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Abstract— Motion coordination of autonomous vehicles has
applications from target surveillance to climate monitoring.
Previous research has yielded stabilizing control laws for a self-
propelled-particle model with first-order rotational dynamics,
but this model may not adequately describe the rotational and
translational dynamics of vehicles in the atmosphere or ocean.
This paper describes the design of algorithms for decentralized
control of self-propelled vehicles with second-order rotational
and translational dynamics. We utilize a backstepping-based
controller to achieve the desired second-order rotational dy-
namics of each vehicle and feedback linearization to attain
the desired (constant) forward speed. We consider parallel and
circular formations. These controls extend prior results to a
more realistic vehicle model, while maintaining comparable
performance.

I. INTRODUCTION

Dynamic models with ever increasing realism have been
used to describe the cooperative behavior of agents working
to accomplish a given task. In real-world systems the under-
lying dynamics unfold according to second-order differential
equations, however many cooperative control schemes have
been based on first-order models. In prior research, agents
have been modeled as particles for simplicity and ease of
control design. In some instances, the agents are modeled
as unicycles, meaning that they can only move forward and
turn. There are generally two control inputs in such models:
a speed controller and a steering controller. Sometimes
the problem is constrained further, as is the case when
the translational speed of the platform is assumed to be
constant. Examples of constant-speed models that rely solely
on steering control are described in [11], [4], [8], [12], [1].

Implementing cooperative control laws based on particle
dynamics enables only the location of the vehicle’s center
of mass to be controlled. Additional control inputs must
be considered to ensure that not only the desired angular
orientation is achieved, but also that the forward and trans-
verse speeds achieve the desired values. Although there are
numerous dynamic models that focus on the development of
motion-planning algorithms for mobile robots, they tend to
consider only a single platform rather than a swarm. One
such example is [3], in which the motion-planning output of
a kinematic model is used with a dynamic rigid body model
in order to develop a trajectory for an autonomous vehicle
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that can avoid obstacles. Another example is [2], in which
a Lagrangian formulation is used to derive the dynamic
equations of a single mobile robot with non-holonomic
constraints. To regulate movement of the robot, a velocity
controller is used to generate torque control by way of
integrator backstepping.

There is also a sizeable body of work that focuses on
using kinematic models for each agent in a swarm, however,
many such models typically do not incorporate rigid body
dynamics. An example of a kinematic control for a multi-
agent system is [6], in which integrator backstepping is used
for formation control of non-holonomic agents. A similar
approach has been used in [7], in which the authors intro-
duced a vehicle model based on [11] and [8] with second-
order rotational dynamics. We previously used integrator
backstepping to adapt controllers designed for first-order
rotational dynamics; however, forces and moments were not
considered before now.

In this paper, we consider a collection of vehicles with
second-order translational and rotational dynamics. We show
that under existing second-order steering control laws pro-
vided in [7] and a new speed control, the planar rigid
body model achieves comparable closed-loop performance
to a particle model. In prior work, the vehicles were each
considered to be particles with unit mass and unit speed and
the direction of travel was controlled by a force orthogonal
to the heading [8]. The vehicles we consider in the present
paper can rotate and translate with variable speed subject to
thrust, steering, and drag forces.

The contribution of this paper is to provide decentralized
controllers for a collection of planar rigid bodies. These
controllers enable the swarm to achieve parallel and circular
formations using thrust and steering forces. We use feedback
linearization to design the thrust controller and Lyapunov-
based control to design the steering controller. We control
the rigid-body dynamics to match those of a self-propelled
particle; that is, each platform moves with constant speed in
the desired formation.

