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Abstract— In this paper, observer-based linear parameter-
varying (LPV) control of the one-dimensional nonlinear Burg-
ers’ equation is presented. The partial differential equation is
discretized using a finite difference scheme and the boundary
conditions are taken as control inputs. A nonlinear high-
order state space model is generated and proper orthogonal
decomposition based Galerkin projection is used for model
order reduction. A discrete-time quasi-LPV model that is affine
in scheduling parameters is derived based on the reduced
model and a polytopic dynamic output feedback LPV controller
is synthesized. Since the scheduling parameters are linear
combinations of system states, the synthesized output-feedback
controller is converted to an observer-based state feedback
controller which provides an estimate of the scheduling parame-
ters. Simulation results demonstrate that the designed observer-
based LPV controller has almost the same level of disturbance
and measurement noise rejection capability compared to an
output feedback LPV controller combined with a nonlinear
observer. Moreover, both of the LPV controllers outperform an
LQG controller based on a linearized model.

I. INTRODUCTION

Modelling and control of distributed systems have been an

active research topic in the recent years and flow control is an

important subclass of such systems. Due to the complexity of

governing partial differential equation (PDE) in flow control

i.e. the Navier-Stokes equation, simpler analog models such

as Burgers’ and Euler’s equations can be used to solve

the control problem first and then it may be attempted to

extend the solution to more general cases, see [1] and [2].

Burgers’ equation includes the nonlinear convective term that

is challenging to handle in flow-related problems. Moreover,

supersonic flow about airfoils, shockwaves, some boundary

layer problems and traffic flows can be modeled by Burgers’

equation.

Application of proper orthogonal decomposition (POD)

and Galerkin projection [3] to obtain a finite dimensional

approximation of distributed parameter systems with a rea-

sonable accuracy has become popular in the literature. This

technique has been frequently used to obtain a suitable model

of Burgers’ equation for controller synthesis e.g. in [1], [2],

[4] and [5]. However, linear controllers were designed in

these reports based on locally linearized models. Stabiliza-

tion of a family of stationary solutions of Burgers’ equation

using state feedback and output feedback was reported in [6]

and [7].

Linear parameter-varying (LPV) gain-scheduling tech-

niques have been developed into effective tools to control

MIMO nonlinear plants. Their attractiveness lies in the
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extension of well known linear optimal control methods and

the use of linear matrix inequalities (LMIs), to the solution

of nonlinear control problems. Many nonlinear systems of

practical interest can be represented as quasi-LPV systems,

where the scheduling parameters include external signals and

measured system outputs or states, see e.g. [8]. However,

the application of these techniques has not been extensively

explored in flow control problems.

An LPV controller design for transition control in a

Poiseuille flow model was reported in [9], where the frame-

work was limited for a particular spatially interconnected

flow model. Control of a nonlinear Galerkin model using

an adaptation-based LPV model was presented in [10]. The

authors proposed an output feedback LPV controller for

Burgers’ equation in [11], where a nonlinear observer was

implemented to estimate the scheduling parameters.

Conversion of an arbitrary linear time-invariant (LTI)

controller to its equivalent observer-based form has been

discussed in [12] and [13]. The motivation for such a

conversion is to provide an estimate of plant states which

can be used e.g. in gain scheduling.

In this paper, an observer-based state feedback LPV

controller is designed for a low-order quasi-LPV model

of the Burgers’ equation. The one-dimensional Burgers’

equation with Dirichlet boundary conditions is discretized

using an explicit finite difference technique. A high order

discrete-time nonlinear state space system is obtained, where

boundary conditions are taken as control inputs and velocity

of the two interior grids close to the boundaries are chosen as

measured signals [11]. The model is simulated for a typical

input trajectory and the method of snapshots [14] is used to

obtain POD basis functions which form the model reduction

transformation. Galerkin projection is then employed to map

the original system to a lower-dimensional space.

A polytopic quasi-LPV model is derived and states of

the reduced model are chosen as scheduling parameters.

Since the derived quasi-LPV model has a small number of

scheduling parameters and vertices, an output-feedback LPV

controller with a fixed Lyapunov function [15] is designed

which has a reasonable computation burden for synthesis and

on-line implementation.

