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Abstract— This paper is concerned with time-optimal
navigation for flight vehicles in a planar, time-varying
point-symmetric flow-field — such as inside vortices or
regions of eddy-driven upwelling/downwelling — where the
objective is to find the fastest trajectory between initial and
final points. The primary contribution of the paper is the
observation that for time-optimality the rate of the steering
angle has to be equal to one-half of the instantaneous
vertical vorticity. Consequently, if the vorticity is zero, then
the steering angle has to be constant. The result can be
applied to find the time-optimal trajectories in practical
control problems, by reducing the infinite-dimensional
continuous problem to numerical optimization involving
at most two unknown scalar parameters.

I. INTRODUCTION

This paper is concerned with optimal navigation for
flight vehicles in a planar flow-field. In the present
context flight vehicles should be understood as general
self-propelled particles that are subject to advection with
the ambient exogenous flow, and not necessarily winged
flying machines. The planar particle model may be ap-
plied to marine vessels or submersibles subject to ocean
currents, airplanes or airships subject to wind, or gliders
exploring the atmosphere of distant celestial bodies [9].
Although most of these flight vehicles have the potential
to move in the general three-dimensional space, studying
the projection of their motion onto the horizontal plane is
well justified given that their typical operation is planar,
and because the ambient flow structures show relatively
little variation in the vertical direction. The flow-relative
speed of the flight vehicles will be assumed constant.
This restriction simplifies the analysis, and also makes
the results applicable to vehicles, whose speed cannot
be changed due to the principle of operation or other
mission objectives. Airplanes typically fly at the constant
minimum-drag speed to maximize fuel economy [10].
Autonomous Underwater Vehicles (AUVs) travel at the
optimum speed determined by the trade-off between
the power required to overcome drag, and the power
consumed by onboard computers and sensors (hotel
load) [1]. Under this constraint, the objective is then
to find the optimal steering angle of the constant-speed
flight vehicle, whose inertial (ground-relative) speed
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is influenced by the ambient fluid motion. For high-
powered flight vehicles, such as commercial airliners
flying at transonic speed, the variation between the
optimal trajectory and neighboring sub-optimal solutions
may not significantly alter the course of motion. In the
case of slowly moving vehicles, such as airships or
underwater vehicles, the picture is significantly different.
When the vehicle speed is comparable to the speed of
the ambient fluid, then the flow can severely alter the
vehicle’s domain of maneuverability [14], and hence the
optimal trajectory between the initial and final points
may have a very different shape than just a straight line.

The optimal control problem discussed in this paper is
known as Zermelo’s problem after Ernst Zermelo, who
first studied optimal navigation of airships in wind-fields
using variational principles [15]. Zermelo’s optimal nav-
igation formula is given in the form of a differential
equation that depends on the partial derivatives of the
ambient flow with respect to position [2, Section 2.7]

ψ̇(t) = (ux − vy) cosψ sinψ + uy cos2 ψ + vx sin2 ψ.

In this equation ψ(t) is the heading angle (the control
signal), u and v denote the North and East components
of the ambient flow, respectively, and the subscripts x
and y denote partial derivatives with respect the spatial
North and East coordinates. The equation provides a
necessary condition for the optimal steering angle. Al-
though in practice the initial condition to this differential
equation is also needed to find the optimal steering
history, the equation gives important clues about the
character of extremals in some special cases. (Extremals
are feasible paths that satisfy the necessary conditions
of optimality; hence they are candidate optimal paths.)
An example is the case where the flow is uniform, but
possibly temporally changing. In that case, the rate of
the steering angle is zero, hence the steering angle is
constant. Due to its intuitive interpretation and elegant
closed-form solution, Zermelo’s problem is a common
example found in nearly every textbook on introduc-
tory optimal control (see e.g. [2], [7], [8]), however
most of these discussions stop short at the uniform
and time-invariant ambient flow model, for which a
simple geometric solution exists. A more general case
is explored in [2], by requiring the flow to be time-
invariant, and also invariant in one inertial direction.
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In that special case, one of the adjoint states becomes
an integral of motion [2, Section 2.7], and a closed-
form solution is presented. In most other situations, the
problem is transformed to a two-point boundary-value
problem (TPBVP), and the solution is obtained using
shooting methods (also known as variation of extremals
[7]). Alternative approaches, based on direct trajectory
optimization, have been explored recently in [4], [5].

