
Inherently robust suboptimal nonlinear MPC: theory and application

Gabriele Pannocchia and James B. Rawlings and Stephen J. Wright

Abstract— We discuss inherent robust stability properties of
discrete-time nonlinear systems controlled by Model Predictive
Control (MPC) algorithms that do not necessarily attain the
global minimum of the optimization problem solved at each
sample time. For these implementable suboptimal MPC algo-
rithms, we prove nominal exponential stability of the origin of
the closed-loop system. The stability property is robust with
respect to (sufficiently small but otherwise arbitrary) process
disturbances and state measurement/estimation errors. When
(hard) state constraints appear in the control problem, our re-
sult requires a (local) continuity assumption of the feasible input
space. If (hard) state constraints are not present, robustness of
stability can be proved under standard assumptions. We show
an example to illustrate the main ideas behind these results.

I. INTRODUCTION

Nominal stability properties of MPC for discrete-time
systems are well understood both for linear and nonlinear
systems; in most cases nominal asymptotic or exponential
stability can be established [1], [2]. These results tend to
assume exact solution of the optimal control problem at each
decision point. However, exact global solutions may not be
attainable in practice, especially when dealing with nonlinear
systems, which typically give rise to nonconvex problems. If
a suboptimal solution is implemented, stability may not hold,
or may be difficult to establish. In [3], however, it was shown
that if the optimization yields a feasible, suboptimal solution
whose cost is no worse than that of a well chosen warm start
(and if some other technical assumptions hold), asymptotic
stability of the equilibrium can be proved.

When considering systems subject to unknown distur-
bances and state measurement/estimation errors, so-called
robust MPC formulations are usually proposed, in which
a control law is required to satisfy the constraints for all
allowed values of the unknown disturbances (see e.g. [4]–
[7], [2, Ch. 3] and references therein). A major challenge
in robust MPC design is in the handling of hard state
constraints. To maintain feasibility of state constraints un-
der disturbances, the authors in [8] propose modifying the
nominal MPC problem by altering the state constraints to
become progressively tighter with time. A different approach
to the issue of robustness is to study stability properties of
perturbed systems controlled by MPC algorithms that ignore
such disturbances. Since most industrial (linear and nonlin-
ear) MPC algorithms fall within this class, it is surprising
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that this approach has received much less attention in the
literature [9], [10]. This observation is made by Grimm
et al. [11], who present examples of nonlinear systems
controlled by MPC in which the asymptotic stability of the
equilibrium is destroyed by arbitrarily small perturbations.
In a subsequent paper [12], these authors present sufficient
conditions for robust stability of an MPC algorithm in which
feasibility is maintained by means of time-varying tightening
of the state constraints. Further results on robustness of
discontinuous discrete-time systems and Lyapunov functions
are discussed in [13]. The paper [11] also shows that for
linear systems with a quadratic cost, the optimal MPC
cost function is a continuous Lyapunov function for the
closed-loop system (because the optimal state-feedback law
is continuous), leading to inherent robust stability of the
equilibrium. On the other hand, a suboptimal MPC law
is not necessarily continuous, even for linear systems, and
hence inherent robustness cannot be established even in such
a simple case. Lazar and Heemels [14], in a significant
paper, were the first to address robustness of suboptimal
MPC explicitly. Their results require a specified degree of
suboptimality to be satisfied, and employs the technique of
time-varying tightening of state constraints (as in [8], [12])
to achieve recursive feasibility under disturbances.

Due to space limitations all proofs of the results of this
paper are reported in [15].

Notation: The symbols I≥0 and R≥0 denote the sets
of nonnegative integers and reals, respectively. The symbol
I0:N−1 denotes the set {0,1, . . . ,N − 1}. The symbol | · |
denotes the Euclidean norm and B denotes the closed ball of
radius 1 centered at the origin. We denote the interior of a set
X as int(X). Given a nonnegative function V : X →R≥0 and
a positive scalar α , we define levαV = {x ∈ X |V (x)≤ α}.

