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Abstract— This paper deals with the control of an Anti-
lock Brake System (ABS) assisted with an active suspension.
The main objective is to track the slip rate of a car and
ensure a shorter distance in the braking process. For the ABS
subsystem an integral nested sliding mode controller based on
the block control principle is designed. On the other hand, for
the active suspension subsystem a sliding mode controller based
on regular form and linear geometric techniques is proposed.
Both closed-loop subsystems are robust in presence of matched
and unmatched perturbations. To show the performance of
the proposed control strategy, a simulation study is carried
on, where results show good behavior of the ABS with active
suspension under variations in the road.

I. INTRODUCTION

The ABS control problem consists of imposing a desired

vehicle motion and as a consequence, provides adequate

vehicle stability. On the other hand, an active suspension is

designed with the objective of guaranteeing the improvement

of the ride quality and comfort for the passengers. The main

difficulties arising in the ABS design and control are due

to its high non-linearities and uncertainties presented in the

mathematical model. For the active suspension control design

is necessary to cope with the disturbance due to road friction

which is unknown. Therefore, the ABS and active suspension

have become two attractive examples for research in area

of robust control. There are several works reported in the

literature using the sliding mode technique to a slip-ratio

control of ABS, some examples are [1], [2], [3], [4]; a

similar approach is used in the active suspension case [5].

However, in most of the cases these two system are treated

independently. In [6] a backstepping design is applied to

ABS and active suspension as a whole system, in this case

the road disturbances are assumed to be known in order to

propose the control law.

In this work, we are compelled with asymptotically

tracking the relative slip to a desired trajectory while the

active suspension guarantees the passenger comfort and

helps to improve the braking process. In order to reach

this objective, we design a new controller for ABS on the

basis of integral Sliding Mode (SM) [7] in combination

with nested SM [8], [9]. Theoretically, this integral nested

SM control can guarantee the robustness of the system
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throughout the entire response starting from the initial time

instant and reduce the sliding functions gains in comparison

with standard SM.

For the active suspension, another new controller based

on the regular form [10], SM and geometric linear

control methods [11] for the sliding surface design is

proposed in order to achieve robustness to matched, and

unmatched perturbations and ensure output tracking. In both

subsystems a Super-Twisting (ST) control is used [12]. As

a result the vehicle dynamic, i.e., the vehicle velocity and

horizontal position, on the designed SM manifolds becomes

asymptotically stable with disturbance attenuation, ensuring

an stable tracking error.

The work is organized as follows. The mathematical model

for the longitudinal movement of a vehicle, including the

brake and active suspension systems is presented in Section

II. In Section III the supertwisting controllers with special

emphasis in the design of sliding surfaces for ABS and active

suspensions are shown. The simulation results are presented

in Section IV to verify the robustness and performance of

the proposed control strategy. Finally, some conclusions are

presented in Section V.

II. MATHEMATICAL MODEL

In this section, the dynamic model of a vehicle active

suspension and ABS subsystems is revised. Here we consider

a quarter of vehicle model, this model includes the active

suspension, the pneumatic brake system, the wheel motion

and the vehicle motion. We study the task of controlling the

wheels rotation, such that, the longitudinal force due to the

contact of the wheel with the road, is near to the maximum

value in the period of time valid for the model. This effect

is reached as a result of the ABS valve effort.

A. Active suspension model

The quarter-car active suspension is a 2-DOF mechanical

system shown in Fig. 1 This system connects the car

body and the wheel masses and is modeled as a linear

viscous damper and a spring elements, whereas the tire is

represented as a linear spring and damping elements. The

motion equations for this system are governed by

mcz̈c = −Kcw (zc − zw)− Ccw (żc − żw) + fha

mw z̈w = Kcw (zc − zw) + Ccw (żc − żw) (1)

−Kwr (zw − zr)− Cwr (żw − żr)− fha

where mc and mw are the mass of the car and the wheel,

respectively, zc is the car vertical displacement, zw is the
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wheel vertical displacement, Kcw and Kwr are the spring

coefficients, Ccw and Cwr are the damping coefficients, zr
is the disturbance due to road and fha is the force of the

hydraulic actuator

Fig. 1. Active suspension scheme

B. Pneumatic brake system equations

The specific configuration of this system considers the

brake disk, which holds the wheel, as a result of the

increment of the air pressure in the brake cylinder. The

entrance of the air trough the pipes from the central reservoir

and the expulsion from the brake cylinder to the atmosphere

is regulated by a common valve. The time response of the

valve is considered small, compared with the time constant

of the pneumatic system.

