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Abstract— This paper develops a framework for estimating
the reliability—with confidence regions—of a complex system
based on a combination of full system and subsystem (and/or
component or other) tests where some of the subsystems are
dependent on dynamic inputs (independent predictor variables).
It is assumed that the system is composed of multiple processes
(e.g., the subsystems and/or components within subsystems),
where the subsystems may be arranged in series, parallel
(i.e., redundant), combination series/parallel, or other mode.
The method of maximum likelihood estimation (MLE) is used
to estimate subsystem and full system reliability. The MLE
approach is well suited to providing asymptotic confidence
bound through the Fisher information. As such, the Fisher
information is derived for the general maximum likelihood
estimator presented in the paper. A simple numerical study
illustrates that the MLE recovers the reliability parameters of
a system (plus some statistical uncertainty) when applied to
a set of dynamic inputs and full system/subsystem output test
data.

I. INTRODUCTION

This paper considers the problem of estimating the re-
liability of a complex system based on a combination of
information from tests on the subsystems, components, or
other processes within the system, and, if available, tests on
the full system. System, subsystem, component, interface,
and other1 tests are often carried out on complex systems to
determine full system/subsystem reliability, evaluate aging
or manufacturing process effects on reliability, and ensure
that an operational performance requirements are satisfied.
Fusing full system and subsystem test data to evaluate
the reliability of a complex systems is desirable when full
system testing is costly or dangerous or when it requires
the destruction of the system itself. Additionally, it is desir-
able to include full system testing in an overall reliability
assessment to help guard against possible mis-modeling of
the relationship between the subsystems and full system in
calculating overall system reliability [1]. One method of
combining full system and subsystem reliability test data to
form a full system estimate of reliability is the method of
maximum likelihood [2]. This general maximum likelihood
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1To avoid the need to repeatedly refer to tests on subsystems, components,
processes, and other aspects of the system as the key source of information
other than full system tests, we will usually only refer to subsystem tests;
subsystem tests in this context should be considered a proxy for all possible
test information short of full system tests.

formulation for the combination of reliability test data applies
across all system configurations (series, parallel, etc); only
the optimization constraints change, leading to an appro-
priate maximum likelihood estimate (MLE). The method
of maximum likelihood also provides a characterization of
the estimation uncertainty—statistical uncertainty about the
model parameters—through the Fisher Information on the
parameters of the system reliability model.

The general maximum likelihood method of reliability
estimation combines data from subsystem tests and full sys-
tem tests via a model that reflects the constraints associated
with the configuration of the full system. Test data for each
subsystem and the full system are assumed to be independent
and identically distributed (i.i.d.). However, reliability test
data can be dependent on dynamic external performance
predictors such as age, temperature, manufacturing lot, etc
(for example see [3]). This leads to system and subsystem
test data that are independent but not identically distributed.
Herein, the general method of [2] and [4] is extended so that
the model for the system also reflects dynamic subsystems re-
liabilities. The principles of maximum likelihood are applied
to estimate overall system reliability from a combination of
full system and subsystem tests that may be dependent on
dynamic predictors. Such full system/subsystem reliability
estimates (with quantified confidence) are valuable to deci-
sion makers for determining system operational limits and
optimizing maintenance/upgrade schedules.

Certainly, other approaches exist for estimating system
reliability when the subsystems are independent (see [2]
for a review). However, these approaches do not allow
for easy inclusion of dynamic external performance predic-
tors. A Bayesian approach to including dynamic external
performance predictors in full system/subsystem reliability
estimates is developed in [5] and [6]. While prior information
may be useful and appropriate in some situations, the MLE
approach offers a prior free alternative to the Bayesian
approach that is parsimonious in the model construction
(no priors or hyperpriors) and in the subjective input (no
prior parameters or hyperparameters). Also, the Bayesian
estimation approach in [5] and [6] is ultimately one of
numerical integration, where, maximum likelihood estima-
tion is ultimately a problem of, the more simple, function
maximization. Finally, the Bayesian estimator does not have
the invariance property of maximum likelihood estimators,
so, a Bayesian estimate of the system reliability model
parameters does not necessarily give an optimal estimate of
the system reliability.

