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Abstract— Pursuit-evasion games are an important problem
in robotics and control, but games with many players are
difficult to analyze and solve. This paper studies a game
of multiple pursuers cooperating to capture a single evader
in a bounded, convex, polytope in the plane. We present a
decentralized control scheme based on the Voronoi partion of
the game domain, where the pursuers jointly minimize the area
of the evader’s Voronoi cell. We prove that capturing the evader
is guaranteed under this scheme regardless of the evader’s
actions, and show simulation results demonstrating the pursuit
strategy.

I. INTRODUCTION

Pursuit-evasion games describe a class of problems where
one or more pursuers attempt to move within some distance
of one or more evaders moving to escape them. Such games
are relevant to a number of applications in robotics and
control. With dynamics and multiple adversarial players, they
are challenging to analyze and difficult to solve.

Early studies often focused on a single pursuer and evader
in a continuous, unbounded state space. The problem is cast
as a differential game, and optimal strategies are found for
both players as saddle-points to a minimax optimization over
the distance between them [1]. A large body of work based
on this approach has since appeared, with solutions ranging
from the method of characteristics [2], [3] to numerical
solutions of related Hamilton-Jacobi equations [4], [5].

Another significant body of work is on pursuit-evasion in
bounded domains, especially for games played on graphs
where the pursuers progressively reduce the states available
to the evader [6], [7]. A closely related problem is search
in finite domains, also known as visibility-based pursuit-
evasion. One well-known approach is to decompose the
continuous search space into a discrete graph, for which a
plan is found that successively clears cells while preventing
evaders from re-entering previously searched cells [8].

In all cases, managing multiple cooperating pursuers is a
major challenge. Analytic solutions using differential games
exist for some particular problems with small numbers of
pursuers [9], [10], but more general solutions are limited
by the curse of dimensionality. Some approaches simplify
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the problem by limiting the planning horizon, for exam-
ple by greedy optimization over one time-step of a cost
function such as a distance metric [11] or entropy of a
distribution [12], or via limited-depth tree search [8]. Others
assume a known model for the evader’s inputs and solve for
pursuer trajectories in a receding-horizon framework [13],
[14]. While these simplifications allow coordinated plans
to be generated, they may lose guarantees of capture or
completeness.

The pursuit-evasion problem we address consists of con-
trolling a team of identical pursuers to capture a single
evader with similar dynamics in a convex planar polytope.
Both evader and pursuers are constrained to an identical
maximum velocity, otherwise no assumptions are made about
the evader’s strategy or inputs. The set of all points that the
evader can reach before any of the pursuers can be found
through a Voronoi decomposition of the game domain [15].

Some previous work has looked at using Voronoi regions
in a scenario where the evader’s control law is known to
the pursuers [16]. Voronoi decomposition has also been
extensively used in distributed and decentralized control of
multiple agents in surveillance and coverage tasks, where co-
operative actions result from the influence of shared Voronoi
boundaries [17].

We present a decentralized, guaranteed pursuit strategy
where the pursuers cooperatively minimize the area of the
evader’s Voronoi cell by independently controlling each
pursuer’s shared Voronoi boundary with the evader. The
pursuers compute control inputs independently given the
boundaries of the evader’s Voronoi cell, which is the only
shared information. We show that this pursuit strategy results
in guaranteed capture of the evader in finite time regardless
of the strategy or inputs of the evader. Several simulations
are also presented to illustrate some key characteristics of
the strategy.

This paper unfolds as follows. Section II defines the
pursuit-evasion problem in question, and Section III lays
out the pursuit strategy. The proof of guaranteed capture is
presented in Section IV, with simulation results in Section V
and conclusions and future work in Section VI.