Fig. 2. Pneumatic brake scheme

Considering Fig. 2, we suppose the brake torque Tb is

proportional to the pressure Pb in the brake cylinder

Tb = kbPb (2)

with kb > 0. For the brake system we use an approximated

model of pressure changes in the brake cylinder due to the

opening of the valve with a first order relation [13], this

relation can be represented as

τṖb + Pb = Pc (3)

where τ is the time constant of the pipelines, Pc is

the pressure inside the central reservoir. The atmospheric

pressure, Pa, is considered equal to zero.

C. Wheel motion equations

To describe the wheel motion we use a partial

mathematical model of the dynamic system as it is done

in [14]. Considering the Fig. 2, the dynamics of the angular

momentum variation relative to the rotation axis, are given

by

Jω̇ = rf (s)− bbω − Tb (4)

where ω is the wheel angular velocity, J is the wheel inertia

moment, r is the wheel radius, bb is a viscous friction

coefficient due to wheel bearings and f is the contact force

of the wheel.

The expression for longitudinal component of the contact

force in the motion plane is

f (s) = νNmφ (s) (5)

where ν is the nominal friction coefficient between the wheel

and the road, Nm is the normal reaction force in the wheel

and it is defined by

Nm = mg −Kwr (zw − zr)− Cwr (żw − żr)

with g the gravity acceleration and m the mass supported on

the wheel and it is given by m = mw +mc/4. The function

φ(s) represents a friction/slip characteristic relation between

the tyre and road surface. Here, we use the Pacejka formula

[15], defined as follows

φ (s) = (6)

D sin (C arctan (Bs− E (Bs− arctan (Bs)))) .

In general, this model produces a good approximation of the

tyre/road friction interface. With the following parameters

B = 10, C = 1.9, D = 1 and E = 0.97 that function

represents the friction relation under a dry surface condition.

A plot of this function is shown in Fig. 3.
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Fig. 3. Characteristic function φ (s)

The slip rate s is defined as

s =
v − rω

v
(7)

where v is the longitudinal velocity of the wheel mass center.

The equations (4)-(7) characterize the wheel motion.
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D. The vehicle motion equation

The vehicle longitudinal dynamics considered without

lateral motion, are described by

Mv̇ = −F (s)− Fa (8)

where M = 4mw +mc is the total vehicle mass; Fa is the

aerodynamic drag force, which is proportional to the vehicle

velocity and it is defined as

Fa =
1

2
ρCdAf (v + vw)

2

where ρ is the air density, Cd is the aerodynamic coefficient,

Af is the frontal area of vehicle, vw is the wind velocity; and

the contact force of the vehicle F is modeled of the form

F (s) = νNMφ (s) (9)

where NM is the normal reaction force of the vehicle,

NM =Mg −Kwr (zw − zr)− Cwr (żw − żr) .

E. State space equations

The dynamic equations of the whole system (3)-

(8) can be rewritten using the state variables x =
[x1, x2, x3, x4, x5, x6, x7]

T = [zc, żc, zw, żw, ω, Pb, v]
T

results in the following form:

ẋ1 = x2

ẋ2 = −a1 (x1 − x3)− a2 (x2 − x4) + b1us

ẋ3 = x4 (10)

ẋ4 = a3 (x1 − x3) + a4 (x2 − x4)

−a5 (x3 − zr)− a6 (x4 − żr)− b2us

ẋ5 = −a7x5 + a8f (s)− a9x6

ẋ6 = −a10x6 + b3ub (11)

ẋ7 = −a11F (s)− fw (x7)

with the outputs

y1 = x1 and y2 = x5

where a1 = Kcw/mc, a2 = Ccw/mc, a3 = Kcw/mw,

a4 = Ccw/mw, a5 = Kwr/mw, a6 = Cwr/mw, a7 = bb/J ,

a8 = r/J , a9 = kb/J , a10 = 1/τ , a11 = 1/M , b1 = 1/mc,

b2 = 1/mw, b3 = 1/τ , us = fha, ub = Pc and fw(x7) =
1

2M (ρCdAf ) (x7 + vw)
2 .

III. CONTROL DESIGN

In this section, we use first the concepts of regular form,

SM and geometric linear control methods for the sliding

surface for an active suspension controller design; and, then

the integral nested SM control is applied to design an

ABS controller. The structure of the whole system (10)-(11)

permits to design both controllers in an independent way.