II. SUBOPTIMAL NONLINEAR MPC
A. Basic definitions and assumptions

We consider discrete-time systems subject to state and
input constraints in the following form:

x+ = f (x,u), x ∈ X, u ∈ U (1)

in which x ∈ Rn, x+ ∈ Rn are the state at a given time and
the successor state, respectively, while u ∈Rm is the control
input. Given an integer N, and an input sequence u ∈ UN ,
u = {u(0),u(1), . . . ,u(N−1)}, we denote with φ(k;x,u) the
solution of (1) at time k for a given initial state x(0) = x.
For any state x ∈ Rn and input sequence u ∈ UN , we define
a cost function over the finite horizon N:

VN(x,u) =
N−1

∑
k=0

`(φ(k;x,u),u(k))+Vf (φ(N;x,u))
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A pair (x,u) is feasible if it belongs to the following set:

ZN = {(x,u) | u(k) ∈ U, φ(k;x,u) ∈ X for all k ∈ I0:N−1,

and φ(N;x,u) ∈ X f }

in which X f is the terminal constraint set. Consequently, the
set of feasible states is:

XN = {x ∈ Rn | ∃u ∈ UN such that (x,u) ∈ ZN} (2)

and for each x ∈XN , the set of feasible input sequences is:

UN(x) = {u | (x,u) ∈ ZN}

Finally, for each x ∈XN we consider:

PN(x) : min
u

VN(x,u) s.t. u ∈UN(x)

We make the following standing assumptions.
Assumption 1: The functions f : Rn×Rm→ Rn, ` : Rn×

Rm→ R≥0 and Vf : Rn→ R≥0 are continuous, f (0,0) = 0,
`(0,0) = 0, and Vf (0) = 0.

Assumption 2: The set U is compact and contains the
origin. The sets X and X f are closed and contain the origin
in their interiors, and X f ⊆ X.

Assumption 3: For any x∈X f there exists u∈U such that
f (x,u) ∈ X f and Vf ( f (x,u))+ `(x,u)≤Vf (x).

Assumption 4: There exist positive constants a, a′1, a′2, a f
and r̄, such that the cost function satisfies the inequalities

`(x,u)≥ a′1|(x,u)|a for all (x,u) ∈ X×U
VN(x,u)≤ a′2|(x,u)|a for all (x,u) ∈ r̄B

Vf (x)≤ a f |x|a for all x ∈ X

B. Suboptimal solutions

In general PN is a nonconvex optimization problem, and
there is no guarantee that numerical solvers can actually
achieve the global minimum, even within a pre-specified
tolerance margin. Thus, instead of solving PN exactly, we
consider using any suboptimal algorithm having the follow-
ing properties. Let u∈UN(x) denote the (suboptimal) control
sequence for the initial state x, and let ũ denote a warm
start for the successor initial state x+ = f (x,u(0;x)), obtained
from (x,u) by setting

ũ = {u(1;x),u(2;x), . . . ,u(N−1;x),u+} (3)

in which u+ ∈ U is any input that satisfies the invariance
conditions of Assumption 3 for x = φ(N;x,u) ∈ X f . We
observe that the warm start is feasible for the successor
state, i.e., ũ∈UN(x+). Then, the suboptimal solution for the
successor state is defined as any input sequence u+ ∈UN(x+)
that satisfies:

u+ ∈UN(x+) (4a)
VN(x+,u+)≤VN(x+, ũ) (4b)
VN(x+,u+)≤Vf (x+) when x+ ∈ rB (4c)

in which r is a positive scalar sufficiently small that rB⊆X f .
We remark that condition (4b) ensures that the computed
suboptimal cost is no larger than that of the warm start.

In general, all numerical solvers can guarantee this kind of
bound without requiring convergence to an optimal solution
point. For instance, feasible sequential quadratic program-
ming (fSQP) algorithms can be terminated at any finite
number of iterations while respecting this bound.

Proposition 5: Any optimal solution u0(x+) to PN(x+),
satisfies conditions (4a), (4b) for all x+ ∈ XN . Moreover,
condition (4c) is satisfied by u0(x+) for all x+ ∈ X f .

Corollary 6: For any x+ ∈ XN , there exists a u+ ∈
UN(x+) satisfying all conditions (4) for all ũ ∈UN(x+).

It is important to notice that u is a set-valued map of the
state x, and so too is the associated first component u(0;x). If
we denote the latter map as κN(·), we can write the evolution
of the system (1) in closed-loop with suboptimal MPC as the
following difference inclusion:

x+ ∈ F(x) = { f (x,u) | u ∈ κN(x)} (5)

Proposition 7: We have that κN(0)= {0} and F(0)= {0}.