II. PROBLEM FORMULATION

We consider a multi-player pursuit-evasion game involving
N pursuers and a single evader, taking place in the interior
of a polytope D in R2. The goal of the pursuers is to capture
the evader by having at least one of the pursuers come within
some distance rc of the evader. Let e ∈ R2 be the position
of the evader and pi ∈ R2 be the position of pursuer i.
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Consider the equations of motion

ė = ue, e(0) = e0,

ṗi = ui, pi(0) = pi,0, i = 1, ..., N, (1)

where ue and ui are the velocity control inputs of the evader
and pursuers, respectively, and e0, pi,0 ∈ D are the initial
evader and pursuer positions. The players are assumed to be
subject to identical speed constraints, namely

||ue(t)||2 ≤ vmax, ||ui(t)||2 ≤ vmax, ∀t ≥ 0, (2)

for some maximum speed vmax. The motions of the evader
and pursuers, as described by (1), are also constrained to lie
within the region D:

e(t) ∈ D, pi(t) ∈ D, ∀t ≥ 0. (3)

Any velocity input ue(t) or ui(t) which satisfies the con-
straints (2) and (3) is called an admissible input for the evader
or pursuer i, respectively.

Now define the minimum separation distance between the
evader and the pursuers at any given time t as

dmin(t) , min
i
||pi(t)− e(t)||2.

Assuming a finite radius of capture rc > 0, the capture
condition for the pursuers is then given by

dmin(T ) ≤ rc, for some T ≥ 0. (4)

In order to achieve this capture condition, each pursuer is
allowed to select a pursuit strategy µi(e,p1, ...,pN ), based
upon observations of the evader and pursuer positions at each
time instant, resulting in the closed-loop system dynamics:

ė = ue, e(0) = e0,

ṗi = µi(e,p1, ...,pN ), pi(0) = pi,0, i = 1, ..., N (5)

Any strategy µi which satisfies the constraints (2) and (3) is
referred to as an admissible pursuit strategy for pursuer i.

We can now give a precise statement of the problem for
our multi-player pursuit-evasion game.

Problem 1: For any initial configuration e0, pi,0 ∈ D
satisfying dmin(0) > rc, find an admissible choice of pursuit
strategy µi for each pursuer i such that, regardless of any
admissible choice of evader input ue, the capture condition
(4) is satisfied for some T <∞.

It can be observed that by appropriate re-scaling of the
dynamics (5), the polytope D, and the capture radius rc,
it is sufficient to consider this problem for the case where
vmax = 1. Thus, for the rest of this paper, we will assume
without loss of generality that vmax = 1 in (2).

III. PURSUIT STRATEGY

The pursuit strategy we propose is based on the Voronoi
partitions of D generated by the locations of the players.
Roughly speaking, the strategy is designed so as to decrease
the area of the evaders’ Voronoi cell over time. Intuitively, as
this area decreases towards zero, the capture condition will be
satisfied. In this section, we will describe some mathematical

Line of Control 

(a) (b)

Fig. 1. Illustrations showing the evader’s Voronoi cell Ve (a) for a
single pursuer and evader and (b) with an additional pursuer.

properties of this pursuit strategy necessary for the proof of
finite time capture.

Let V(D) = {Ve, V1, . . . , VN} be the Voronoi partition of
D generated by the points {e,p1, . . . ,pN}:

Ve = {x ∈ D : ‖x− e‖ ≤ ‖x− pi‖,∀i ≤ N},
Vi =

{
x ∈ D : ‖x− pi‖ ≤
min{‖x− e‖, ‖x− pj‖},∀j 6= i

}
, i ≤ N

Let Ne be the set of pursuer indices that are Voronoi
neighbors of the evader. The edge shared by Ve and Vi,
i ∈ Ne is called the line of control for pursuer i and is
denoted by Bi, where Li is the length of Bi (see Figure 1).
We denote by A the area of the Voronoi cell Ve containing
the evader. This area can be calculated as

A(e,p1, ...,pN ) =

ne∑
j=1

(
xejy

e
j+1 − xej+1y

e
j

)
, (6)

where {(xej , yej )}j≤ne is the set of vertices of Ve and ne+1
wraps around to the first vertex. It can be easily verified that
the area A depends only on the locations of the neighboring
pursuers and that this dependence is smooth whenever the
pursuer locations are in D. The time derivative of A is given
by

dA

dt
=
∂A

∂e
ė+

N∑
i=1

∂A

∂pi
ṗi (7)

Now consider a cooperative pursuit strategy that jointly
minimizes dA

dt . According to (7), this joint objective can be
decoupled into the individual objectives of minimizing ∂A

∂pi
ṗi

for each pursuer i. Since A depends only on the Voronoi
neighbors of the evader, we have ∂A

∂pi
= 0 for all i /∈ Ne.