Section 2 of this paper gives the formulation for the
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general MLE. Models for the full system and subsystems are
specified, the input and output test data are described, and the
likelihood function, score vector, and Fisher information are
presented. Section 3 considers a specific case of the general
MLE, where the dynamics of one subsystem is modeled with
a logit function. A simulation study illustrates that the MLE
recovers the fundamental reliability parameters of a system
(plus some statistical uncertainty) when applied to simulated
inputs and output test data. Section 4 offers some concluding
remarks and a discussion of future work.

II. GENERAL FORMULATION

A. Modeling Approach

Consider a system composed of several subsystems that
can be independently tested, and assume that the ultimate
quantity of interest is the full system reliability. Suppose
that reliability test data exists on both the full system and
the subsystems. The subsystem reliabilities may be static or
dynamic. The reliability of a static subsystem is assumed
to be physically and stochastically independent of external
performance factors when the subsystem is used as intended.
In other words, the reliability of a static subsystem does
not vary in its intended operating mode and environment.
The reliability of a dynamic subsystem is assumed to be
dependent on a set of external performance predictors. These
inputs (or independent predictor variables) may be continu-
ous or categorical. Typically, the inputs are a measure of
the age of the subsystem (i.e. time since production, time
since last service, or time in operational use), the condition
of the subsystem, which may come from a condition-based
maintenance sensor (i.e. amount of particulate in engine oil),
or a discrete experience (i.e. manufacturing lot or mode of
transport). Any system with a dynamic subsystem is also
a dynamic system; the system reliability is stochastically
dependent on all dynamic subsystem inputs.

Models for the full system and subsystems must be
defined in order to estimate the reliability of a system.
The models characterize the full system/subsystem dynamics
and the system configuration. The models may take many
different forms, subject to being able to write down a
probabilistic characterization of the system that leads to a
likelihood function. At the subsystem level, statistical or
physical models must be developed that relate the dynamic
inputs to the subsystem reliability. At the full system level,
the physical configuration of the system (series, parallel,
combination series/parallel) must be modeled. Further, since
the system is dynamic, the full system model incorporates the
subsystem models. It is the combination of subsystem and
full system models (and any interaction between subsystem
dynamics and system configuration) that enables the method
of maximum likelihood to combine independent reliability
test data observed at different input values.

Suppose a system is composed of q dynamic subsystems
and r static subsystems. Let the dynamic subsystem response
Xi be specified by a vector of unknown parameters βi , which
are to be estimated from data for each dynamic subsystem,
and a vector of inputs τi , for i = 1, . . . , q . Then, the model for

the i th dynamic subsystem reliability (success probability)
ρi is denoted

ρi = E(Xi ) = ρi
(
τi ,βi

)
, i = 1, . . . , q, (1)

where ρi (·) is a differentiable function that links the param-
eters and input values to the expectation of Xi . Further, let
the static subsystem response Xi be specified by ρi the static
subsystem reliability, for i = q+1, . . . , q+r . By definition, the
static subsystem reliability is independent of any inputs, τi .
The model for the i th static subsystem reliability ρi is

ρi = E(Xi ), i = q +1, . . . , q + r. (2)

The full system response Y is completely characterized by
the models for the subsystems, the inputs to the dynamic
subsystems, and an overall “system” model that specifies the
system configuration. The overall “system” model maps the
subsystem reliabilities into the system reliability according
to

ρ = E(Y ) = ρ (
τ;β1, . . . ,βq ;ρq+1, . . . ,ρq+r

)
, (3)

= ρ (
ρ1

(
τ1,β1

)
, . . . ,ρq

(
τq ,βq

)
;ρq+1, . . . ,ρq+r

)
,
(4)

where τ= {τT
1 , . . . ,τT

q }T is the stacked vector of inputs associ-
ated with each dynamic subsystem and ρ(·) is a differentiable
function linking the parameters and the input values to the
expectation of Y .

B. Inputs and Output Test Data

It is assumed that the full system and subsystem responses
(output test data) used for estimating reliability are statis-
tically independent. Subsystems may be tested by varying
the inputs with each test or subsystems may be tested many
times at relatively few values of the input. Full system tests
(typically fewer in number than subsystem tests) may be
conducted at relatively few input values, which need not be
the same as the input values observed/used in the subsystem
testing. Optimal experimental design for fuzing subsystem
and full system output test data is outside the scope of this
paper. However, a complete description of the subsystem and
full system inputs and output test data is given.