In this paper we revisit Zermelo’s problem employing
the achievements of optimal control theory and modern
systems theory [12], [13]. The flow model presented
in Section II is able to represent a rich family of
flow phenomena. Examples include vortices or eddy-
driven upwelling/downwelling at the ocean surface. A
similar model has been employed in [11] to identify the
location and strength of flow singularities with the aim
to improve the navigation precision of AUVs operating
under the influence of such flow structures. The methods
presented in [11] could provide the underlying flow
model that can be utilized by the optimal control algo-
rithms presented in this paper. The primary contribution
of the paper, presented in Section III, is the observation
that — near a point-symmetric flow structure — the
rate of the steering angle has to be equal to one-half
of the instantaneous vertical vorticity. In Section IV we
present an example that demonstrates the usefulness of
this result for finding the time-optimal trajectory in a
vortical, time-varying flow-field.

II. FLOW-FIELD MODEL

Similarly as in [11], we focus our attention on a planar
flow model that includes a flow singularity at some fixed
location, rs = [xs, ys]

T ∈ R2, in the horizontal plane.
The components of the fluid velocity, V w = [u, v]

T ∈
R2, in Cartesian coordinates are given by

V w(x, y, t) = U(t) +A(t)(r − rs), (1)

where U(t) is the uniform flow component, r = [x, y]
T

is the planar position, and the matrix

A(t) =

[
a11(t) a12(t)
a21(t) a22(t)

]
characterizes the flow singularity. The flow velocity
components will be implicitly assumed to depend on
the position and time, [u, v]

T
= [u(x, y, t), v(x, y, t)]

T ,
and the parentheses will be omitted to simplify notation.
Without loss of generality, the flow singularity will be
assumed to be at the origin. Depending on the compo-
nents of A, the above model can describe a number of
interesting flow phenomena. The divergence of the flow,
given by

∇ · V w =
∂

∂x
u+

∂

∂y
v = a11 + a22,
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Fig. 1: Example flow fields that can be represented by
equation (2).

is equal to the net inflow or outflow of fluid particles into
the region containing the singularity [6]. The symbol
∇ denotes the gradient operator. If ∇ · V w > 0 the
singularity is a source, if ∇ · V w < 0 the singularity is a
sink, and if ∇ · V w = 0, then the flow is divergence free
and purely rotational. The rotation, or vertical vorticity,
given by

∇× V w =
∂

∂x
v − ∂

∂y
u = a21 − a12,

describes the rotational motion of the flow. Positive
vertical vorticity describes clockwise rotation and vice
versa. Note that in this paper the navigation axis con-
vention is adopted, where the x-axis points North, the
y-axis points East and the z-axis points down. Hence,
in the plane — as seen from above — the x-axis is
vertical and the y-axis is horizontal. Also, observe that
in this model the instantaneous vorticity is related to the
angular rate of the fluid particles by

ω(t) =
1

2
∇× V w.

A. Point-Symmetric Singular Flow

Consider the following symmetric flow structure:

Ap =

[
γ(t) −ω(t)
ω(t) γ(t)

]
. (2)

This structure allows to treat fairly general flow phenom-
ena, such as the ones shown in Figure 1. These flow
patterns include the combination of sources/sinks and
vortices, and can model interesting oceanographic phe-
nomena such as eddy-driven upwelling or downwelling
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at the ocean surface. Flow patterns that can represented
by the matrix Ap will be referred to as point-symmetric
in this paper.

Remark 2.1: Note that if the fluid is rotating as a solid
body, then ω(t) gives the instantaneous angular velocity
of the fluid particles in the entire flow region. Also note
that if γ(t) ≡ 0, then this flow model represents the
flow-field inside the core region of a Rankine vortex.

The structure imposed by equation (2) allows the
establishment of a simple geometric connection between
the vertical vorticity and the optimal steering angle near
a flow singularity.

III. OPTIMAL NAVIGATION

A. Model

A flight vehicle must travel through a region of R2 in
the presence of spatially and temporally varying flow-
field:

ẋ = V cosψ + u (3)
ẏ = V sinψ + v, (4)

where [x, y]T ∈ R2 are the spatial position coordinates,
V is the flow-relative velocity, which is assumed to be
constant, and ψ is the heading angle due North. The
control signal for the system is the steering angle, ψ,
which can take values in the set

ψ ∈ U = [−π, π], ∀t ∈ [0, tf ].

B. General Properties of Extremals

The Hamiltonian for the system is

H = λx(V cosψ + u) + λy(V sinψ + v). (5)

The adjoint equations are

λ̇x = −λx
∂u

∂x
− λy

∂v

∂x
(6)

λ̇y = −λx
∂u

∂y
− λy

∂v

∂y
. (7)

The necessary condition for optimality by Pontryagin’s
minimum principle [12, Theorem 5] is that the Hamilto-
nian attains its minimum at ψ for all values of the states.
To carry out the minimization we write

∂H
∂ψ

= −V λx sinψ + V λy cosψ ≡ 0.

