)

f3 (x
�)



 , (15)

ẋ�

2 = f4 (x
�) + g4 (x

�

2)u, (16)

with

f1 =









f1 (x
�) = x�3 −D22D

−1
12 (x�2)x

�

4

f2 (x
�) = x�4

f3 (x
�) = F �

31

�

D12(x�

2)
D22

−
D11(x�

2)
D12(x�

2)

�

F �

32









,

f2 = f4 (x
�) = g4 (x

�

2) p4 (x
�) ,

and F �

31 = D22

D11(x�

2)D22−D2

12(x�

2)
, F �

32 =

C2

�

x�2, x
�

3 −D22D
−1
12 (x�2)x

�

4

�

+G2 (x
�

1, x
�

2) + F2 (x
�

4) .

B. Nonlinear Block Control Linearization

In order to use the Block Control linearization, the system
(15) − (16) is represented as the Nonlinear Block Con-
trollable (NBC)-form S1, consisting of two blocks, and the
residual dynamics S2:

S1

�

ẋ�2 = x�4,
ẋ�4 = f4 (x

�) + g4 (x
�

2)u,
(17)

S2

�

ẋ�1 = f1 (x
�) ,

ẋ�3 = f3 (x
�) .

(18)

Introducing the zero output manifold π� (ω) =
(π�1 (ω) , π

�

2 (ω) , π
�

3 (ω) , π
�

4 (ω))
T and the control error









e2
e4
e1
e3









=









x�2 − π
�

2 (ω)
x�4 − π

�

4 (ω)
x�1 − π

�

1 (ω)
x�3 − π

�

3 (ω)









,

the system (17)− (18) is represented as

S1

�

ė2 = e4 + π
�

4 (ω)−
∂π�

2
(ω)

∂ω s (ω) ,

ė4 = f4 (x
�) + g4 (x

�

2)u−
∂π�

4
(ω)

∂ω s (ω) ,
(19)

S2

�

ė1 = f1 (x
�)−

∂π�

1
(ω)

∂ω s (ω) ,

ė3 = f3 (x
�)−

∂π�

3
(ω)

∂ω s (ω) .
(20)

Now, π� (ω) will be calculated with respect to the system
(17)− (18), making use of its respective regulator equations
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(7):

∂π�2 (ω)

∂ω
s (ω) = π�4 (ω) , (21)

∂π�1 (ω)

∂ω
s (ω) = π�3 (ω) (22)

−D22D
−1
12 (π�2 (ω))π

�

4 (ω) ,

∂π�3 (ω)

∂ω
s (ω) = F �

31

D12 (π
�

2 (ω))

D22
F �

32 (23)

−
D11 (π

�

2 (ω))

D12 (π�2 (ω))
F �

32,

0 = π�2 (ω)− ω2, (24)

with

F �

31 =
D22

D11 (π�2 (ω))D22 −D2
12 (π

�

2 (ω))
,

F �

32 = C2 ((π
�

2 (ω)) , (π
�

3 (ω))

−D22D
−1
12 (π�2 (ω)) (π

�

4 (ω))
�

+G2 ((π
�

1 (ω)) , (π
�

2 (ω))) + F2 ((π
�

4 (ω))) .

From equation (24), one directly obtains

π�2 (ω) = ω2.

Then, replacing π2 (ω) in equation (21) yields to

π�4 (ω) = −αω1.

For calculating π�1 (ω) and π
�

3 (ω), the solution of equations
(22) and (23) is needed. This is in general a difficult task,
and it is commonly can be solved proposing an approxi-
mated solution as in [4]. Thus, one proposes the following
approximated solution for π�1 (ω) :

π�1 (ω) = a0 + a1ω1 + a2ω2 + a3ω
2
1 + a4ω

2
1 + a4ω1ω2

+a5ω
2
2 + a6ω

3
1 + a7ω

2
1ω2 + a8ω1ω

2
2 + a9ω

3
2

+O
�

�ω�
4
1

�

, (25)

where O(· ) represents infinite number of terms resulting
from approximation proposed. Replacing (25) in (22) yields
the approximated solution for π�3 (ω)

π�3 (ω) = α
�

a1ω2 − a2ω1 + 2a3ω1ω2 + a4ω
2
2 − a4ω

2
1

−2a5ω1ω2 + 3a6ω
2
1ω2 + 2a7ω1ω

2
2 − a7ω

3
1

+a8ω
3
2 − 2a8ω

2
1ω2 − 3a9ω1ω

2
2

−D22D
−1
12 (ω2)ω1

�

+O
�

�ω�41

�

. (26)

Performing a series Taylor expansion around the equilib-
rium point xep =

�

π
2 , 0, 0, 0

�T as in [4] one can find the
values ai (i = 0, ...9).
It is important to mention that there is a natural steady-

state constraint for the Pendubot, as we can see in Figure 1,
i.e., the sum of two angles q1 and q2 equals π/2

π

2
= π�1 (ω) + π

�

2 (ω) . (27)

Using (27) one can obtain an alternate solution to steady-
state, π�1a (ω) = π/2 − π�2 (ω), and replacing π�1a (ω) in
equation (22) yields to π�3a (ω) = αω1, the subindex a refers
an alternative zero output manifold.