Thus, for any pursuer i which is not a Voronoi neighbor of
the evader, we simply set ui = e−pi

||e−pi|| . On the other hand,
for each pursuer i ∈ Ne, the choice of pursuit strategy which
minimizes (7) is given by:

u∗i = µ∗i (e,p1, . . . ,pN ) ,
− ∂A
∂pi

|| ∂A∂pi
||
,

where we make use of the assumption that vmax = 1.
To enable analysis on the proposed pursuit strategy, we

now derive an analytical expression for µ∗i , i ∈ Ne using
a particular choice of local coordinate system. First, let
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Fig. 2. Variational change in area of the pursuer’s Voronoi region with respect to (a) a perturbation toward the evader), (b) perturbation parallel
to the line of control, and (c) when another pursuer is present and ξi no longer intersects Bi, as in Figure 1b.

ξi(e,p) = e− pi be the displacement vector pointing from
the location of pursuer i towards the location of the evader.
When there is no ambiguity, we will omit its arguments and
denote this vector simply by ξi. By the assumption that
dmin(0) > rc and the fact that capture is achieved when
dmin(T ) = rc, we have ||ξi(e(t),p(t))|| ≥ rc for all i ≤ N
and t ∈ [0, T ]. Define ηih = ξi

‖ξ‖i and let ηiv ∈ R2 be a unit
vector orthogonal to ηih, as shown in Figure 1a. The vectors
{ηih,ηiv} define a local coordinate system that depends on
the locations of e and pi. For any x ∈ R2 and (e,p1, ...,pN )
such that x+ pi ∈ D, define

A+
i (x)|(e,p1,...,pN ) = A(e,p1, ...,pi + x, ...pN ).

Denoting by Di
hA and Di

vA the directional derivatives of A
along ηih and ηiv , we haveDi

hA|(e,p1,...,pN ) = limε→0
A+

i (ε·ηi
h)|(e,p1,...,pN )−A

ε

Di
vA|(e,p1,...,pN ) = limε→0

A+
i (ε·ηi

v)|(e,p1,...,pN )−A
ε ,

(8)

where we denote A(e,p1, ...,pN ) by A for brevity. From
this expression, we have that the partial derivative of A with
respect to pi is given by

∂A

∂pi
= Di

hA · ηih +Di
vA · ηiv. (9)

Lemma 1: For any i ∈ Ne, we have

Di
hA = −Li

2
,

Di
vA =

l2i − (Li − li)2

2||ξi||
,

where Li is the length of the line of control Bi and li is the
length of the segment of Bi on the side of the intersection
of ξi with Bi opposite to ηiv , as shown in Figure 2.

Proof: Perturbation along ηih: A perturbation ε in the
pursuer’s position toward the evader moves the line of control
ε
2 toward the evader, and generates a corresponding change

in the area of the evader’s Voronoi cell δAih, as shown in
Figure 2a. This change in area is

δAih = −Liε
2

+O(ε2),

where the O(ε2) term depends on the angle of intersection
between Bi and the boundaries of the Voronoi cell Ve. From
this expression, the directional derivative of A along ηih can
be calculated as

Di
hA = lim

ε→0

δAih
ε

= −Li
2
.