To schedule the designed output-feedback LPV controller,

it is necessary to estimate the scheduling parameters which

are the reduced states in this work. To remove the need to

design and implement an additional observer [11], here it is

proposed to convert the designed output feedback controllers

at all vertices to their observer-based state feedback form.

The technique developed in [12] and [13] for LTI systems

is extended to the LPV case and the estimated states are
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used for state feedback as well as for scheduling the LPV

controller.

Simulation results demonstrate that the designed observer-

based LPV controller has almost the same level of distur-

bance and measurement noise rejection capability compared

to an output feedback LPV controller combined with a

nonlinear observer to estimate the scheduling parameters

[11]. Moreover, both LPV controllers outperform an LQG

controller based on a linearized model.

The contribution of this paper is to demonstrate the

applicability of LPV gain-scheduling techniques to control

a nonlinear PDE, where the scheduling parameters of the

LPV controller are extracted from the states of a dynamic

output feedback controller. Moreover, the number of mea-

sured and control signals are realistic. Another approach has

been recently proposed by the authors [16] to include an

observer dynamics in a generalized plant and then design an

output feedback controller, which guarantees the closed-loop

stability.

This paper is organized as follows. Discretization of the

Burgers’ equation and derivation of the nonlinear state space

model are presented in Section 2. In Section 3 model reduc-

tion is discussed. LPV modelling is described in Section 4

and observer-based LPV controller synthesis is presented in

Section 5. Simulation results are given in Section 6 and the

last section gives the conclusions.

II. NONLINEAR MODELLING

Consider the one-dimensional nonlinear viscous Burgers’

equation on the physical domain S = {s|s ∈ [0,L]} and

temporal domain T = {t|t ∈ [0, T ]}

∂w

∂t
+ w

∂w

∂s
= ν

∂2w

∂s2
, (1)

where w(s, t) : S×T → W is the space and time dependent

velocity, s and t refer to space and time respectively and ν

is a known constant representing viscosity.

The initial condition is given as

w(s, 0) = w0(s), (2)

and Dirichlet boundary conditions are applied at both ends

w(0, t) = u1(t), w(L, t) = u2(t), (3)

where u1(t) and u2(t) are taken as control inputs.

An approximate discrete solution of (1) is represented by

wk
i = w(ŝ, t̂) : Ŝ× T̂ → W, (4)

where i and k refer to time and space respectively, and the

finite discrete sets Ŝ and T̂ are defined as

Ŝ = {s1, . . . , sG}, T̂ = {t1, . . . , tK}, (5)

where G is the number of grid points and K is the number

of time samples.

Using the forward-time central-space (FTCS) method [17]

which is an explicit finite difference scheme, (1) is dis-

cretized

wk+1
i =wk

i −
λ

2
wk

i (w
k
i+1 − wk

i−1)

+ r(wk
i+1 − 2wk

i + wk
i−1),

(6)

where λ =
∆t

∆s
, r =

ν∆t

(∆s)2
, ∆s is the spatial grid size and

∆t is the time-stepping. As explained in [17], choosing some

appropriate values for ∆s and ∆t leads to convergence of

this scheme if ν is not very small.

The difference equation (6) is used to obtain the nonlinear

discrete-time state space model

x(k + 1) = Anx(k) + Fn(x(k), u(k))

y(k) = Cnx(k),
(7)

where the state vector x(k) ∈ R
N , the control input u(k) ∈

R
ni and the control output y(k) ∈ R

no are defined as

x(k) = [x1(k), . . ., xN (k)]⊤ = [wk
2 , . . . , w

k
G−1]

⊤

u(k) = [wk
1 wk

G]
⊤, y(k) = [wk

N1
wk

N2
]⊤,

(8)

and ni = 2, no = 2 and N = G − 2 are number of inputs,

outputs and states respectively. The matrices An and Cn and

the vector Fn are given as

An =
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Fn =



















−λ
2x2x1 +

λ
2x1u1 + ru1

λ
2x2x1 −

λ
2x3x2

λ
2x3x2 −

λ
2x4x3

...
λ
2xG−3xG−4 −

λ
2xNxG−3

λ
2xNxG−3 −

λ
2xNu2 + ru2



















,

Cn =

[

01×(N1−1) 1 01×(N2−1)

01×(N2−1) 1 01×(N1−1)

]

. (9)

The subscripts N1 and N2 specify the two grid points

whose velocity are assumed to be measured. The nonlinear-

ities in Fn come from the nonlinear convective term which

is common in all flow problems.