A. Suspension Control

Define xs = [x1, x2, x3, x4] and p =
[

zr żr
]T
, then

the subsystem (10) is represented in the form

ẋs = Asxs + bsus +Dp (12)

where

As =









0 1 0 0
−a1 −a2 a1 a2
0 0 0 1
a3 a4 −a3 − a5 −a4 − a6









bs =









0
b1
0

−b2









; D =









0 0
0 0
0 0
a5 a6









.

with the output y1 = x1. Now, defining the new variables

xr1 = x1, xr2 = x2 +
b1
b2
x4, xr3 = x3, xr4 = x4

the system (12) is transformed into regular form [10]

ẋr1 = A11xr1 +A12xr2 +D1p (13)

ẋr2 = A21xr1 +A22xr2 +D2p+ b2us (14)

which consists of the two blocks: (13) with xr1 =
[

xr1 xr2 xr3
]T

and (14) with xr2 = [xr4], where

A11 =





0 1 0

a3
b1
b2

− a1 a4
b1
b2

− a2 a1 −
b1
b2

(a3 + a5)

0 0 0



,

A12 =







− b1
b2

a2 −
b1
b2

(a4 + a6 − a2)− a4

(

b1
b2

)2

1






, A21 =

[

a3 a4 −a3 − a5
]

, A22 =
[

−a4

(

b1
b2

+ 1
)

− a6

]

,

b2 = [−b2], D1 =





0 0
b1
b2
a5

b1
b2
a6

0 0



 and D2 =

[

a5 a6
]

. Then for the first block (13), the output can

be regarded as y1 = cxr1, with c =
[

1 0 0
]

. The

vector xr2 is handled as a control in the first block and it is

designed as a linear function of xr1

xr2 = −C1xr1 + ξ (15)

where C1 are the feedback gains. Under the assumption

that the matrix (A11 −A12C1) is Hurwitz, the term ξ is

chosen as ξ =H−1
k y1d with Hk = c (A12C1 −A11)

−1
A12,

yielding a constant stable response y1d. Using (15), a sliding

variable φ is formulated as

φ = xr2 +C1xr1 − ξ (16)

and the dynamics of (16) are governed by

φ̇ = (C1A11 +A21)xr1 + (C1A12 +A22)xr2(17)

+(C1D1 +D2)p+ b2us.
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To induce sliding mode on φ = 0, the super-twisting control

algorithm [12] is applied

us = −b−1
2

[

−λs1 |φ|
1

2 sign (φ) + us2 (18)

− (C1A11 +A21)xr1 − (C1A12 +A22)xr2]

u̇s2 = −λs2sign (φ) (19)

where λs1 > 0, λs2 > 0 are control parameters. The stability

condition for the closed-loop system (17) and (18) can be

obtained via the transformation qs = (C1D1 +D2)p −
λs2

∫ t

0 sign(φ) dt to

φ̇ = −λs1 |φ|
1

2 sign (φ)− qs (20)

q̇s = −λs2sign (φ) + (C1D1 +D2) ṗ.

If |(C1D1 +D2) ṗ| < L < ∞ and choosing λs2 > 5L and

32L ≤ λ2s1 ≤ 8 (λs2 − L) then the system (20) is finite time

globally stable [16], i.e, its solution converges in finite time

to the origin (φ, qs) = (0, 0). The sliding motion on φ = 0
is given by (13) and (15), in this way the SM equation is

ẋr1 = (A11 −A12C1)xr1 +A12ξ +D1p. (21)

At this point, to reject the unmatched unknown perturbation

p in the SM equation (21), we apply the well known

geometrical approach [11]. The disturbance p can be

rejected preserving SM equation stability if and only if

the image of the matrix associated to the disturbance,

ImD1, belongs to V∗

g , the so-called maximal (A11,A12)-
invariant subspace contained in the kernel of the output y1 =
xr1 =

[

1 0 0
]

xr1. It can be seen that this problem

is solvable, since clearly ImD1 =span
{

D̃1

}

belongs to

V∗

g =span
{

V
∗(1)
g ,V

∗(2)
g

}

with D̃1 =
[

0 1 0
]T

,

V
∗(1)
g =

[

0 1 0
]T

and V
∗(2)
g =

[

0 0 1
]T

. Then,

using the virtual control xr2 (15), which produces V∗

g to

be SM equation (21) invariant, the output y1 = xr1 is

not affected at all by the signal p, i.e, this control rejects

the disturbance p in the SM equation. Notice that this

control renders the system (21) maximally non-observable

by canceling out the zeros associated to the transfer function

between p and y1 = xr1 with closed-loop poles. The closed-

loop system (21) is stable, because these zeros are stable, and

the remaining pole is located in a suitable stable position.