Perturbation along ηiv: There are two different scenarios
for perturbation along ηiv , corresponding to the two pursuer
configurations shown in Figure 1b. In one case, as for p2 in
Figure 1b, ξi intersects Bi. A perturbation of ε, as shown
in Figure 2b, will cause the evader’s Voronoi cell to shrink
above the new midline by δAiv,1 and grow below it by δAiv,2.
Let δAiv = δAiv,2 − δAiv,1, with

δAiv,1 =
1

2
((Li − li)−

ε

2
)2

ε

‖ξi‖
+O(ε2),

δAiv,2 =
1

2
(li +

ε

2
)2

ε

‖ξi‖
+O(ε2),

where the terms O(ε2) again depend on the angle of inter-
section between Bi and the boundaries of the Voronoi cell
Ve. Thus, the resulting changes in area will be

δAiv,1 =
(Li − li)2ε

2||ξi||
+O(ε2)

δAiv,2 =
l2i ε

2||ξi||
+O(ε2)

which implies

Di
vA = lim

ε→0

δAiv
ε

=
l2i − (Li − li)2

2||ξi||
.

The second case is that of p1 in Figure 1b, where ξi no
longer intersects Bi due to the presence of other pursuers.
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As shown in Figure 2c, we have

δAiv = δAiv,2 − δAiv,3,

where δAiv,2 is calculated as before and

δAiv,3 =
1

2
(li − Li +

ε

2
)2

ε

‖ξi‖
+O(ε2).

Note that here li ≥ Li. Letting ε→ 0 we again have

Di
vA = lim

ε→0

δAiv
ε

=
l2i − (li − Li)2

2||ξi||
.

With the above lemma, the proposed strategy µ∗i can be
rewritten in the local coordinate system as

µ∗i = −

(
αih√

|αih|2 + |αiv|2
· ηih +

αiv√
|αih|2 + |αiv|2

ηiv

)
,

(10)

where αih and αiv are given by

αih = −Li
2
, αiv =

l2i − (Li − li)2

2||ξi||
.

Lemma 2: It can be shown that under this choice of
pursuit strategy, ui always points toward the interior of D,
thus satisfying the constraint (3). The proof is straightforward
but requires some amount of algebra and is omitted.

IV. PROOF OF GUARANTEED CAPTURE

The goal of this section is to show that the proposed
pursuit strategy {µ∗i }i≤N is guaranteed to capture the evader
within finite time, regardless of any admissible evader input
ue. It can be seen that if this holds for the case of a single
pursuer (N = 1), then the conclusion also extends to the case
of multiple pursuers (N > 1). Indeed, for the case of N > 1,
one can choose any pursuer i which is a Voronoi neighbor
of the evader and use the arguments for the case of N = 1
to show that the capture condition will be satisfied. Thus, we
will focus on the proof for a single pursuer. Correspondingly,
the notation from Section III will carry through without the
indices i.

First, we make the observation that if A approaches zero,
the evader’s Voronoi cell approaches either a line or a point.
Either of the two cases clearly implies ‖e − p‖ → 0. Our
strategy here is then to show that, under the proposed pursuit
strategy µ∗ and any admissible evader control input ue, the
area A is guaranteed to monotonically decrease until the
capture condition is met.

In terms of preliminaries, we have by Lemma 1 and
equation (9) that

∂A

∂p
= αhηh + αvηv.

It can be also verified in a similar manner as the proof of
Lemma 1 that the partial derivative ∂A

∂e in the local coordinate
system is given by

∂A

∂e
= αhηh − αvηv. (11)

Also recall that the variable L in the statement of Lemma 1
depends on the spatial locations of the evader and the pursuer,
as well as the geometry of the region D. For our proof, we
will need the following definitions of parameters lmin and
lmax, which depend solely on the geometry of D.{

lmin = infe∈D,p∈D L(e,p)

lmax = supe∈D,p∈D ||e− p||2.
(12)

Since D is the interior of a bounded polygon, we have that
lmin > 0, lmax <∞, and L ≤ lmax.

The following result shows that the area A is always non-
increasing under the pursuit strategy µ∗ for a single pursuer.