The problem is to design a controller to compute the input

signals u(k) such that the control output y(k) tracks a refer-

ence input and rejects process disturbance and measurement

noise. The order of the nonlinear model (7) is too large to

be used for controller synthesis and should be reduced.
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III. MODEL REDUCTION

Using POD, orthonormal basis functions are extracted

from an ensemble of experimental or simulation data which

form a model reduction transformation. A solution of (1) can

be approximated in terms of set of basis functions

w(ŝ, t̂) ≈ ŵ(ŝ, t̂) =

M
∑

j=1

φj(ŝ)αj(t̂), (10)

where φj define the set of orthonormal basis functions and

αj are coefficient functions.

The method of snapshots [14] is used to obtain the basis

functions. The discretized model (6) is simulated for some

typical boundary condition trajectories to form the matrix of

snapshots Wsnap ∈ R
N×K

Wsnap =







w1
2 . . . wK

2
...

. . .
...

w1
G−1 . . . wK

G−1






. (11)

Introduce the singular value decomposition of Wsnap

Wsnap = ΦΣΨ⊤ = [Φs Φn]

[

Σs 0 0
0 Σn 0

] [

Ψ⊤
s

Ψ⊤
n

]

, (12)

where Φ ∈ R
N×N and Ψ ∈ R

K×K and Φs, Σs and Ψs

correspond to the M dominant singular values.

The columns of Φ form the set of basis functions

{φ1, . . . , φN} which can be used to obtain an accurate

low-order dynamic model via Galerkin projection. Such a

projection captures the most energy and properties of the

original system for a given number of modes or basis

function [3]. The basis functions obtained by this method

are also called POD modes.

For state space models like (7), the projection is simplified

to multiplying both sides of (7) by the truncated orthonormal

matrix Φs ∈ R
N×M , see [18]

Φ⊤

s x(k + 1) = Φ⊤

s Anx(k) + Φ⊤

s Fn(x(k), u(k)). (13)

A low-dimensional state vector xr(k) ∈ R
M is then

defined as

xr(k) = Φ⊤

s x(k), (14)

and the approximate state vector x̂(k) = ΦsΦ
⊤
s x(k) ∈ R

N

is given in the original dimension as

x̂(k) = [x̂1(k), . . . , x̂N (k)]⊤ = [ŵk
2 , . . . , ŵ

k
G−1]

⊤. (15)

Note that each element of xr is a linear combination of x.

The reduced order model and matrices are thus obtained as

xr(k + 1) = Arxr(k) + Fr(Φsxr(k), u(k))

y(k) = Crxr(k),
(16)

with

Ar = Φ⊤

s AnΦs, Fr = Φ⊤

s Fn, Cr = CnΦs. (17)

Ar and Cr can be calculated offline, provided that basis

functions have been determined. Since Fr is a function of

xr and u, it should be calculated on-line if needed.

Both boundary conditions for generating the matrix of

snapshots are chosen as sinusoidal excitation trajectories

covering frequencies up to 50 Hz, similar to the report by

[2].

The parameters of the Burgers’ equation and discretization

are ν = 0.01, ∆s = 0.02, ∆T = 0.005, L = 1, w0(s) = 0,

K = 10000 and G = 51. Considering the accuracy and

complexity of the reduced model, only three first dominant

modes are selected, i.e. M = 3. More details about imple-

menting POD and validation of the reduced model was given

in [11].

The reliability of the resulting reduced-order model (16)

strongly depends on the excitation signal; if the operating

conditions become different from excitation trajectories, the

accuracy of the model will degrade.

Although the resulting model (16) has a low order, it has

a nonlinear term Fr which makes the controller synthesis

challenging.