C. Sliding Manifold Design

Under the condition (21) the NBC form (17) reduces to

S1

�

ė2 = e4,

ė4 = f4 (x
�) + g4 (x

�

2)u−
∂π�

4
(ω)

∂ω s (ω) .
(28)

Following the BC design technique [5], we define first the
tracking error as

z2 = e2 = x�2 − π
�

2 (ω) . (29)

Then involving the desired dynamics for this error as
(−k2z2), the virtual control e4 in the first block of (28)
is chosen of the form

e4 = −k2z2 + z4, k2 > 0, (30)

where z4 is a new variable.
From (30) , variable z4 can be obtained as

z4 = e4 + k2z2. (31)

Using the new variables z2 (29) and z4 (31), the system
S1 (28) is represented of the form

S1

�

ż2 = −k2z2 + z4,
ż4 = f4 (x

�, ω) + g4 (x
�

2) u,
(32)

where f4 (x�, ω) = f4 (x
�)−

∂π�

4
(ω)

∂ω s (ω) .

Now, if we apply directly Block Control

u = g−1
4 (x�2) [(f4 (x

�, ω)− k4z4] , k4 > 0,

or SM control

u = ueq (x
�, ω)− k4sign(s),

with the sliding variable s = z4 and the equivalent control
ueq(x

�, ω) = g−1
4 (x�2) (f4 (x

�, ω) , then the system S1 (32)
becomes as a linear system with desired eigenvalues −k2
and −k4,

S1

�

ż2 = −k2z2 + z4,
ż4 = −k4z4,

or discontinuous one,

S1

�

ż2 = −k2z2 + z4,
ż4 = −k4g4 (x

�

2) sign(s),

respectively.
In both cases the tracking error z2(t) (29) asymptotically

tends to zero providing the zero dynamics S2 (20) on the
manifold z2 = 0 and z4 = 0 be unstable.
It can be noted that the zero dynamics, in this case,

coincide with uncontrolled SM dynamics.
To ensure the SM dynamics be controllable that permits

to stabilize the system S2, we define first

z1 = e1 = x�1 − π
�

1 (ω) , (33)
z3 = e3 = x�3 − π

�

3 (ω) . (34)
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Then, the system (32) and (18) is represented in the
variables z2 (29), z1 (33) and z3 (34) and z4 (31) of the
form

ż2 = −k2z2 + z4,

ż1 = f1 (z, π
� (ω) , ω) ,

ż3 = f3 (z, π
� (ω) , ω) , (35)

ż4 = f4 (z, π
� (ω) , ω) + g4 (z, π

� (ω))u,

where z = (z2, z1, z3, z4)
T and

f1 (z, π́ (ω) , ω) = f1 (x
�)|

x
�=z+π�(ω) −

∂π�1 (ω)

∂ω
s (ω) ,

f3 (z, π
� (ω) , ω) = f3 (x

�)|
x
�=z+π�(ω) −

∂π�3 (ω)

∂ω
s (ω) ,

f4 (z, π
� (ω) , ω) = f4 (x

�, ω)|
x
�=z+π�(ω) ,

g4 (z, π
� (ω)) = g4 (x

�)|
x
�=z+π�(ω) .

Now, we formulate the sliding variable σ (8) as

σ = z4 +Σ
�

z1 z3
�T , Σ =

�

k1 k3
�

, (36)

with k1 > 0 and k3 > 0.
Using (36) and (35) , the projection motion on the sub-

space σ can be written as

σ̇ = fσ(z, π
� (ω) , ω) + g4 (z, π

� (ω) , ω)u, (37)

where fσ(·) = f4 (z, π
� (ω) , ω) + k1f1 (z, π

� (ω) , ω) +
k3f3 (z, π

� (ω) , ω) .
To enforce SM chattering-free motion on the manifold

σ = 0 (36), we apply the super twisting algorithm (9)-(10).
Thus, the closed-loop system (37) and (9) becomes of the
following form:

σ̇ = fσ −M1g4 (z, π
� (ω) , ω) |σ|1/2 sign (σ)

+g4 (z, π
� (ω) , ω)u1,

u̇1 = −M2sign (σ) .