B. Brake Control

Let xb = [x5, x6, x7] and taking into account the direct

action of the pressure Pb in the brake cylinder over the

wheels motion, we define the output tracking error as

e1 , x5 −
1− s∗

r
x7. (22)

Then, from (10), (11) and (22) the derivative of e1 is

ė1 = f1 (x5, x7) + b1 (x5, x7)x6 +∆1 (23)

where f1 (x5, x7) =
1−s∗

r
[a11νNMφ (s)− fw(x7)]−a7x5+

a8νNmφ (s) and b1 (x5, x7) = −a9. The term ∆1 contains

the reference derivative ṡ∗, the variations of the friction

parameter ν, the wind speed vw, the influence of zr, żr on

F (s) and it will be considered as an unmatched and bounded

perturbation term.

Considering the variable x6 as virtual control in (23) we

determinate its desired value x6δ as

x6δ = x6δ,0 + x6δ,1 (24)

where x2δ,0 is the nominal part of the nominal control and

x6δ,1 will be designed using the SM technique to reject the

perturbation in (23). In this way, we propose the desired

dynamics −k0e0 − k1e1, which are introduced by means of

x6δ,0 = −
1

b1 (x5, x7)
[f1 (x5, x7) + k0e0 + k1e1] (25)

where k0 > 0, k1 > 0 and e0 is defined by

ė0 = e1, e0(0) = 0. (26)

Now, in order to attenuate the perturbation term ∆1 in (23),

we define the surface

σ1 = e1 + z (27)

where z is an SM integral variable and will be defined later.

From (23), (25), (24) and (27) the derivative of σ1 is given

by

σ̇1 = −k0e0 − k1e1 + x6δ,1 +∆1 + ż. (28)

Selecting ż = k0e0 + k1e1 with z (0) = −e1 (0), Eq. (28)

reduces to

σ̇1 = x6δ,1 +∆1. (29)

To enforce quasi-sliding motion in (29) the term x6δ,1 in

(28) is chosen as

x6δ,1 = −kσ1
sigm (ε, σ1)

where we use the result that the sign function can be

approximated by the sigmoid function in the form

lim
ε→∞

sigm (ε;x) = sign (x) .

Now, we define a new error variable e2 as

e2 = x6δ − x6. (30)

Using (10), (11) and (30), straightforward calculations

reveal

ė2 = ∆2 − b3ub (31)

where the term

∆2 = a3x6 +
∂x6δ
∂x5

ẋ5 +
∂x6δ
∂x7

ẋ7 (32)

is considered as a perturbation.

Using the new variables e0, e1, e2 and σ1 the extended

closed loop system (23), (26), (31) and (29) is presented as

ė0 = e1 (33)

ė1 = −k0e0 − k1e1 + e2 − kσ1
sigm (ε, σ1) + ∆1 (34)

σ̇1 = −kσ1
sigm (ε, σ1) + ∆1 (35)

ė2 = ∆2 − b3ub (36)

ẋ7 = −a11F − fw (x7) . (37)
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We now consider the types of valve that can vary its

position in a continuous range. To induce sliding mode on the

sliding manifold e2 = 0, the super-twisting control algorithm

is applied [12] to (36)

ub =
1

b3
[ub1 + ub2] (38)

with ub1 = −λb1 |e2|
1

2 sign(e2), u̇b2 = −λb2sign(e2), where

λb1 > 0, λb2 > 0 are control parameters. Now, the stability

of (33) - (36) closed loop by (38) is outlined in a step by

step procedure:

Step A) Reaching phase of the projection motion (36);

Step B) SM stability of the projection motion (35);

Step C) SM stability of (33)-(34) on the manifold e2 = 0
and in the vicinity of σ1 = 0.

We use the assumptions

|∆1| ≤ α1 |σ1|+ β1 (39)
∣

∣

∣
∆̇1

∣

∣

∣
≤ α0 |σ̇1| (40)

∣

∣

∣
∆̇2

∣

∣

∣
≤ β2 (41)

with α0 > 0, α1 > 0, α2 > 0, β1 > 0, β2 > 0.

Step A) For (36) in closed loop with (38) we use the

transformation qb = ∆2 − λb2
∫ t

0 sign(e2) dt, then, we have

ė2 = −λb1 |e2|
1

2 sign (e2)− qb (42)

q̇b = −λb2sign (e2) + ∆̇2

and under the assumption (41), then choosing λb2 > 5β2 and

32β2 ≤ λ2b1 ≤ 8 (λb2 − β2), the system (42) is finite time

globally stable [16], i.e, its solution converges in finite time

to the origin (e2, qb) = (0, 0).