IV. LPV MODELLING

Linearizion of the nonlinear reduced model of Burgers’

equation around an operating point and linear controller

design has been reported in [1], [2], [4] and [5]. The

performance of such controllers can be limited depending

on the operating range of the system. LPV gain-scheduling

techniques offer a framework to use well-known linear

optimal control methods for nonlinear plants.

The nonlinear discrete-time reduced-order model (16) can

be converted to a parameter-dependent polytopic quasi-LPV

model

xr(k + 1) = A(θ(k))xr(k) +B(θ(k))u(k)

y(k) = Cxr(k),
(18)

where parameter dependent matrices A(θ) ∈ R
M×M and

B(θ) ∈ R
M×ni and constant matrix C ∈ R

n0×M are to be

determined and θ is the scheduling parameter vector. Without

loss of generality, assume that θ ∈ R
M . The LPV model can

be represented by a linear input-output map

P (θ) =

[

A(θ) B(θ)
C 0

]

. (19)

Consider the compact set Pθ ⊂ R
M : θ ∈ Pθ, ∀k > 0.

Here, it is assumed to be a polytope [15] defined by the

convex hull

Pθ := Co{θv1 , θv2 , . . . , θvm}, (20)

where m = 2M is the number of vertices.

The LPV system is called parameter-affine, if the state

space model depends affinely on the parameters

P (θ) =

M
∑

i=0

θiPi = P0 + θ1P1 + · · ·+ θMPM . (21)

Since θ can be expressed as a convex combination of m

vertices θvi , if (21) holds, it follows that the system can be

2012



A(θ) = Φ⊤
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Φs

B(θ) = Φ⊤

s

[

λ
2 x̂1 + r 0 . . . . . . 0

0 . . . . . . 0 −λ
2 x̂N + r

]⊤

, C = Cr = CnΦs. (25)

represented by a linear combination of LTI models at the

vertices; this is called a polytopic LPV system

P (θ) ∈ Co{P (θv1), P (θv2), . . . , P (θvm)} =
m
∑

i=1

αiP (θvi),

(22)

where
∑m

i=1 αi = 1, and αi ≥ 0 are the convex coordinates.

The source of nonlinearity in (16) is the nonlinear convec-

tive term which is obvious in (6). By defining the scheduling

parameter vector as

θ(k) = xr(k), (23)

one can obtain state matrices A(θ), B(θ) and C as in (25)

such that the model (18) is affine in θ. Note that these

matrices are needed only for controller synthesis and during

on-line implementation they do not have to be computed.

Since the scheduling parameters are defined to be the states,

the resulting model is a quasi-LPV model. The number of

states is M = 3 and number of vertices is m = 8, which

leads to low on-line computation and makes it possible to

use standard synthesis tools.

V. OBSERVER-BASED STATE FEEDBACK CONTROL

In [11] an output feedback LPV controller was designed

for the quasi-LPV model (18). Since only wN1
and wN2

are

assumed to be measurable, a nonlinear functional observer

was designed to estimate the parameters (23) needed to

schedule the LPV controller.

In this section an output feedback LPV controller is

designed similar to [11], and to remove the need to design

and implement an additional observer, the designed output

feedback controller is converted to an observer-based state

feedback form by extending the LTI method proposed in [13]

to the LPV case.

A discrete-time output-feedback LPV controller with a

fixed Lyapunov function is designed for the low-order quasi-

LPV model of Burgers’ equation (18) using the H∞ loop-

shaping approach [15]. This method has been proven to be

an effective and practical tool for LPV synthesis due to the

simplicity of the synthesis and implementation and low on-

line computation effort.

The block diagram of this controller is shown in Fig. 1,

where d and n(k) are non-zero initial condition disturbance

and measurement noise respectively. The nonlinear Burg-

Burgers’ 

System

u(k)

n(k)

y(k)
- Ω(θ)
e(k)r(k)

d = x(0)

Fig. 1. Block diagram of the output feedback LPV controller

ers’ system (7) is controlled by an LPV controller Ω(θ).
The design objective considered here is to stabilize (7) in

the whole operating range with a high tracking capability,

disturbance and measurement noise rejection and taking in

consideration a limited bandwidth and amplitude for control

signal. A mixed sensitivity loop-shaping approach is adopted

to achieve the objectives. The generalized plant is shown in

Fig. 2, where WS(z) and WK(z) are the weighting filters

to shape sensitivity S(θ) and control sensitivity Ω(θ)S(θ),
respectively.