For each dynamic subsystem, independent tests are per-
formed at different values of the inputs. The i th dynamic
subsystem is tested at mi values of the inputs. The input
values are denoted τi 1, . . . ,τi mi , where τi j is the j th vector
of input values at which the the i th subsystem is tested. (So,
τi j is the vector of independent predictor variables associated
with the Xi j response.) The mi input values may include
repeated (duplicate) quantities (so τi j = τi j ′ for j 6= j ′). For
j = 1, . . . ,mi , let Xi j represent the number of successes in
ni j i.i.d. tests of the i th dynamic subsystem at the input
value τi j . Thus, the total set of output test data on the i th

dynamic subsystem is Xi = {Xi 1, . . . , Xi mi }.
Static subsystems are assumed to be independent of exter-

nal performance factors, so each test of a static subsystem
is i.i.d. Let Xi represent the number of successes in ni i.i.d.
tests of the i th static subsystem for i = q +1, . . . , q + r .
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The system response is dependent on the inputs of all
q dynamic subsystems, and so, the input for a full system
test is a set of vectors of all the subsystem inputs. For
the full system, assume s independent tests are performed
at different values of the subsystem inputs. Thus, the full
system is tested at s levels of the subsystems’ input; the levels
are not necessarily distinct. The input values for the system
tests are denoted τ′1, . . . ,τ′s , where τ′j =

{
τ′1 j

T , . . . ,τ′q j
T
}T

,
for j = 1, . . . , s, is a stacked vector of the dynamic subsystem
input levels at which the system tests are conducted. The
prime is added to distinguish these inputs from the subsystem
inputs. For j = 1, . . . ,mi , let Y j represent the number of
successes in n′

j i.i.d. tests of the system at the input value
τ′j (again, the prime is added to distinguish the sample size
from the subsystem sample sizes).

For notational convenience, let T =
{τi 1, . . . ,τi mi ; . . . ;τq1, . . . ,τqmq ;τ′1, . . . ,τ′s } represent the
complete set of subsystem and full system input data, and
let Z = {X1, . . . , Xq , Xq+1, . . . , Xq+r ,Y1, . . . ,Ys } represent the
full set of subsystem and system output test data. The input
and output test data notation is summarized in Table I.

C. MLE Formulation

The general MLE formulation involves a parameter vector
θ representing the parameters to be estimated, together with
an associated log-likelihood criterion L(θ). The parameters
that completely specify the system reliability include the
dynamic subsystem parameters, β1, . . . ,βq , and the static
subsystem reliabilities, ρq+1, . . . ,ρq+r . The vector,

θ = {βT
1 , . . . ,βT

q ,ρq+1, . . . ,ρq+r }T ,

is the vector of parameters to be estimated from data.
Note, the full system reliability ρ is not included in θ

because it is uniquely determined by the models for the
subsystems and the system configuration through the model
(3). (For convenience throughout the paper, the parameter
vector θ is substituted for the complete set of parameters
β1, . . . ,βq ;ρq+1, . . . ,ρq+r in the argument of the full system
reliability model (3).) Then, the estimate ρ̂, as determined
from applying (3) to the MLE of θ (say θ̂), is the MLE of
ρ. The invariance property of the MLE applies even though
the mapping from θ to ρ is not generally one-to-one and
may not be continuous (see, e.g., [7]).

Let Θ denoted the feasible region for the elements of θ. To
ensure that the relevent logarithms are defined and that the
appropriate derivatives exist, it is assumed, at a minimum,
that the feasible region Θ is restricted such that ρi ∈ (0,1),
for i = q + 1, . . . , q + r (the static reliabilities). The general
MLE formulation for the parameter vector θ is,

θ̂ = θ̂(T , Z ) ≡ argmax
θ∈Θ

L(θ) (5)

subject to
ρi = ρi

(
τi ,βi

)
for i = 1, . . . , q, and ρ = ρ (τ;θ) .