Lemma 3: Under the proposed pursuit strategy µ∗(e,p),
the area A satisfies dA

dt ≤ 0 for any admissible evader control
input. Furthermore, dAdt = 0 if and only if the evader follows
the following strategy:

ν∗(e,p) =
αhηh − αvηv√

α2
h + α2

v

. (13)

Proof: For an arbitrary ue with ‖ue‖ ≤ 1, we have

dA

dt
=
∂A

∂p
µ∗(e,p) +

∂A

∂e
ue

=−
√
α2
h + α2

v + (αhηh − αvηv)
T
ue ≤ 0,

where equality holds if and only if ue(t) = ν∗(e(t),p(t)).

In order to prove that the capture condition is achieved in
finite time, we will proceed to show that the distance between
the pursuer and the evader is strictly decreasing whenever the
area A is constant. For this, we define

z(e,p) = ‖ξ(e,p)‖2 = (e− p)T (e− p).

Clearly, the variable z is the squared Euclidean distance
between the evader and pursuer. From the preceding discus-
sions, the range of z lies in [r2c , l

2
max]. In the following result,

we show that ż < 0 whenever Ȧ = 0.
Lemma 4: If Ȧ = 0, then under the pursuit strategy µ∗,

the following holds:

dz

dt
= − 4z√

z + (la − lb)2
≤ −4r2c√

r2c + l2max

.

Proof: By Lemma 3, Ȧ(t) = 0 if and only if
ue(t) = ν∗(e(t),p(t)). Thus, if the pursuer input is selected
according to the strategy µ∗, then whenever Ȧ = 0, we have

ż =2(e− p)T (ė− ṗ)

=4ξT

(
αh√

α2
h + α2

v

ηh

)

=
−2L‖ξ‖√

L2

4 + (l2−(L−l)2)2
4‖ξ‖2

=− 4z√
z + (2l − L)2

≤ −4r2c√
r2c + l2max

,
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where the second equality follows from the fact that ξTηv =
0, and the last inequality follows from the monotonicity of
the function 4z√

z+(2l−L)2
for z ≥ 0.

By this result, we have that z is strictly decreasing when-
ever the area A remains constant. However, there remains
the possibility that z is increasing on time intervals where
A is strictly decreasing. The question then becomes whether
there exists a evader control that can keep z inside [r2c , l

2
max]

while preventing A from reaching 0. In the following result,
we will prove that this is not the case, by exploiting certain
properties of the proposed pursuit strategy.

Lemma 5: Under the pursuit strategy µ∗, if Ȧ ≥ −β for
some positive constant β > 0, then ż ≤ −c(β), where the
bound c(β) is given by

c(β) =

√
2r2c
lmax

− 4lmax

lmin
β.

Proof: Under strategy µ∗, the following identities hold{
Ȧ = −

√
α2
h + α2

v + (αhηh − αvηv)
T
ue

ż = 2(e− p)Tue − 2z√
z+(2l−L)2

Now suppose Ȧ ≥ −β. Using the relations ηh = e−p
‖e−p‖ ,

αh = −L2 , and αvηTv ue ≥ −|αv|, we have

(e− p)Tue ≤ −
2‖e− p‖

L

[√
α2
h + α2

v − β − |αv|
]

≤ 2‖e− p‖β
L

≤ 2lmax

lmin
β,

which implies that

ż ≤ 4lmax

lmin
β −
√
2r2c
lmax

.

Notice that this lemma also implies Ȧ < −β whenever
ż > −c(β). For the rest of this section, it is assumed that
the β parameter in Lemma 5 is chosen such that c(β) > 0.
In the following, we combine the previous results in this
section to show that under µ∗, the area A keeps decreasing
until the capture condition is met.

Theorem 1: Under the pursuit strategy µ∗, if the capture
condition has not been achieved before time t > 0, then

A(t) ≤ A(0) + β(l2max − r2c )
4lmax + c(β)

− βc(β)

4lmax + c(β)
· t,

where A(t) = A(e(t),p(t)) denotes the area of the evader’s
Voronoi cell at time t.