III. NOMINAL STABILITY

A. Supporting results for difference inclusions

Definition 8 (Exponential stability): The origin of the dif-
ference inclusion z+ ∈ H(z) is exponentially stable (ES) on
Z , 0 ∈Z , if there exist scalars b > 0 and 0 < λ < 1, such
that for any z ∈Z , all solutions ψ(k;z) satisfy:

ψ(k;z) ∈Z , |ψ(k;z)| ≤ bλ
k|z| for all k ∈ I≥0.

Definition 9 (Exponential Lyapunov function): V is an
exponential Lyapunov function on the set Z for the dif-
ference inclusion z+ ∈ H(z) if there exist positive scalars a,
a1, a2, a3 such that the following holds for all z ∈Z :

a1|z|a ≤V (z)≤ a2|z|a, max
z+∈H(z)

V (z+)≤V (z)−a3|z|a.

We have the following results.
Proposition 10: If V is an exponential Lyapunov function

on the set Z for the difference inclusion z+ ∈ H(z), there
exists 0 < γ < 1 such that:

max
z+∈H(z)

V (z+)≤ γV (z).

Lemma 11: If the set Z , 0 ∈ Z , is positively invariant
for the difference inclusion z+ ∈H(z), H(0) = {0}, and there
exists an exponential Lyapunov function V on Z , the origin
is ES on Z .

B. Main results

We define an extended state z = (x,u) and observe that it
evolves according to the difference inclusion

z+ ∈ H(z) = {(x+,u+) | x+ = f (x,u(0;x)), u+ ∈ G(z)} (6)

in which (noting that both x+ and ũ depend on z):

G(z) = {u+ | u+ ∈UN(x+),VN(x+,u+)≤VN(x+, ũ),
and VN(x+,u+)≤Vf (x+) if x+ ∈ rB}.

We also define the following set (notice that rB⊆ X f ):

Zr = {(x,u) ∈ ZN |VN(x,u)≤Vf (x) if x ∈ rB}.
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Lemma 12: There exists a positive constant c such that
|u| ≤ c|x| for any (x,u) ∈Zr.

Lemma 13: VN(z) is an exponential Lyapunov function for
the extended closed-loop system (6) in any compact subset
of Zr.

Theorem 14: Under Assumptions 1, 2, 3, and 4, the origin
of the closed-loop system (5) is ES on (arbitrarily large)
compact subsets of XN .

Corollary 15: Under Assumptions 1, 2, 3, and 4, if XN
is compact, the origin of (5) is ES on XN .

IV. INHERENT ROBUSTNESS

A. Disturbances and robust stability definitions

For inherent robustness analysis, we consider the closed-
loop evolution of the perturbed system

x+ ∈ Fed(x) = { f (x,u)+d | u ∈ κN(x+ e)} (7)

in which d ∈ Rn is an unknown process disturbance and
e ∈ Rn represents an unknown state measurement/estimate
error. It is important to remark that in the perturbed case,
the control sequence u is computed as a suboptimal solution
of PN(xm), with xm = x+e, i.e., it is based on the evolution
of the nominal system (1), for the initial measured state.
We denote by φed(k;x) = x(k) a solution to the perturbed
closed-loop system (7) for the initial state x(0) = x and
given disturbance and measurement error sequences {d(k)},
{e(k)}. We now present the definition of robust exponential
stability (RES), which resembles that of robust asymptotic
stability (RAS) given in [11].

Definition 16 (RES): The origin of the closed-loop system
(7) is robustly exponentially stable (RES) on int(XN) if there
exist scalars b > 0 and 0 < λ < 1 such that for all compact
sets C ⊂XN , with 0∈ int(C ), the following property holds:
Given any ε > 0, there exists δ > 0 such that for all sequences
{d(k)} and {e(k)} with x(0) = x ∈ C satisfying

max
k≥0
|d(k)| ≤ δ , max

k≥0
|e(k)| ≤ δ ,

xm(k) = x(k)+ e(k) ∈XN , x(k) ∈XN , ∀k ∈ I≥0,

it follows that

|φed(k;x)| ≤ bλ
k|x|+ ε, for all k ∈ I≥0. (9)

We remark that in RES (or RAS given in [11]), the robust
stability condition (9) is presented for those (if any) initial
states, disturbance and measurement error sequences that a-
priori ensure feasibility of the perturbed closed-loop trajec-
tories. The next definition instead requires that feasibility is
satisfied at all times, for all sufficiently small disturbance and
measurement error sequences and all initial states in a given
compact subset of int(XN) .