Step B) To analyze the stability of the projection

motion (35) we assume that the signum function can

be approximated by the sigmoid function in the form

sigm (ε;x) → sign (x) as ε → ∞, then, we can establish

the following equality

sign (x)− sigm (ε;x) = ∆s (ε;x) . (43)

It is evident that ∆s (x) is bounded, that is, for a given

ε there exists a positive constant 0 < γ < 1 such that

‖∆s (ε;x)‖ = γ. Now, taking the Lyapunov candidate V1 =
1
2σ

2
1 and taking its derivative, with (39) results

V̇1 = σ1 [−kσ1
sigm (ε, σ1) + ∆1]

≤ − |σ1| [kσ1
(1− γ)− α1 |σ1| − β1]

therefore, if kσ1
> β1

1−γ
then σ1 converges to a vicinity of

zero, |σ1| < ϑ, with

ϑ =
ln
(

2−γ
γ

)

2ε

and, with (40), σ̇1 converges to zero in finite time [9].

Step C) To analyze the SM stability of (33)-(34) on the

manifold e2 = 0 and in the vicinity of σ1 = 0 we define

the Lyapunov function V2 = 1
2

(

e20 + e21
)

and taking its

derivative,

V̇2 = e1 [(1− k0) |e0| − k1e1]

≤ − |e1| [(k0 − 1) |e0|+ k1 |e1|]

therefore, when k0 > 1 and k1 > 0 then, e1 converges

asymptotically to zero.

IV. SIMULATION RESULTS

To show the effectiveness of the proposed control law,

simulations have been carried out on the wheel model design

example, the system parameters used are listed in Table 1.

TABLE 1

Values of Parameters (MKS Units)

Parameter Value Parameter Value Parameter Value

mc 1800 J 18.9 E 0.97

mw 50 kb 100 Af 6.6

Kcw 1050 bb 0.08 Cd 0.65

Kwr 175500 r 0.535 ρ 1.225

Ccw 19960 B 10 vw -6

Cwr 1500 C 1.9 g 9.81

τ 0.0043 D 1 v 0.5

In order to maximize the friction force, we suppose that

slip tracks a constant signal during the simulations s∗ =
0.203, which produces a value close to the maximum of the

function φ(s). The reference for suspension is y1d = −0.2.

The road perturbation is considered as zr = 0.1 cos (10t).
The parameters used in the control law are y1d = 0.1, λs1 =

10, λs2 = 15, C1 =
[

−175 −35 0
]T

, k0 = 700, k1 =
120, kσ1

= 10, λb2 = 1, λb2 = 2 and ε = 10. On the other

hand, to show robustness properties of the control algorithms

in presence of parametric variations we introduce a change

of the friction coefficient ν which produces different contact

forces, that is F and F̂ . Then, ν = 0.1 for t < 4 s and

ν = 0.5 for t ≥ 4 s. It is worth mentioning that just the

nominal values were considered in the control design.

Longitudinal speed v and the linear wheel speed rω are

shown in Fig. 4, the ABS controller should be turned off

when the longitudinal speed is close to zero.

Fig. 4. Longitudinal speed v (dashed) and the linear wheel speed rω
(solid)

Fig. 5 shows the slip rate during the breaking process, we

can see the fast convergence to the reference value s∗ and

Fig. 6 presents the friction/slip characteristic relation φ(s)
obtained during the breaking process under control actions.
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Fig. 5. Slip performance in the
braking process

Fig. 6. Performance of φ(s) in the
braking process

Fig. 7 shows the vertical vehicle position during the

breaking process. The position is lowered 0.2 m under zero

position and it is kept constant until the car is almost stopped,

until Fig. 8 presents the suspension position of the vehicle;

it moves constantly, counteracting the changes on road and

wheel.

Fig. 7. Vehicle position x1 Fig. 8. Suspension position x3

The control action us for the suspension is shown in Fig. 9.

The valve can put or extract fluid into the reservoir to obtain

the necessary forces. The sliding variable ψ is presented in

figure 10.

Fig. 9. Control signal for
suspension us

Fig. 10. Sliding surface for
suspension control ψ

The control signal ub for the ABS is presented in Fig. 9,

and the sliding variable σ is presented in figure 12.

Fig. 11. Control signal for ABS ub Fig. 12. Sliding surface for ABS
control σ

Finally, in Fig. 13 the nominal F , and the F̂ contact forces

are shown.

Fig. 13. Nominal contact force F (dashed) and real force F̂ (solid)

V. CONCLUSIONS

In this work sliding mode based controller for ABS

assisted with active suspension has been proposed. The

simulation results show good performance and robustness

of the closed-loop system in presence of both, the matched

and unmatched perturbations, namely, parametric variations

and neglected dynamics. Giving an important application of

the sliding mode control theory in the automotive problems.
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