This paper is organized as follows. Section II reviews the
second-order particle model with steering controllers devel-
oped via backstepping. Section III describes the dynamics
of a set of planar rigid bodies and Section IV derives the
controllers used to create parallel and circular formations.
Section V summarizes the paper and ongoing research.
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II. BACKGROUND

An existing model for planar collective motion with
second-order rotational dynamics is

ṙk = eiθk

θ̇k = ωk
ω̇k = ak,

(1)

where rk ∈ C is the position, θk is the heading, and ak
represents the second-order steering control of vehicle k =
1, ...,N. In this model each vehicle moves at unit speed in
the direction θk. Model (1) represents an extension of a self-
propelled particle model with first-order rotational dynamics
[7]. In the first-order case, phase and spacing potentials
were used to derive control laws for parallel and circular
formations in the absence of an external flowfield [11], and
in the presence of a spatiotemporal flowfield [10]. Since first-
order rotational dynamics may not adequately describe rigid-
body motion, these first-order particle models were used as
the first component of a second-order system for which we
designed a controller using integrator backstepping.

The expression for ak is found through the standard
backstepping procedure to achieve ωk = φk as t→∞, where
φk is the steering controller used to generate parallel and
circular formations in the first-order system. We derive ak
via the composite Lyapunov function

Vc =V + 1
2 ∑

N
k=1 z2

k , (2)

where V is the smooth potential that must be minimized in
order to achieve collective parallel or circular motion in the
first-order system. The term zk =ωk−φk is the error between
the actual and desired first-order rotational dynamics. Taking
the derivative of (2) along solutions of (1) gives

V̇c = ∑
N
k=1[

∂V
∂θk

θ̇k + zk żk], (3)

where θ̇k = φk + zk and żk = νk is a controller that we design
to achieve V̇c ≤ 0. The backstepping controller ak is found
by the transformation

ak = νk + φ̇k. (4)

There are two types of motion primitives for which we
derive ak. The first is parallel formations, which has the key
control parameter pθ defined as [11]

pθ = 1
N ∑

N
k=1 eiθk . (5)

pθ represents the average linear momentum of the particles
(assuming they have unit mass). Collective parallel motion
is achieved by maximizing the average linear momentum of
the particle system via the phase potential [11]

V (θ) = 1
2

(
1−|pθ |2

)
. (6)

For the first-order system, the controller for parallel for-
mations θ̇k = φk(θ) is [11]

φk(θ) = −K〈pθ , ieiθk〉, K < 0. (7)

To achieve V̇c ≤ 0 we choose

νk = 1
N 〈pθ , ieiθk〉−κzk, (8)

where κ is a positive gain. This gives us

V̇c = ∑
N
k=1
[K

N 〈pθ , ieiθk〉2−κzk
2
]
≤ 0. (9)

The solutions θk and zk converge to the largest invariant set
for which V̇c ≡ 0, given by

Λ = {〈pθ , ieiθk〉 ≡ 0,zk ≡ 0 ∀ k}. (10)

The condition that 〈pθ , ieiθk〉 ≡ 0 implies that θ j = θk for
all particle pairs j and k [11]. zk = 0 implies ωk = φk(θ);
however, from the preceding condition we know that φk(θ)=
0 in Λ. This implies that θk is constant for all k. Thus, Λ

contains the set of parallel formations.
Using transformation (4), a backstepping-based second-

order controller for parallel formations in (1) is [7]

ak = 1
N 〈pθ , ieiθk〉−κ(ωk +K〈pθ , ieiθk〉)
−K

N ∑
N
j=1
[
〈eiθ j ,eiθk〉(ω j−ωk)

]
, K < 0,κ > 0.

(11)
The second motion primitive is circular formations. Col-

lective circular motion is achieved by minimizing the spacing
potential [11]

V (r,θ) = 1
2 〈c,Pc〉. (12)

The N× 1 matrix c contains the centers ck, k = 1, ...,N, of
the circular paths followed by each particle, where [11]

ck = rk + iω−1
0 eiθk . (13)

P = IN×N − 1
N 11T is an N×N matrix that projects onto the

space orthogonal to 1= [1, ...,1]T ∈RN and Pk represents the
kth row of P. For the first-order system, the controller for
circular formations is [11]

φk(r,θ) = ω0(1+K〈Pkc,eiθk〉),K > 0. (14)