Definition 17 (SRES): The origin of the closed-loop sys-
tem (7) is strongly robustly exponentially stable (SRES) on a
compact set C ⊂XN , 0 ∈ int(C ), if there exist scalars b > 0
and 0 < λ < 1 such that the following property holds: Given
any ε > 0, there exists δ > 0 such that for all sequences
{d(k)} and {e(k)} satisfying

|d(k)| ≤ δ and |e(k)| ≤ δ for all k ∈ I≥0,

and all x ∈ C , we have that

xm(k) = x(k)+ e(k) ∈XN , x(k) ∈XN , ∀k ∈ I≥0, (10a)

|φed(k;x)| ≤ bλ
k|x|+ ε, ∀k ∈ I≥0. (10b)

B. Feasibility

Before presenting the robust stability results, we observe
that although the warm start ũ is feasible for the predicted
successor state x̃+ = f (xm,u(0;xm)) (i.e., (x̃+, ũ) ∈ ZN),
it may not be feasible for the measured successor state,
i.e., x+m = f (x,u(0;xm)) + d + e+. We remark that the true
successor state, which is unknown in general, is x+ =
f (x,u(0;xm)) + d. If (x+m , ũ) /∈ ZN , the right-hand side of
the cost inequality (4b) is not meaningful. In such cases,
we need to modify the warm start with a term p such that
(x+m , ũ+p) ∈ ZN , and to this end we consider the following
additional assumption.

Assumption 18: For any x,x′ ∈XN and u ∈UN(x), there
exists u′ ∈ UN(x′) such that |u−u′| ≤ σ(|x− x′|) for some
K -function σ(·).

We remark that Assumption 18 has been shown to hold,
e.g., for linear systems subject to polytopic constraints on
(x,u), and for nonlinear systems without state (or mixed)
constraints. When the warm start ũ is not feasible, among
various options for finding p, we consider the following
feasibility problem (recalling that x̃+ is known):

Find p s.t. ũ+p ∈UN(x+m) and |p| ≤ σ(|x+m− x̃+|). (11)

If ũ ∈ UN(x+m), then p = 0 satisfies the feasibility prob-
lem (11), and hence Assumption 18 is unnecessary. Further-
more, we do not require Assumption 18 when treating the
case without state constraints in Section V.

Proposition 19: Under Assumption 18, for any (x̃+, ũ) ∈
ZN and x+m ∈XN , the set of solutions to (11) is nonempty.

Given any p satisfying (11), and for any given x+m ∈XN ,
we replace conditions (4) with the following:

u+ ∈UN(x+m) (12a)
VN(x+m ,u

+)≤VN(x+m , ũ+p) (12b)
VN(x+m ,u

+)≤Vf (x+m) when x+m ∈ rB. (12c)

In the perturbed case, the extended state is z = (x,u), with
u a suboptimal solution to PN(xm) where xm = x+ e is the
measured state. The extended system evolves as follows:

z+ ∈ Hed(z) = {(x+,u+) | x+ = f (x,u(0;xm))+d,

u+ ∈ Ged(z)}, (13)

in which (note that both x+m and ũ+p depend on z):

Ged(z) = {u+ | u+ ∈UN(x+m),VN(x+m ,u
+)≤VN(x+m , ũ+p),

VN(x+m ,u
+)≤Vf (x+m) if x+m ∈ rB}.
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C. Main results

We define zm = (xm,u) = (x+e,u) = z+(e,0) and observe
that zm ∈Zr. The following supporting result is fundamental.