The estimate of system reliability is derived from the MLE
for θ through the model for the system ρ, given the value of

the inputs T , and the responses, Z , (system and subsystem
output test data).

The MLE formulation in (5) is general, but not very
practical for finding the MLE, which is typically found by
finding the root of the score equation, ∂L(θ)/∂θ = 0. From
the assumption of independence of all the test data, the prob-
ability mass function, say p(Z |θ), is the product of binomial
mass functions. Substituting the constraints from (5) into the
probability mass function and taking the logarithm leads to
the log-likelihood function L(θ) ≡ log p(Z |θ):

L(θ) =
q∑

i=1

mi∑
j=1

[
Xi j log

(
ρi

(
τi j ,βi

))+(
ni j −Xi j

)
log

(
1−ρi

(
τi j ,βi

))]+
r∑

i=q+1

[
Xi logρi + (ni −Xi ) log(1−ρi )

]+
s∑

i=1

[
Yi log

(
ρ

(
τ′i ,θ

))+ (
n′

i −Yi
)

log
(
1−ρ (

τ′i ,θ
))]

+ constant, (6)

where the constant is not dependent on θ. Note that the
expression in (6) for the log-likelihood applies regardless
of the models for the dynamic subsystems and the model for
the full system (the configuration of the system). Expression
(6) is used below for derivation of the score function and
Fisher information.

The elements of the score vector are a mixture of scalars
and vectors,

∂L/∂θ =



∂L/∂β1
...

∂L/∂βq
∂L/∂ρq+1

...
∂L/∂ρr

 , (7)

depending on the models for the dynamic subsystems. When
ρ and ρi for i = 1, . . . , q are differentiable functions, (6) leads
to the following elements of the score vector:

∂L

∂βk
=

s∑
i=1

[
Yi −n′

iρ
(
τ′i ,θ

)
ρ

(
τ′i ,θ

)(
1−ρ (

τ′i ,θ
)) ∂ρ

(
τ′i ,θ

)
∂ρk

(
τ′ki ,βk

) ∂ρk
(
τ′ki ,βk

)
∂βk

]

+
mk∑
i=1

[
Xki −nkiρk

(
τki ,βk

)
ρk

(
τki ,βk

)(
1−ρk

(
τki ,βk

)) ∂ρk
(
τki ,βk

)
∂βk

]
,

(8)

for k = 1, . . . , q, and

∂L

∂ρk
=

s∑
i=1

[
Yi −n′

iρ
(
τ′i ,θ

)
ρ

(
τ′i ,θ

)(
1−ρ (

τ′i ,θ
)) ∂ρ (

τ′i ,θ
)

∂ρk

]
+ Xk −nkρk

ρk (1−ρk )
,

(9)

for k = q +1, . . . ,r .
Except in trivial cases, the analytical expression for the

variance of the general MLE for system reliability is not
easily found. However, the Fisher Information, given by

F (θ) ≡ E

[
∂L

∂θ

(
∂L

∂θT

)T
]
=−E

[
∂2L

∂θ∂θT

]
(10)
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TABLE I
NOTATION FOR THE INPUTS, OUTPUT TEST DATA, AND MODEL PARAMETERS

Inputs Outputs Sample Size Parameters

i th Dynamic Subsystem τi 1, . . . ,τi mi
Xi 1, . . . , Xi mi

ni 1, . . . ,ni mi
βi

i th Static Subsystem — Xi ni ρi
Full System τ′1, . . . ,τ′s Y1, . . . ,Ys n′

1, . . . ,n′
s —

Total Set (q + r +1) T Z — θ

is available for the general maximum likelihood estimator of
the parameter vector θ. Invoking the Cramer-Rao inequality,
the inverse of the Fisher information is a lower bound on
the variance the MLE (for an unbiased estimator). The Fisher
information matrix for θ, given the deterministic inputs T , is
specified in three parts. The Fisher information matrix for the
dynamic subsystem parameters is specified by the following
submatrix,

−E

(
∂2L

∂βk∂βl

)
=

s∑
i=1

[
n′

i

ρ
(
τ′i ,θ

)(
1−ρ (

τ′i ,θ
)) ∂ρ (

τ′i ,θ
)