To achieve V̇c ≤ 0 we choose

νk =−κzk +ω
−1
0 〈Pkc,eiθk〉, (15)

which gives us

V̇c = ∑
N
k=1
[
−K〈Pkc,eiθk〉2−κzk

2
]
≤ 0. (16)

The solutions θk and zk converge to the largest invariant set
Λ for which V̇c ≡ 0, given by

Λ = {〈Pkc,eiθk〉 ≡ 0, zk ≡ 0 ∀ k}. (17)

〈Pkc,eiθk〉= 0 implies that Pkc = 0, which is only true when
all circular centers are the same; that is, Pkc = 0 if and only
if c is in the span of 1. 〈Pkc,eiθk〉 = zk = 0; thus we have
θ̇k = φk(θ) =ω0. Thus, all N particles travel around the same
circle of radius 1/|ω0|.

Using transformation (4), a backstepping control to stabi-
lize circular formations is [7]

ak = −κ(ωk−φk(r,θ))+ω0Kωk〈r̃k, ieiθk〉
+K
(

ω0− 1
N ∑

N
j=1
[
〈eiθ j ,eiθk〉

(
ω0− (ω j−ωk)

)])
+ω

−1
0

(
〈r̃k,eiθk〉−ω

−1
0

1
N ∑

N
j=1〈ieiθ j ,eiθk〉

)
,

(18)
where r̃k = rk− 1

N ∑
N
j=1 r j, and K > 0, κ > 0.
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When a uniform, time-invariant flowfield is present, the
second-order model (1) can be written as

ṙk = eiθk + fk
θ̇k = ωk
ω̇k = ak,

(19)

where fk ∈ C is the flowfield. This model can also be ex-
pressed more succinctly using the magnitude sk = |eiθk + fk|
and orientation γk = arg{eiθk + fk} of the inertial velocity [8]:

ṙk = skeiγk

γ̇k = Ωk
Ω̇k = λk.

(20)

Similarly to the flow-free case, we may define the average
linear momentum as pγ = 1

N ∑
N
k=1 eiγ . Thus, the controllers

can be re-expressed as [7]

λk = 1
N 〈pγ , ieiγk〉−κ(Ωk +K〈pγ , ieiγk〉)
−K

N ∑
N
j=1
[
〈eiγ j ,eiγk〉(Ω j−Ωk)

] (21)

for parallel formations, and

λk = −κ(Ωk−φk(γ))+ω0KΩk〈r̃k, ieiγk〉+ω0ṡk

+K
(

ω0sk− 1
N ∑

N
j=1
[
〈eiγ j ,eiγk〉

(
ω0s j− (Ω j−Ωk)

)])
+ω

−1
0

(
〈r̃k,eiγk〉−ω

−1
0

1
N ∑

N
j=1〈ieiγ j ,eiγk〉

)
(22)

for circular formations. When we consider, without loss of
generality, a flowfield oriented along the real axis given by
f = α ∈ R, the particle speed is

ṡk =−α sinγk

1+
α cosγk√

1−α2sin2(γk)

Ωk. (23)

While models (1) and (20) are useful for understanding the
movement of particles in the plane, they may not be sufficient
for describing rigid-body dynamics. The presence of second-
order rotational dynamics is only a part of the transformation
process from particle model to rigid-body model. In order
to complete the transformation, we consider second-order
translational dynamics as well.

III. PLANAR RIGID-BODY DYNAMICS

Recall that in Eq. (1) each particle moves with unit forward
speed and its direction of travel is controlled by θk. We can
alternately use θk to describe the orientation of a planar rigid
body. With this description, eiθk = x̄k defines the body-fixed
frame Bk = (k, x̄k, ȳk, z̄k), where z̄k is out of the plane and
ȳk = z̄k× x̄k.