For designs based on polytopic LPV models, the model

must not have a parameter dependent input matrix B(θ);
but this is not the case in (18). To solve this problem,

the plant is augmented by a low-pass filter WB(z) with a

sufficiently large bandwidth [15]. This removes the parameter

dependency of the input matrix in the generalized plant state

space realization.

Ω(θ)

WK(z)

WB(z)
e(k)u(k)

zS

zK

WS(z)
-

y(k)

r(k)

P (θ)

Fig. 2. Generalized plant for the synthesis of output feedback LPV
controller

The mixed-sensitivity criterion to be minimized for con-
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troller design is the induced L2 gain of the closed-loop

map between r and [z⊤S z⊤K ]⊤. A discrete-time output-

feedback LPV controller Ω(θ) is designed with the state

space realization

xc(k + 1) = Ac(θ(k))xc(k) +Bc(θ(k))e(k)

u(k) = Cc(θ(k))xc(k) +Dc(θ(k))e(k),
(25)

where xc ∈ R
nc and nc = 9. The parameter dependent

state matrices of the controller are determined by the convex

coordinates and the controller vertices Ac
vi

, Bc
vi

, Cc
vi

and Dc
vi

with i = 1, . . . , 8, which are computed using a modified

discrete-time version of MATLAB robust control toolbox

command hinfgs. More details bout the output feedback

LPV controller design can be found in [11].

Conversion of an LTI output feedback compensator to its

observer-based state feedback form has been discussed in

[12] and [13] in detail. The motivation for such a conversion

is to provide an estimate of plant states which can be

used e.g. in gain scheduling. The technique is based on the

solution of a generalized non-symmetric Riccati equation.

The conversion method proposed in [13] is applied to

each vertex of the polytopic LPV system. First, Youla

parameterization [19] of all stabilizing controllers built on

an observer-based form for each vertex (18) is written as

x̂r(k + 1) = Avi x̂r(k) +Bviu(k) + Lobi(y(k)− Cx̂r(k))

xQ(k + 1) = AQi
xQ(k) +BQi

(y(k)− Cx̂r(k))

u(k) = −Kfbi x̂r(k) + CQi
xQ(k)

+DQi
(y(k)− Cx̂r(k)),

(26)

where Avi and Bvi are the state and input matrices of the

LPV plant (19) at each vertex, xQ ∈ R
nq is the state

vector of the Youla parameter with nQ = nc − M = 6,

AQi
∈ R

nQ×nQ , BQi
∈ R

nQ×no , CQi
∈ R

ni×nQ and

DQi
∈ R

ni×no are state space matrices at each vertex

of the Youla parameter Q(·), and Kfbi ∈ R
ni×M and

Lobi ∈ R
M×no are static state feedback and state observer

gains at each vertex. Following the procedure given in [13],

all of these matrices are obtained for i = 1, . . . ,m using

the state space matrices of the closed-loop system, plant and

output feedback controller vertices.

Since the plant, the designed output feedback controller

and consequently the closed-loops system are convex com-

bination of vertices of some polytopes, the LPV polytopic

representation of Youla parameter, state feedback and state

observer gains can be obtained as

Q(θ) =

[

AQ(θ) BQ(θ)
CQ(θ) DQ(θ)

]

=

m
∑

i=1

αi

[

AQi
BQi

CQi
DQi

]

(27)

Kfb(θ) =

m
∑

i=1

αiKfbi (28)

Lob(θ) =

m
∑

i=1

αiLobi , (29)

and the resulting observer-based state feedback LPV con-

troller is given as

x̂r(k + 1) = A(θ)x̂r(k) +B(θ)u(k)