Lemma 20: For every µ > 0, there exists a δ > 0 and
γ ∈ (0,1) such that, for all (zm,e,d,e+)∈Zr×δB×δB×δB
with x+m ∈XN , we have:

max
z+∈Hed(z)

VN(z+)≤max{γVN(z),µ},

where z = zm− (e,0).
We now characterize the compact sets over which SRES

is guaranteed to hold. Consider V̄ > 0 such that the set:

S = {z ∈ Rn×UN |VN(z)≤ V̄}

satisfies S ⊆ ZN , i.e., S is a sublevel set of Rn×UN fully
contained in ZN . Thus, by definition, for any z = (x,u)∈S ,
it follows that x ∈XN . Next, given a scalar ρ > 0 and any
zm ∈Zr, we define the following measure and associated set:

V ρ

N (zm) = max
e∈ρB

VN(z) s.t. z = zm− (e,0) (14)

Sρ = {zm ∈Zr |V ρ

N (zm)≤ V̄} (15)

in which we assume that ρ is small enough that Sρ is
nonempty. Finally, we define the following compact set:

Cρ = {x ∈Rn | x = xm−e,e ∈ ρB,∃u : (xm,u) ∈Sρ}. (16)

and we observe that 0 ∈ int(Cρ) ⊂ XN for ρ sufficiently
small. The main SRES result of this paper is as follows.

Theorem 21: Under Assumptions 1, 2, 3, 4, and 18, the
origin of the perturbed closed-loop system (7) is SRES on
Cρ .

Corollary 22: Under Assumptions 1, 2, 3, 4, and 18, the
origin of the perturbed closed-loop system (7) is RES on
int(XN).

V. CASE WITHOUT STATE CONSTRAINTS

A. Controller definition

We now specialize the results on inherent robustness for
the case in which there are no state constraints. To this aim,
we replace Assumption 2 with the following one.

Assumption 23: The set U is compact and contains the
origin. The sets X=Rn and X f = levαVf = {x∈Rn |Vf (x)≤
α}, with α > 0.

As discussed later on, Assumption 18 will not be neces-
sary, whereas Assumptions 1, 3 and 4 (with VN(·) replaced
by V β

N (·) later defined) are required. We modify the cost
function as follows:

V β

N (x,u) =
N−1

∑
k=0

`(φ(k;x,u),u(k))+βVf (φ(N;x,u))

in which β ≥ 1 is a parameter that will be chosen in way
that the terminal constraint, φ(N;x,u) ∈ X f , is unnecessary
as it will be satisfied inherently for any suboptimal input
sequence with appropriately bounded cost. Given the warm
start ũ for the successor state x+ = f (x,u(0;x)), defined as

in (3), we modify the requirements to the suboptimal MPC
algorithm as follows:

u+ ∈ UN (17a)

V β

N (x+,u+)≤V β

N (x+, ũ) (17b)

V β

N (x+,u+)≤ βVf (x+) when x+ ∈ rB (17c)

We observe that the main difference between the above
requirements and those in (4) is that in (17a) we allow
any input u+ ∈ UN , whereas in (4) the terminal constraint,
φ(N;x,u) ∈ X f , is explicitly enforced by (4a). Condition
(17c) is also slightly different and follows from the modifica-
tion of the terminal penalty. To avoid unnecessary repetition,
we again use (5) (or (6) when referring to the extended state)
to describe the evolution of the nominal closed-loop system
under suboptimal MPC with modified terminal penalty. We
choose scalar (maximal cost) V̄ ≥ α > 0 and define the
following compact sets:

Z̄r = {(x,u) ∈ Rn×UN |V β

N (x,u)≤ V̄ ,

and V β

N (x,u)≤ βVf (x) if x ∈ rB}
X0 = {x ∈ Rn|∃u ∈ UN such that (x,u) ∈ Z̄r} (18)

For the remainder of the paper we choose β = β̄ := V̄/α ,
in which V̄ is the maximal cost in the previous set definitions
and α > 0 is the terminal region sublevel set parameter of
Assumption 23. Note that all the results to follow also hold
if we choose any β satisfying β ≥ β̄ . We point out that the
choice β ≥ β̄ also implies that Z̄r does not contain any
trajectories terminating on the boundary of X f . For such
trajectories, Vf (x(N)) = α , and thus ∑

N−1
i=0 `(x(i),u(i)) ≤ 0,

which is satisfied only by (x(i),u(i)) = (0,0) for i ∈ I0:N−1,
which implies that x(N)= 0, which is a contradiction. Hence,
X0 contains only states that can be steered to int(X f ).

B. Nominal stability

Lemma 24: V β

N (z) is an exponential Lyapunov function
for the extended closed-loop system (6) in any compact
subset of Z̄r.