Let uk ∈R represent the forward speed of the kth vehicle
in a body-fixed frame. The transverse speed in frame Bk is
vk ∈ R. The kth velocity expressed as components in Bk is

ṙk = ukx̄k + vkȳk. (24)

The time-derivative of (24) with respect to inertial frame
I yields the following rigid-body translational kinematics:

r̈k = u̇kx̄k +ukθ̇kȳk + v̇kȳk− vkθ̇kx̄k

= (u̇k− vkθ̇k)x̄k +(ukθ̇k + v̇k)ȳk.
(25)

Fig. 1. (a) A single vehicle in the plane. (b) Bk and Ck reference frames;
thrust Tk and steering force Fk .

We assume there are two control forces acting on the kth
vehicle. The first is the thrust force Tk, which acts along
the x̄k axis. The steering control is Fk, which acts along the
ȳk axis a distance of l away from the center of mass. We
also include a drag force Dk =

1
2 ρs2

kSCD. (ρ is the density
of the medium through which the vehicle is traveling; S is
the vehicle reference area; and CD is the appropriate drag
coefficient.) The vehicle speed is sk =

√
u2

k + v2
k ≥ 0.

We define a path frame for the kth vehicle as Ck =
(k, x̃k, ỹk, z̃k), where ṙk = skx̃k and z̃k = z̄k. We denote the
orientation of Ck relative to Bk as βk. The drag force acts
in the −x̃k direction [9]. Using Newton’s second law with
mass mk we have

(Tk−Dk cosβk)x̄k +(Fk−Dk sinβk)ȳk

= mk(u̇k− vkθ̇k)x̄k +mk(ukθ̇k + v̇k)ȳk.
(26)

Collecting the x̄k terms, we have

Tk−Dk cosβk = mk(u̇k− vkθ̇k). (27)

We are able to obtain a dynamic expression for the forward
speed uk by solving (27) for u̇k:

u̇k =− 1
mk

Dk cosβk +
1

mk
Tk + vkθ̇k. (28)

Following the same procedure for the terms in the ȳk-
direction, we have

v̇k =− 1
mk

Dk sinβk +
1

mk
Fk−ukθ̇k. (29)

In order to design the rotational dynamics, let Mk be the
sum of the moments acting on the kth vehicle. Assuming
there is no moment due to drag (i.e, the drag acts through
the vehicle’s center of mass), we have

Mk = (−lx̄k)× (Fkȳk). (30)

The rotational dynamics are

Ikθ̈k = −lFk, (31)
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where Ik is the moment of inertia about the center of mass
of vehicle k. The equations of motion are

ṙk = ukx̄k + vkȳk = skx̃k

u̇k = − 1
mk

Dk cosβk +
1

mk
Tk + vkωk

v̇k = − 1
mk

Dk sinβk +
1

mk
Fk−ukωk

ω̇k = − l
Ik

Fk,

(32)

where ωk = θ̇k, Dk =
1
2 ρs2

kSCD, and βk = arccos
(
uk/sk

)
.

IV. STABILIZATION OF MOVING FORMATIONS

A. Parallel Formation Control

In this section we design a decentralized feedback control
to drive a collection of planar rigid bodies in the same
direction at the same speed. In order to ensure that the
steady-state forward speed of each vehicle is uk = u0, we
use feedback linearization [5]. Choosing

Tk = mk
( 1

mk
Dk cosβk− vkωk +K f (u0−uk)

)
, (33)

where K f > 0, yields the following closed-loop dynamics

u̇k = K f (u0−uk). (34)

The dynamics (34) ensure uk exponentially converges to u0.
Motivated by the backstepping procedure described in

Section II, we choose

Fk =− Ik
l ak, (35)

with ak given by (11).
Theorem 1: Consider the rigid body model (32) with

thrust control (33) and steering control (35), where ak is
given by (11). Under these controllers, the set of parallel
formations where βk = 0 and uk = u0 for all k, and θk = θ j
for all pairs j and k is asymptotically stable.