It follows that

λ ⊥
[
− sinψ
cosψ

]
⇐⇒ λ ‖

[
cosψ
sinψ

]
,

and since the adjoint vector cannot be zero, that is λ̄ =√
λ2
x + λ2

y > 0, we can write

cosψ = δ
λx
λ̄
, sinψ = δ

λy
λ̄
,

where δ = ±1. Taking the second derivative of the
Hamiltonian with respect to the control gives

∂2H
∂ψ2

= −V λx cosψ − V λy sinψ = −V λ̄δ.

In order for the extremal to provide a local minimum
we need

∂2H
∂ψ2

= −V λ̄δ > 0,

hence δ = −1. This choice guarantees that along
the extremal path the solution will be at least locally
optimal. With δ = −1, the adjoint vector has to be anti-
parallel to the flow-relative velocity vector at all times.
The above findings can be summarized in the following

Lemma 3.1: (cf.[2, Section 2.7]) A necessary condi-
tion for time-optimality is that the flow-relative velocity
vector is at all times anti-parallel to the current value of
the adjoint vector, that is

ψ∗(t) = tan−1

(
−λy(t)

−λx(t)

)
, (8)

where the four-quadrant arctangent function is used.
In a flow region that can be described by equation (1),

the adjoint equations (6)-(7) can be written as

λ̇ = −AT
p λ.

In this special case the adjoint system is linear and
decoupled from the system states. The solution to this
linear system is given by

λ(t) = Φp(t, 0)λ0, (9)

where Φp(t, 0) is the state transition matrix correspond-
ing to the matrix −AT

p . Lemma 3.1 states that the angle
of the adjoint vector characterizes the optimal steering
policy, hence it is instrumental to study the evolution of
adjoint vector, or equivalently the state transition matrix
Φp(t, 0).

C. Point-symmetric Flow

The state matrix can be written as the sum of two
matrices

−AT
p = Γ(t) + Ω(t), (10)

where

Γ(t) =

[
−γ(t) 0

0 −γ(t)

]
, Ω(t) =

[
0 −ω(t)
ω(t) 0

]
.

The state transition matrices ΦΓ(t, 0) and ΦΩ(t, 0), cor-
responding to the matrices Γ(t), and Ω(t), respectively,
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Fig. 2: Adjoint transformation.

can be written as

ΦΓ(t, 0) =

[
e−Γ(t) 0

0 e−Γ(t)

]
, (11)

Γ(t) =

∫ t

0

γ(σ)dσ, (12)

ΦΩ(t, 0) =

[
cos Ω(t) − sin Ω(t)
sin Ω(t) cos Ω(t)

]
, (13)

Ω(t) =

∫ t

0

ω(σ)dσ. (14)

Notice that ΦΩ(t, 0) is a proper rotation matrix about
the z-axis with angle Ω(t):

ΦΩ(t, 0) = R3(−Ω(t)).

Recall that for arbitrary matrix X(t), the state transition
matrix ΦX(t, 0) satisfies

Φ̇X(t, 0) = X(t)ΦX(t, 0).

From this property, and from the fact that ΦΓ(t, 0) =
e−Γ(t)I, it follows that

Φp(t, 0) = ΦΓ(t, 0)ΦΩ(t, 0).

The adjoint vector is obtained from its initial value
by two consecutive linear operations: a rotation and a
scaling. Since the matrix ΦΓ(t, 0) is diagonal and has
identical values, the order of operations is interchange-
able. This linear transformation — illustrated in Figure 2
— has the following properties:

1) The scaling leaves the ratio of the components of
the adjoint vector invariant.

2) The rotation leaves the length of the adjoint vector
invariant.

Consequently, the angle of the adjoint vector is given
by Ω(t) + φλ0 , where φλ0 is the angle of the adjoint
vector at t = 0. Since the adjoint vector λ(t) is always
anti-parallel to the flow-relative velocity vector, we have
established the following

Theorem 3.2: In a planar point-symmetric flow-field
the optimal steering policy (if it exists) is given by

ψ∗(t) = Ω(t) + ψ0, (15)

where Ω(t) — given in equation (14) — is the time
integral of the fluid angular rate. Consequently, the
rate of the steering angle is equal to the instantaneous
fluid angular rate, or equivalently, to one-half of the
instantaneous vertical vorticity:

ψ̇∗(t) = ω(t) ≡ 1

2
∇× V w. (16)

Corollary 3.3: If the fluid is irrotational, then the
optimal steering angle is constant.

Remark 3.4: It is important to emphasize again, that
this result applies for the flow model given by (2).
The necessity to impose this structure is clear from the
geometric interpretation illustrated in Figure 2. If the
diagonal elements of Ap were not equal, then the linear
operation defined by ΦΓ(t, 0) would impose a rotation
as well as a scaling, and the steering angle need not be
constant even in irrotational flow.