+ Lob(θ)(y(k) − Cx̂r(k))

xQ(k + 1) = AQ(θ)xQ(k) +BQ(θ)(y(k) − Cx̂r(k))

u(k) = −Kfb(θ)x̂r(k) + CQ(θ)xQ(k)

+DQ(θ)(y(k) − Cx̂r(k)).
(30)

The block diagram of the closed -loop system with the

control scheme (30) is shown in Fig. 3, where δ is a delay

operator. The estimated scheduling parameters θ̂(k) = x̂r(k)
are calculated and provided in the loop, but the connecting

signal lines are not shown for compactness. Moreover, these

connections are not taken into account in proving the stability

of the closed loop, i.e. the quasi-LPV system is treated

as a pure LPV system [8]; thus, the results are local.

Note that the local stability has already been proved in

designing the output feedback controller. Since the observer-

based controller is input-output equivalent to the original

output feedback controller, stability has been preserved after

conversion to the observer-based form (30).

δ

Kfb(θ̂)

B(θ̂)
x̂r(k)

x̂r(k)

C
n(k)

Q(θ̂)

Lob(θ̂)

-

A(θ̂)

u(k)

d = x(0)

r(k) = 0 y(k)Burgers’
System-

Fig. 3. Block diagram of the observer-based LPV controller

VI. SIMULATION RESULTS

The system shown in Fig. 3 is simulated in closed loop in

MATLAB/SIMULINK using the full-order finite difference

model (6) and the designed observer-based state feedback

LPV controller (30). The simulation sampling frequency is

set to 200 Hz. The control outputs y1 = wN1
and y2 = wN2

are corrupted using the band-limited white noise block of

SIMULINK with power Pn = 10−6. Control outputs in flow

control problems are typically close to the boundaries, thus

N1 = 6 and N2 = 44 are chosen.

For comparison, the reduced model (16) is linearized

around an equilibrium (xr , u) = (0, 0) and an LQG con-

troller similar to the report in [4] is designed and tuned

for the best disturbance and measurement noise rejection.

In the mentioned report a distributed measurement was

assumed and no measurement noise was injected. To have

a better comparison, the reference input is set to r = 0.

The task is to reject a non-zero initial condition disturbance
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Fig. 4. Rejection of a non-zero initial condition disturbance by observer-
based state feedback LPV (dashed), output feedback LPV with a nonlinear
observer (dashed-dotted) and LQG (solid) controllers

and suppress the injected measurement noise. The output

feedback controller with a nonlinear observer proposed in

[11] is also implemented.

Fig. 4 illustrates the output of the three simulated con-

trollers for the mentioned task. It is obvious that both LPV

controllers suppress the measurement noise better, and reject

the disturbance much faster than the LQG controller. This in-

dicates that the loop-shaping objectives in both low and high

frequency ranges have been met. Faster disturbance rejection

was possible by LQG controller, but measurement noise was

amplified significantly in that case. The mean square error

of the observer-based state feedback LPV controller is only

5.3% worse than the output-feedback LPV controller which

needs an additional observer [11].

VII. CONCLUSION

Observer-based state feedback LPV controller synthesis

for the nonlinear viscous Burgers’ equation has been pre-

sented in this paper. The one-dimensional nonlinear Burgers’

equation was discretized using a finite difference scheme

and the boundary conditions were taken as control inputs. A

discrete-time nonlinear state space model with a high order

was obtained and proper orthogonal decomposition together

with Galerkin projection was used for model order reduction.

A discrete-time polytopic quasi-LPV model which is affine

in scheduling parameters was derived based on the reduced

model, where the scheduling parameters are the reduced

states. An output-feedback LPV controller with a fixed

Lyapunov function was designed which has a reasonable

synthesis and on-line computation cost.

To schedule the designed output-feedback LPV controller,

it is necessary to estimate the scheduling parameters. To

remove the need to design and implement an additional

observer, it has been proposed to convert the designed output

feedback controllers at all vertices to their observer-based

state feedback form.

Simulation results demonstrate the high process distur-

bance and measurement noise rejection capabilities of the

designed observer-based LPV controller compared with an

LQG controller based on a linearized model. An additional

nonlinear observer to estimate the scheduling parameters

does not improve the performance significantly.