Proof: In order to analyze the closed-loop system, we
propose the following candidate Lyapunov function

Upar(u,v,θ ,z) = Vc +
1
2 ∑

N
k=1[(u0−uk)

2 + v2
k ], (36)

where Vc is given by (2) with phase potential (6). Taking the
time-derivative along solutions of (32) gives

U̇par = V̇c +∑
N
k=1[−(u0−uk)u̇k + vkv̇k]. (37)

Observe that V̇c ≤ 0 under the steering control (35). Note
ak = ak(θ) is independent of the states uk and vk. If we plug
in for u̇k and v̇k using (32) we obtain

U̇par = ∑
N
k=1[

K
N 〈pθ , ieiθk〉2−κzk

2−K f (u0−uk)
2

− 1
mk

vkDk sinβk +
1

mk
vkFk− vkukωk].

The drag is Dk = hs2
k ≥ 0, where h = 1

2 ρSCD. Further-
more, sinβk = vk/sk, and we consider sk ≥ 0. Consequently,
−vkDk sinβk =−hskv2

k ≤ 0.
According to the invariance principle, solutions converge

to the largest invariant set Λ in which V̇c = 0, where Λ is
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Fig. 2. (a) Rigid body parallel motion in the plane [K =−1, κ = 5, and
u0 = 1]; (b) velocity component of parallel motion with time.

given by (10). In Λ, ωk ≡ 0 because zk ≡ 0 and φk ≡ 0. Note
that ωk ≡ 0 only if ω̇k = 0 in Λ. Thus Fk ≡ 0 in Λ because
ω̇k = ak =− Ik

l Fk. In Λ,

U̇par = ∑
N
k=1[−K f (u0−uk)

2− h
mk

skv2
k ]≤ 0. (38)

Application of the invariance principle in Λ shows that
solutions starting in Λ converge to the largest set M ⊂ Λ

in which U̇par = 0. In M, u0−uk ≡ 0 and skv2
k ≡ 0 which

implies uk = u0 and vk = 0. As a result, βk≡ 0 and M contains
the set of parallel formations. The remainder of the proof
follows from [11, Theorem 1].

Theorem 1 is illustrated in Fig. 2.

B. Circular Formation Control
To stabilize circular formations, we use the thrust control

(33). However, instead of using the steering control (35)
with ak given by (18), we now consider an alternative
backstepping control that takes into account the observation
that for circular motion the steady-state crab angle βk is
not zero. (For parallel motion, the steady-state crab angle
is zero.)

To find the steady-state crab angle and the correspond-
ing steady-state speed, we differentiate tanβk = vk/uk with
respect to time and solve for β̇k with uk = u0 6= 0 to obtain

β̇k =
cos2 βk

u0

(
− 1

mk
Dk sinβk +

1
mk

Fk−u0ωk

)
. (39)

For circular motion, Fk = ω̇k = 0, which implies

β̇k =
cos2 βk

u0

(
− 1

mk
Dk sinβk−u0ω0sk

)
. (40)

The equilibrium points of (40) are

βk =±π/2 and βk = arcsin
(
− mku0ω0

hsk

)
, (41)

where we used Dk sinβk = hskvk.
The equilibrium points βk = ±π/2 are not possible for

uk = u0 6= 0 since cosβk = uk/sk 6= 0. For the second set of
equilibrium points, vk = sk sinβk and sk are both constant. To
see this, we solve

s2
k = u2

0 +
(
−mku0ω0

h

)2
, (42)

obtaining

sk =

u2
0 +
√

u4
0 +4(mku0ω0/h)2

2

1/2

, s0 (43)
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and
vk =−

mku0ω0

h
, v0. (44)

In light of this analysis, we modify the backstepping
control (18) to allow for the vehicle speed sk 6= 1. The first
step is to recognize that, along solutions to (32), the circle
center (13) becomes

ck = rk + iω−1
0 ei(θk+βk). (45)

(We include the crab angle because the vehicle’s total veloc-
ity heading must be tangent to the path.) The time derivative
of (45) is ċk = (sk−ω