In the admissible region Ω

|g4(x2)| ≤ δ0,

if the controller gains M1 and M2 satisfy the following
conditions:

M1 >
2δ

δ0
,

and

M2 > M1δ0
5δM1δ0 + 4δ2

2 (M1 − 2δ)
,

then, the closed-loop system state converges to the manifold
(36) in finite time [11], ensuring the condition SMSsf is
hold.
The sliding mode motion on the manifold σ = 0 is

governed by the following reduced order system:

ż2 = −k2z2 + z4,

ż1 = f1 (z, π
� (ω) , ω) , (38)

ż3 = f3 (z, π
� (ω) , ω) ,

where the desired stabilized dynamics (−k2z2) for the track-
ing error z2 was already introduced by the BC design.
To achieve stability of the controlled now sliding mode

dynamics (38) , where z4 is considered as the virtual control
input, using the linearization of (38) at xeq =

�

π
2 , 0, 0, 0

�T

and π� (ω) = 0; the system (38) is represented as:




ż2
ż1
ż3



 =





−k2 0 0
A11 A12 A13

A31 A32 A33









z2
z1
z3



 (39)

+





1
b1
b3



 z4 +





0
φ1 (z, π

� (ω) , ω)
φ3 (z, π

� (ω) , ω)



 ,

where

Aij =

�

∂fi
∂zj

�

x=xeq, π�(ω)=0

, bi =
�

∂fi
∂z4

�

x=xeq, π�(ω)=0

,

i = 1, 3, j = 1, 2, 3,

φ2 and φ3 are the residual high order nonlinear terms
resulting from linear approximation over (38).
On the sliding manifold σ = 0 (8), we have

z4 = −k1z1 − k3z3. (40)

Now, substituting (40) into (39), the SM motion on this
manifold is governed by following linear perturbed system:





ż2
ż1
ż3



 = A





z2
z1
z3



+





0
φ1 (z, π

� (ω) , ω)
φ3 (z, π

� (ω) , ω)



 , (41)

with

A =





−k2 −k1 −k3
A11 A12 − k1b1 A13 − k3b3
A31 A32 − k1b1 A33 − k3b3



 . (42)

Choosing adequate values of k1, k2 and k3, we ensure
the matrix A (42) be Hurwitz. Now, considering that the
perturbation terms φ1 (z, π� (ω) , ω) and φ3 (z, π� (ω) , ω) are
continuous and therefore bounded in the admissible compact
set, then the equilibrium point zi = 0, i = 1, 2, 3 of the
system (41) is locally asymptotically stable provided that the
condition Ssf is also hold. Thus, by continuity, the output
tracking error (4) converges to zero, and condition (Rsf )
holds too.
It is important to note that using combination of the BC

and SM control techniques permits to reduce the partial
differential equation (7) to the reduced order equation (21)
- (23) . Moreover, the calculation of the steady state control
c(ω) (6), in this case, is not needed.

V. SIMULATIONS

In order to show the performance of the sliding mode
regulator, simulations are carried out. The initial condition
for the Pendubot is chosen near the equilibrium point as
follows: x1 (0) = 1.3, x2 (0) = 0.2. The constant α = 0.3,,
the signal reference amplitude of 1 radian (approximately
57.3 degrees) and M1 = −1, M2 = −1.5.The values
of the parameters are taken as follows: m1 = 0.829 Kg,
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m2 = 0.340 Kg, l1 = 0.203 m, l2 = 0.384 m,lc1 = 0.155 m,
lc2 = 0.164 m, g = 9.81 m/sec2, I1 = 0.00545 Kg-m2,I2 =
0.00047 Kg-m2. And the coefficients ai are calculated as
follows a0 = 1.5708, a1 = −2.5675 × 10−4, a2 =
−0.99828, a3 = 9.0455×10−7, a4 = 1.7821×10−8, a5 =
1.128 × 10−4, a6 = −1.9783 × 10−9, a7 = 2.7605 ×
10−3, a8 = −2.4734× 10−7, a9 = −8.9727× 10−4.
And k1 = 45.131, k2 = 39.517, k3 = 9.5627 in

order to place the sliding mode equation (39) poles at
(−5, − 5, − 5). The constrain (27) was used too for simu-
lation yielding the same results when using the approximated
manifold (25) and (26).

VI. CONCLUSIONS
In this work, the State Feedback Sliding Mode Output

Regulation Problem via the super-twisting control algorithm
has been addressed. The SM control allows straightforward
solution to be obtained, i.e., the FIB equation is reduced
and the steady-state control needs not to be calculated,
simplifying the control design, specially when compared
to the classical solutions of the state feedback regulator
problem. Additionally, the SM based controller achieves
robustness with respect to allowed uncertainties, combining
the super twisting algorithm provides the chattering-free
motion. The proposed transformation to regular form permits
to simplify the deriving of SM equation, since, in this case,
calculation of the equivalent control is not needed. Applying
the nonlinear block control linearization techniques permits
to assign desired stable dynamics for a part of the SM
equation while the rest reduced part is stabilized via Jacobian
linearization.
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Fig. 2: a) Comparison of the output reference signal versus
the output of the Pendubot controlled by the sliding mode
regulator. b) The position angle of the first link. c) The sliding
mode control signal. d) The sliding manifold σ.
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