Theorem 25: Under Assumptions 1, 23, 3, and 4, the
origin of the closed-loop system (5) is ES on X0.

We now characterize the set X0 and its limit for large V̄ . To
this end we define a (slightly) restricted feasible set of initial
states that can be taken by an admissible input sequence to
the interior of X f , rather than all of X f (note that the interior
of X f is not empty because α > 0):

X̄N := {x ∈ Rn | ∃u ∈ UN s.t. φ(N;x,u) ∈ int(X f )} (19)

Proposition 26: The admissible set X0 and restricted fea-
sible set X̄N satisfy the following:

X0(V̄ )⊆ X̄N for all V̄ ≥ 0, and X̄N ⊆ ∪
V≥0

X0(V̄ ) (20)
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C. Inherent robustness

For inherent robustness analysis of the case without state
constraints, we again consider that the closed-loop system
evolves according to (7). We observe that having removed
the terminal constraint has the immediate benefit that the
warm start ũ is “feasible” for the measured successor state
x+m = x++ e+, because ũ ∈ UN . Hence, there is no need to
solve the feasibility problem (11). Therefore, we can write
the evolution of the extended closed-loop system as z+ ∈
Hed(z) in which Hed(z) is still defined in (13) with Ged(z)
modified as follows:

Ged(z) = {u+ | u+ ∈ UN ,V β

N (x+m ,u
+)≤V β

N (x+m , ũ),

V β

N (x+m ,u
+)≤ βVf (x+m) if x+m ∈ rB}

We also observe that the fundamental result of Lemma 20
still holds for the modified cost V β

N , with Zr replaced by Z̄r.
We now present a set over which we prove SRES. Given

a scalar ρ > 0 and any zm ∈ Z̄r, we define:

V̄ ρ

N (zm) = max
e∈ρB

V β

N (z) s.t. z = zm− (e,0) (21a)

S̄ρ = {zm ∈ Z̄r | V̄ ρ

N (zm)≤ V̄} (21b)

in which we assume that ρ is small enough that S̄ρ is
nonempty. Finally, the candidate set for SRES is defined as:

C̄ρ = {x ∈ Rn | x = xm− e,e ∈ ρB,∃u : (xm,u) ∈ S̄ρ} (22)

Theorem 27: Under Assumptions 1, 23, 3 and 4, the origin
of the closed-loop system (7) is SRES on C̄ρ .

When |d|, |e| → 0, it follows directly from (21) and (22)
that C̄ρ → X0 and SRES holds over a set approaching the
admissible set of initial conditions. This observation, coupled
with (20) gives the desired result: in the limit of small
disturbances and large parameter V̄ , the robust region of
attraction for the case without state constraints converges to
(the closure of) the restricted feasible set.

VI. ILLUSTRATIVE EXAMPLE

A. System and controllers

We consider the following system:

x+1 = x1 +u

x+2 = bx2 +u3

with 0 < |b| < 1. The horizon is N = 3, U = [−1, 1], and
the stage cost function is given by: `(x,u) = |x|2 +u2. Three
different nonlinear MPC formulations are considered.
C1. No state constraints are enforced, X = R2, and the

terminal constraint set is the origin, X f = {0}.
C2. No state constraints are enforced, X = R2, and the

terminal constraint set is X f = {x∈R2 | x′Px≤ α} with
α > 0 and P later defined.

C3. State constraints are enforced, X = [−2, 2]2, and the
terminal constraint set is the same of C2.

We remark that controller C1 does not satisfy Assumption
2 because X f does not contain the origin in its interior. In

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

x2

x1

C1
C2
C3

C2-X0

Fig. 1. Approximate feasibility sets of the three controllers

the definition of controllers C2 and C3, we note that the
linearization of system around the origin can be written as:

x+ = Ax+Bu with A =

[
1 0
0 b

]
, B =

[
1
0

]
and we observe that the pair (A,B) is stabilizable. Therefore,
we follow the procedure described in [2, Par. 2.5.3.2], and
we define a linear control law κ f (x) = Kx = [k, 0]x. We note
that such control law which is stabilizing for the linearized
system if and only if |1+ k| < 1. Assuming that k satisfies
the previous condition, let QK = I+K′K, AK = A+BK, and
solve the following Lyapunov equation (notice the factor
2 multiplying QK): A′KPAK + 2QK = P. Consequently, we
define the terminal cost Vf (x) = x′Px, while the terminal
constraint set is given by X f = {x∈R2 |Vf (x)≤α}, in which
α > 0; we notice that P is positive definite because QK is
positive definite. It can be shown [2, Par. 2.5.3.2] that there
exists α > 0 such that Assumption 3 holds for u = κ f (x).
Furthermore, it can be verified that Assumptions 1 and 2
hold. Similarly, Assumption 4 holds for a = 2.