−1
0 (ωk + β̇k))ei(θk+βk). As a result, the

desired ωk dynamics (14) become

φk(r,u,v,θ) = ω0(sk +K〈Pkc,eiψk〉)− β̇k, K > 0,
(46)

where ψk = θk +βk. The backstepping control ω̇k = ak that
asymptotically stabilizes ωk = φk(r,u,v,θ) is

ak = −κ (ωk−φk(r,u,v,ψ))+ω0Kψ̇k〈r̃k, ieiψk〉− β̈k

+K
(

ω0sk− 1
N ∑

N
j=1
[
〈eiψ j ,eiψk〉

(
ω0s j− (ψ̇ j− ψ̇k)

)])
ω0ṡk +ω

−1
0

(
〈r̃k,eiψk〉−ω

−1
0

1
N ∑

N
j=1〈ieiψ j ,eiψk〉

)
,

(47)
where r̃k = rk− 1

N ∑
N
j=1 r j, K > 0, and κ > 0. (In practice

the ω0ṡk, β̇k, and β̈k terms are omitted, since they lead to a
recursive formulation of the control and are zero in steady
state.) We have the following result.

Theorem 2: Consider the rigid body model (32) with
thrust control (33) and steering control (35), where ak is
given by (47). Under these controllers, the set of circular
formations with radius 1/|ω0| and direction of rotation
determined by the sign of ω0 is asymptotically stable. In
this set, uk = u0 and vk = v0 for all k and c j = ck for all
pairs j and k, where v0 is given in (44).

Proof: To determine if the chosen controllers for Tk
and Fk establish the desired closed loop behavior, we begin
by defining a Lyapunov function for circular formations as

Ucirc(r,u,v,ψ,z) =Vc +
1
2 ∑

N
k=1
[
(u0−uk)

2 +(v0− vk)
2
]
,

(48)
where Vc is given by (2) with circular potential (12) and ck
given by (45). Taking the time-derivative along solutions of
(32) gives

U̇circ = ∑
N
k=1[−K〈Pkc,eiψk〉2−κzk

2

−(u0−uk)
(
− 1

mk
Dk cosβk +

1
mk

Tk + vkωk
)

+(v0− vk)
( 1

mk
Dk sinβk− 1

mk
Fk +ukωk

)
].

(49)
Choosing Tk to be the stabilizing control (33) ensures that

uk converges to u0 according to the closed-loop dynamics
(34). Furthermore, V̇c ≤ 0 along solutions of (32). Therefore,
solutions converge to the largest invariant set Λ in which
uk−u0 ≡ 0 and V̇c ≡ 0, i.e.,

Λ = {〈Pkc, ieiψk〉 ≡ 0,zk ≡ 0,uk ≡ u0, ∀ k}. (50)
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Fig. 3. (a) Rigid body circular motion in the plane [K = 1, κ = 5, ω0 = 1,
and u0 = 1]; (b) velocity components of circular motion with time.

In Λ, ωk ≡ ω0sk and Fk ≡ 0, which implies that sk ≡ s0. For
solutions starting in Λ, we have

U̇circ = ∑
N
k=1(v0− vk)(hs0vk/mk +ukω0s0)

= ∑
N
k=1−

hs0
mk

(v0− vk)
2 ≤ 0. (51)

Application of the invariance principle in Λ shows that
solutions starting in Λ converge to the largest set M ⊂ Λ

in which U̇circ = 0. M contains the set of circular formations
with uk ≡ u0 and vk ≡ v0.

Theorem 2 is illustrated in Fig. 3.

V. CONCLUSION

In this paper we describe a planar rigid body model for
motion coordination. In addition to forward dynamics in
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the body-fixed frame, second-order transverse dynamics are
included in the model. The condition that the vehicle move
at constant forward speed is relaxed; controllers are designed
to ensure that the forward speed of each vehicle decays to
the desired speed u0. Decentralized controllers are provided
to stabilize parallel and circular formations and illustrated in
simulation. In ongoing work, we are extending these results
to incorporate a steady, uniform flowfield.
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