The reliability of the derived reduced-order model and

the designed controller strongly depends on the excitation

signal which is used to generate the POD modes; if the

operating conditions become much different from excitation

trajectories, accuracy of the model and performance of the

controller will degrade. Since the scheduling parameters

are linear combination of states of the original system, the

guaranteed stability and performance results are local and

valid only if the parameters do not leave the parameter set.

REFERENCES

[1] J. Atwell, J. Borggaard, and B. King, “Reduced order controllers for
Burgers equation with a nonlinear observer,” International Journal of
Applied Mathematics and Computer Science, vol. 11, no. 6, pp. 1311–
1330, 2001.

[2] M. Efe and H. Ozbay, “Low dimensional modeling and Dirichlet
boundary controller design for Burgers equation,” International Jour-
nal of Control, vol. 77, no. 10, pp. 895–906, 2004.

[3] P. Holmes, J. Lumley, and G. Berkooz, Turbulence, Coherent Structure

Dynamical Systems and Symmetry. Cambridge Univ. Press, 1996.
[4] D. Lawrence, J. Myatt, and R. Camphouse, “On model reduction

via empirical balanced truncation,” in Proc. of American Control

Conference, 2005.
[5] M. Djouadi, R. Camphouse, and J. Myatt, “Reduced order models

for boundary feedback flow control,” in Proc. of American Control

Conference, 2008.
[6] M. Kristic, L. Magnis, and R. Vazquez, “Nonlinear stabilization of

shock-like unstable equilibria in the viscous burgers PDE,” IEEE Trans
on Automatic Control, vol. 53, p. 16781683, 2008.

[7] ——, “Nonlinear control of the viscous Burgers equation: Trajectory
generation, tracking, and observer design,” ASME Journal of Dynamic
Systems, Measurement and Control, vol. 131, no. 2, p. 021012, 2009.

[8] W. J. Rugh and J. S. Shamma, “A survey of research on gain-
scheduling,” Automatica, vol. 36, pp. 1401–1425, 2000.

[9] M. Ali, S. Chughtai, and H. Werner, “An LPV gain scheduling
approach to transition control in plane Poiseuille flow,” in Proc.

European Control Conference, Budapest, Hungary, 2009, pp. 2033–
2038.

[10] C. Kasnakoglu, “Control of nonlinear systems represented by Galerkin
models using adaptation-based linear parameter-varying models,” Int.

J. of Control, Automation and Systems, vol. 8, no. 4, pp. 748–761,
2010.

[11] S. M. Hashemi and H. Werner, “LPV Modelling and Control of
Burgers Equation,” in 18th IFAC World Congress, 2011.

[12] D. J. Bender and R. A. Fowell, “Computing the estimator-controller
form of a compensator,” International Journal of Control, vol. 41,
no. 6, pp. 1565–1575, 1985.

[13] D. Alazard and P. Apkarian, “Exact observer-based structures for ar-
bitrary compensators,” International Journal of Robust and Nonlinear
Control, no. 9, 1999.

[14] L. Sirovich, “Turbulence and the dynamics of coherent structures,”
Quarterly of Applied Mathematics, 1987.

[15] P. Apkarian, P. Gahinet, and G. Becker, “Self-scheduled H∞ control
of linear parameter-varying systems: a design example,” Automatica,
vol. 31, no. 9, pp. 1251–1261, 1995.

[16] S. M. Hashemi and H. Werner, “Gain-scheduled controller synthesis
for a nonlinear pde,” to appear in the Internal Journal of Control.

[17] J. W. Thomas, Numerical Partial Differential Equations, 2nd ed.
Springer, 1998.

[18] P. Astrid, L. Huisman, S. Weiland, and A. Backx, “Reduction and
predictive control design for a computational fluid dynamics model,”
in Proc. 41th IEEE Conference on Decision and Control, Las Vegas,
USA, 2002.

[19] D. Youla, J. J. Bongiorno, and H. Jabr, “Modern Wiener-Hopf design
of optimal controllers, part II: The multivariable case,” IEEE Transac-

tions on Automatic Control, vol. 21, no. Issue 3, pp. 319–338, 1976.

2015