∂ρl
·

∂ρl
(
τ′l i ,βl

)
∂βl

(
∂ρ

(
τ′i ,θ

)
∂ρk

∂ρk
(
τ′ki ,βk

)
∂βk

)T ]
+

mk∑
i=1

[
nki

ρk
(
τki ,βk

)(
1−ρk

(
τki ,βk

)) ·
∂ρk

(
τki ,βk

)
∂βl

(
∂ρk

(
τki ,βk

)
∂βk

)T ]
, (11)

for k, l = 1, . . . , q . Note, the function ρ is differentiated with
respect to the scalar subsystem reliability ρl and ρk per
application of the chain rule. The function ρ is explicitly
dependent on the subsystem reliability through the model
for the system (3). The elements of the Fisher information
matrix for the static subsystem reliabilities are specified by
the following scalar,

−E

(
∂2L

∂ρk∂ρl

)
=

s∑
i=1

[
n′

i

ρ
(
τ′i ,θ

)
(1−ρ (

τ′i ,θ
)
)

∂ρ
(
τ′i ,θ

)
∂ρl

·

∂ρ
(
τ′i ,θ

)
∂ρk

]
+ nk

ρk (1−ρk )

∂ρk

∂ρl
, (12)

for k, l = q +1, . . . ,r . The cross terms (between dynamic and
static subsystem parameters) of the Fisher information matrix
are specified by the following vector,

−E

(
∂2L

∂βk∂ρl

)
=

s∑
i=1

[
n′

i

ρ
(
τ′i ,θ

)(
1−ρ (

τ′i ,θ
)) ∂ρ (

τ′i ,θ
)

∂ρl
·

∂ρ
(
τ′i ,θ

)
∂ρk

∂ρk
(
τ′ki ,βk

)
∂βk

]
, (13)

for k = 1, . . . , q and l = q +1, . . . ,r (again, the function ρ is
differentiated with respect to the scalar subsystem reliability
ρk per application of the chain rule).

III. ILLUSTRATION OF THE MLE FORMULATION

A. Series System with One Dynamic Subsystem

To illustrate the MLE formulation, a fully series system
with one dynamic subsystem and an arbitrary number of
static subsystems is modeled. (In this case, q = 1, and so the
subscript will be dropped from the vector β1.) The general-
ized linear model for a binary response is used to model the
dynamic subsystem reliability. A generalized linear model
relates the linear combination of parameters and inputs to
the expected value of a response variable via a link function.
Herein, the inverse logit function, g (η) ≡ (eη/(1 + eη)), is
selected to be the link function. The inverse logit function
is chosen because i) it is the canonical link function for
the generalized linear model for a binomial response (under
certain conditions there exists a sufficient statistic equal
in dimension to β for the linear predictor), ii) the linear
combination τT

1, jβ for any j can be interpreted as the log
odds on the event of subsystem success, and iii) differences
on the logistic scale can be estimated regardless whether
the data are sampled prospectively or retrospectively [8,
Chapter 4]. Further, the model is easily extended to capture
more complex functional relation between the inputs and the
response (the generalized linear model for a binary response
using the logistic link function is a special case of a one
node feed-forward neural network [9, Section 5.2]). Also,
the logit function is chosen because it is commonly used
in regression analysis for modeling a binary response, and
so, statistical tools for assessing the appropriateness of the
model (independence, additivity, and linearity of the inputs),
the quality of the model fit, and tools for model identification
are readily available. Nonetheless, care should be taken
when using a linear logistic model. A modeler/statistician
should always check to determine if its fixed functional form
represents the physical or mathematical dependence structure
present among the inputs [3].