Proof: Let t > 0 be an arbitrary time before the capture
moment. Define{

τ−(t) = |{s ∈ [0, t] : ż(s) ≤ −c(β)}|
τ+(t) = |{s ∈ [0, t] : ż(s) > −c(β)}|.

The operator | · | in the above equations specifically denotes
the Lebesgue measure of a subset of R. Clearly, t = τ+(t)+
τ−(t). Notice that, regardless of the choice of inputs by the
evader and the pursuer, we always have

ż ≤ 2‖ξ‖(ue − up) ≤ 4lmax.
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Fig. 3. Simulation results for a single pursuer (triangle, dashed line)
and evader (circle, solid line), showing (a) the trajectories and (b) the
area of Ve and dmin over time.

Thus, the actual trajectory z(t) must be bounded from above
by z(t) ≤ Z+(t), where

Z+(t) = l2max + 4lmax · τ+(t)− c(β) · τ−(t)
= l2max + (4lmax + c(β)) · τ+(t)− c(β) · t

Since Z+(t) ≥ z(t) ≥ r2c , we have

τ+(t) ≥
1

4lmax + c(β)

[
c(β) · t+ r2c − l2max

]
. (14)

By Lemma 5, A decreases at a rate faster than −β whenever
ż > −c(β). This implies that A(t) ≤ A(0) − βτ+(t).
Combining this with the inequality in (14), we have the
statement of the theorem.

Remark 1: Although the area A may stay constant on
certain time intervals, the upper bound of A will keep
decreasing at a speed no slower than βc(β)

4lmax+c(β)
. Thus the

capture condition is guaranteed to be satisfied in finite time.
Notice that depending on the evader’s control inputs it may
also be possible that capture is achieved before A becomes
sufficiently small.

V. RESULTS

Simulation results are presented here for games involving
different numbers of pursuers. The simulations are conducted
in a 10 x 10 square, with a maximum speed of 1 for all
players, capture radius of 0.25, and time steps of 0.01. In
these simulations the trajectory of the evader is controlled by
human input, and pursuers that do not have a line of control
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Fig. 4. A scenario with three pursuers (triangles, dotted lines) highlighting the cooperation enforced by the area-minimizing pursuit strategy
when the pursuers begin tightly spaced .

bordering on the evader Voronoi region are commanded to
head straight for the evader.

An example trajectory for a game with a single pursuer is
shown in Figure 3. The trade-off between area and distance
is highlighted by this example. Note that initially the pursuer
does not move directly toward the evader and thus the
distance between the players does not decrease, but the area
decreases very quickly. Near the end of the game the area
decreases slowly while the distance decreases very quickly.

Figure 4 shows a simulated case with 3 pursuers, and
highlights the cooperation in the area-minimization strategy.
The pursuers begin closely grouped, but as they move the
pursuers gradually separate to surround the evader. The
cooperative behavior effectively contains the evader, limiting
its movements until capture is achieved.

The simulations are conducted in Matlab on a Macbook
Pro laptop, with computation per time-step of less than 1ms
to calculate inputs for all the pursuers. Note that some
small errors are introduced by discretization of the control
scheme when distances between the evader and pursuers are
comparable to the distance traveled by a player in a single
time step. Reducing the time step alleviates the problem
without eliminating it entirely, and increasing the capture
radius also decreases the chance of this problem occurring. It
is possible that some relationship can be found between step
size, velocity, and the capture radius to formally guarantee
this in a discrete-time situation.

VI. CONCLUSIONS & FUTURE WORK

In this work, we have presented a pursuit-evasion game
with multiple pursuers and a single evader in bounded,
convex polygons. We have proposed a decentralized pursuit
strategy based on minimizing the area of the evader’s Voronoi
cell, and proven that this strategy guarantees capture of the
evader in finite time. In the future, we hope to extend this
work in several directions, including games with multiple
evaders as well as in non-convex domains with obstacles.
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