B. Results and discussion

We now present some numerical results, considering in
the system dynamics b = 0.9. In the definition of Vf and
P discussed in the previous paragraph, we use k = −1. It
follows that P =

[
4 0
0 10.53

]
, and it can be verified that α = 1.1

is such that Assumption 3 holds for u = [−1, 0]x. We report
in Fig. 1 the approximate feasibility sets, XN , for the three
controllers. For controller C2, we also show the restricted
feasibility set X0 obtained for V̄ = 100. As expected, we
notice for C2 that X0 ⊆XN , although we can notice that
X0 is covering almost all XN . Furthermore, the feasibility
set XN for C2 contains both the feasibility sets for C1 and
C3. We report in Fig. 2 the first component of UN(x), with
x = 0.5 [cos(θ), sin(θ)], as a function of θ for the controllers
C1 and C2 (the plot for C3 is not reported as it identical to
that of C2). For C1, we can notice that Assumption 18 does
not hold at the point indicated by the arrow. On the other
hand, no such points can be noticed in this plot for C2.

VII. CONCLUSIONS

This paper analyzes the nominal and robust stability prop-
erties of discrete-time nonlinear systems in closed-loop with
general and implementable suboptimal MPC algorithms. The
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Fig. 2. First component of the input feasibility set UN(x) as a function of
the initial state x = 0.5 [cos(θ), sin(θ)]. C1 (top), C2 (bottom)

class of suboptimal algorithms analyzed in this paper simply
require computing a control sequence that improves the cost
of a warm start sequence. In the nominal case, such warm
start is immediately available from the previous decision
time, while in the perturbed case it may happen that the warm
start available from the previous decision time is infeasible,
and a feasibility recovery step is required. No preassigned
tolerance with respect to the optimal cost is required [14] to
prove the results of this paper.

The paper [3] proved nominal asymptotic stability in a
neighborhood of the origin. We went several steps further,
and proved nominal exponential stability in arbitrarily large
compact subsets of the feasible region. However, the most
relevant contribution of this paper was to establish inherent
robust exponential stability of the origin, with respect to
sufficiently small but otherwise arbitrary unknown process
disturbances and state measurement/estimation errors. Inher-
ent robustness, in the spirit of ideas and results proved by
Teel and coworkers [11], [12], means that the controller is
based on the nominal system model and ignores such un-
known perturbations. To prove the robust stability properties
we require an continuity assumption on input feasible set,
with respect to the initial state. That assumption is used to
show that in the perturbed case, the feasibility recovery step
size of the warm start is bounded by some K −function
of the perturbation size. Such an assumption holds, e.g., (i)
when no state constraints are enforced and (ii) for linear
systems subject to polytopic constraints (on input and state).

When state constraints are excluded in the controller for-
mulation, e.g. when state constraints are softened, a variant
of the controller can be used, in which the terminal constraint

is also excluded, while its satisfaction required for stability
analysis is ensured implicitly by using an inflated terminal
penalty. The major benefit of this formulation is that the
warm start from the previous decision time is always feasible,
and hence no recovery step is required in the perturbed case.

All the results proved in this paper apply to optimal
MPC as well, and thus suboptimal and optimal nonlinear
MPC have the same (qualitative) robust stability properties,
although we can expect that the size of perturbations that can
be tolerated by optimal MPC may be larger. The nonlinear
MPC formulation considered in this paper is as simple as
possible, e.g., we did not use any state constraint tightening
approach [8], [12] to ensure recursive robust feasibility of
the optimization problem. Essentially most industrial (linear
and nonlinear) MPC algorithms fall within this class, and
the results of this paper are expected to provide further
confidence in the use of MPC for nonlinear systems where
global optimization is usually out of reach.
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