The functions that comprise the model for the dynamic
subsystem and the full system are as follows. The model for
the dynamic subsystem reliabilty ρ1 is

ρ1
(
τ1,β

)= eτ
T
1 β(

1+eτ
T
1 β

) , (14)

and, based on the series system configuration, the functional
form for the full system reliability ρ, is

ρ (τ,θ) = ρ1
(
τ1,β

) r∏
i=2

ρi . (15)
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The MLE formulation in (5) is now applied by inserting
(14) and (15) into the log-likelihood function (6). The log-
likelihood function for the new estimation problem is

L(θ) =
m1∑
i=1

[
Xi

(
τT

1iβ
)−ni log

(
1+exp

(
τT

1iβ
))]+

r∑
i=2

[
Xi logρi + (ni −Xi ) log(1−ρi )

]+
s∑

i=1

[
Yi log

(
ρ

(
τ′i ,θ

))+ (n′
i −Yi ) log

(
1−ρ (

τ′i ,θ
))]

+ constant, (16)

where θ = {βT ,ρ2, . . . ,ρr }. Note that the first line in (16) is
the log-likelihood for the standard linear-logistic model, [8,
Chapter 4]. The score vector can be written,

∂L

∂β
=

m1∑
i=1

[(
X1i −n1iρ1

(
τ1i ,β

))
τ1i

]+
s∑

i=1

[(
Yi −n′

iρ
(
τ′i ,θ

))(
1−ρ1

(
τ′1i ,β

))
1−ρ (

τ′i ,θ
) τ′1i

]
, (17)

∂L

∂ρk
=

s∑
i=1

[
Yi −nYi ρ

(
τ′i ,θ

)
ρk

(
1−ρ (

τ′i ,θ
))]

+ Xk −nkρk

ρk (1−ρk )
. (18)

Assuming deterministic inputs, the Fisher Information matrix
on β is

−E

(
∂2L

∂2β

)
=

s∑
i=1

[
n′

iρ
(
τ′i ,θ

)(
1−ρ1

(
τ′1i ,β

))2(
1−ρ (

τ′i ,θ
)) τ′iτ

′
i

T

]
+

m1∑
i=1

[
n1iρ1

(
τ1i ,β

)(
1−ρ1

(
τ1i ,β

))
τ1iτ

T
1i

]
, (19)

and the elements of the Fisher Information matrix on
ρ2, . . . ,ρr are

−E

(
∂2L

∂ρk∂ρl

)
=

r∑
i=1

[
niρ

(
τ′i ,θ

)
ρkρl

(
1−ρ (

τ′i ,θ
))]

+
{ nk

ρk (1−ρk ) if k = l

0 if k 6= l
, (20)

for k, l = 2, . . . ,r . The cross terms of the Fisher information
matrix are specified by the following vector,

−E

(
∂2L

∂β∂ρl

)
=

s∑
i=1

[
n′

iρ
(
τ′i ,θ

)(
1−ρ1

(
τ′1i ,β

))(
1−ρ (

τ′i ,θ
)) τ′i

]
, (21)

for l = 2, . . . ,r .

B. Numerical Example

This section describes a simple numerical study on the
reliability estimation of a series system with four independent
subsystems. The simulation study shows that the general
MLE described in Section II recovers the fundamental
reliability parameters of the system (plus some statistical
uncertainty) when applied to inputs and output test data. The
system is comprised of one dynamic subsystem and three
static subsystems. The dynamic subsystem is assumed to be
dependent on a constant and a single input. The example
is analogous to assessing the reliability of a system that is

degrading with the age of a particular subsystem (as such,
parameter values for the dynamic subsystem are selected
so that the dynamic subsystem reliability is monotonically
decreasing as the input value increases). The model for
the system reliability and dynamic subsystem reliability are
given in (14) and (15), respectively, where β= {β0,β1}T and
τ= {τ0 = 1,τ1}T .

The inputs producing the output test data for the system
are generated as follows. First, a response from the dynamic
subsystem is generated by sampling from a uniform distri-
bution with lower and upper bound parameters 0 and 20,
respectively, to obtain a value for the input τ1. Then, the
sampled value of τ1 and the vector β, specified in Table II,
are used to compute the dynamic subsystem reliability,
ρ1 = ρ1({1,τ1}T , {β0,β1}T ). Finally, response is generated
by randomly sampling from a Bernoulli distribution with
mean specified by ρ1. Inputs and responses are generated
to create a dynamic subsystem sample of m1 = 200. The
static subsystem output test data are generated by randomly
sampling from a binomial distribution with a means specified
by the parameters in Table II and sample sizes, n2 = n3 =
n4 = 200. An input and response from the full system is
generated in the same manner as the dynamic subsystem
input/response, except before sampling from a Bernoulli
distribution, the dynamic subsystem reliability is multiplied
by the three static subsystem reliabilities listed in Table II.
Again, inputs and responses are generated to create a full
system sample of s = 200. The MLE, θ̂ = {β̂0, β̂1, ρ̂2, ρ̂3, ρ̂4}T ,
is found by maximizing (16) at the simulated inputs and
output test data.

Output test data from one replicate of the system/subsytem
simulation described above are plotted in Figure 1. The
full system and dynamic subsystem responses are generated
from a Bernoulli distribution, and so, the responses are
plotted as points with value one for success or zero for
failure at the observed input value, τ1 (recall that τ0 = 1).
More full system failures occur at smaller values of the
input than dynamic subsystem failures because the dynamic
subsystem is in a series configuration with three other
static subsystems. The MLE of the model parameters are
β̂0 = 6.314, β̂1 = −0.626, ρ̂2 = 0.968, ρ̂3 = 0.950, ρ̂4 = 0.936.
Through the invariance property of the MLE, these parameter
estimates lead to the estimate of full system reliability plotted
as a function of the input, τ1, in Figure 1. The MLE of the
full system reliability reflects all the test data (full system,
static subsystem, and dynamic subsystem) given the models
for the full system and dynamic subsystem. The statistical
uncertainty in the estimate is also represented by plotting
the 90% asymptotic confidence bounds, conditional on τ =
{1,τ1}T (where τ1 is plotted on the x-axis), computed from
the Fisher information in (19)–(21).

To test that the general MLE described in Section II
recovers the reliability parameters listed in Table II plus some
statistical uncertainty, the simulation of inputs and output
test data followed by maximum likelihood estimation are
replicated 100 times. To account for the statistical uncer-
tainty, the statistical z-test is used to produce probability
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Fig. 1. Full system and subsystem test data from one replicate of the
system/subsystem simulation and the corresponding MLE estimate of sys-
tem reliability with its 90% asymptotic confidence interval (full system and
dynamic subsystem responses are zero or one, they are offset from these
values slightly to avoid clutter).

TABLE II
SUBSYSTEM PARAMETERS AND SIMULATION SUMMARY STATISTICS

Parameter Value Mean of Estimates P-value
β0 6.00 6.0968 0.2614
β1 −0.60 −0.6100 0.2268
ρ2 0.97 0.9699 0.9325
ρ3 0.95 0.9515 0.2920
ρ4 0.93 0.9249 0.7607

values (P-values) on the null hypothesis that the mean of
the parameter MLEs are equal to the model parameter values
listed in Table II. (The means of the MLEs and P-values are
listed in Table II.) The large P-values for each parameter are
consistent with the means of the parameter estimates being
equal to the true model parameter values listed in Table II.

IV. CONCLUDING REMARKS

We have described above an MLE-based framework for
estimating the reliability of a complex system by combining
data from full system reliability tests and subsystem (or
other) tests where some test data is dependent on dynamic
external performance predictors (dynamic inputs) such as
age, temperature, manufacturing lot, etc. The idea is a
natural—but non-trivial—extension of [2] and [4], which
did not consider dynamic inputs. By appropriately formu-
lating constraints in an optimization problem, the approach
accommodates general relationships between subsystem re-
liability and dynamic performance predictors and between
the subsystems and full system. The method applies in
general systems, where the subsystems may be arbitrarily
arranged (in series, parallel, combination series/parallel, or
other mode) and where any number of subsystem reliabilities

may be dependent on external performance predictors. Inter-
estingly, the MLE objective function (i.e., the likelihood or
log-likelihood) has the same general form across all settings;
only the constraints in the optimization problem change.

Significant work remains to move the framework described
above to a robust methodology. The theoretical conditions on
the subsystem and full system models under which the MLE
will converge to the true system reliability and the asymptotic
normality of the MLE need to be established. The results of
such theoretical work will guide the process of establishing
a class of models to be used for system/subsystem dynamics
and possible extensions (such as use in a reliability-based
controller for a linear stochastic system [10]). Future work
also includes developing bootstrap methods to determine
non-asymptotic confidence intervals on the vector θ̂ and
system reliability ρ̂.
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