D. Special Case: Time-invariant, divergence free flow

Suppose the flow takes the following, purely rotational
form [

u
v

]
=

[
0 −ω
ω 0

] [
x
y

]
, (17)

where now the rotation rate is time-invariant (constant).
Then the closed-form expression for the state transition
matrix in (9) is given by

Φ(t, 0) =

[
cos(ωt) − sin(ωt)
sin(ωt) cos(ωt)

]
.

(Note that the rotation leaves the length invariant, hence
the length of the adjoint vector λ̄ =

√
λ2
x + λ2

y is a first
integral.) By Theorem 3.2, the optimal steering control
is a linear function of time:

ψ∗(t) = ωt+ ψ0. (18)

Since the optimal steering angle is linear, we can obtain
closed-form solution for candidate extremal trajectories.
Substituting equation (18) into equations (3)-(4), we get[

ẋ
ẏ

]
=

[
V cosψ∗ − ωy
V sinψ∗ + ωx

]
=

[
0 −ω
ω 0

] [
x
y

]
+B(t),

where
B(t) =

[
V cos(ωt+ ψ0)
V sin(ωt+ ψ0)

]
.

This system can be thought of as a linear time-invariant
system with sinusoidal forcing. The solution can be
found using the variation of constants formula:[

x(t)
y(t)

]
= Φ(t, 0)

[
x(0)
y(0)

]
+

∫ t

0

Φ(t, σ)B(σ)dσ,
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which gives[
x(t)
y(t)

]
= Φ(t, 0)

[
x(0)
y(0)

]
+ V t

[
cos(ψ0 + ωt)
sin(ψ0 + ωt)

]
. (19)

In order to solve for specific extremal trajectories, the
boundary conditions have to be specified.

IV. NUMERICAL EXAMPLE

In this section a simple example is presented that
illustrates the utility of methods established in Sec-
tion III. The goal is to find the time-optimal trajectory
between initial and final points x0 = R cos(π/6), y0 =
R sin(π/6), xf = 0, yf = R, where R = 1. (All
variables are assumed to be non-dimensional in this
paper.) We take V = 1.

The approach we use in this example is based on
numerical optimization involving two unknown param-
eters: the final time, tf , and the initial steering angle,
ψ0. If both tf and ψ0 were known, then the trajectory
would be uniquely determined given that the rate of
the steering angle is known from equation (16), and
numerical integration can be used to obtain [x(t), y(t)]T

from equations (3)-(4). (Note that, if the flow takes the
special form (17), then the closed-form expression (19)
can be used to find the solution to the initial value prob-
lem.) Since the two parameters (tf ;ψ0) are unknown, let
[x(tf ;ψ0), y(tf ;ψ0)]T denote the solution to the initial
value problem. Let us define the following function

F (tf , ψ0) =

[
x(tf ;ψ0)− xf
y(tf ;ψ0)− yf

]
. (20)

All the solutions to the equation F (tf , ψ0) ≡ 0, where
tf > 0 define feasible trajectories that transfer the initial
point to the desired final point. Furthermore, the tra-
jectories satisfy the necessary conditions for optimality
as established by Theorem 3.2, and are guaranteed to
be at least locally optimal. The roots of equation (20)
were found using the Levenberg-Marquardt algorithm
(see e.g. [3]).

In this example the flow is described by equation (2),
with γ = −0.3, and ω(t) = t − 1. In this case the
flow model represents a constant sink plus a vortex that
changes vorticity linearly during the maneuver. In this
simple linear case, the fluid angular rate is a linear
function of time. Consequently, by Theorem 3.2, the
optimal steering policy has to be parabolic, and is given
by ψ∗(t) = t2/2− t+ 2.605. The planar position plots
can be seen in Figure 3. From the minimum principle
[12, Theorem 5], the variable

H1 = H−
∫ t

tf

∂H
∂t

dτ.

has to be a non-positive constant along the optimal
trajectory. The condition is satisfied for the example

presented in this paper. The evolution of the steering
angle, the variable H1, and the adjoint states are shown
in Figure 4. Notice that at t = 1, when the vertical
vorticity vanishes, the derivative of the steering angle is
zero.

V. CONCLUSIONS

In this paper we revisited Zermelo’s time-optimal nav-
igation problem. Recalling the geometric connection be-
tween the adjoint vector’s angle and the optimal steering
policy, and exploiting the linear structure of the imposed
flow model, we established a necessary condition for
candidate extremal trajectories. The contribution is the
observation that — in a point-symmetric, time-varying
flow-field — the optimal steering policy necessarily has
to be such that the rate of the steering angle equals the
angular rotation rate of the fluid particles, or equivalently
one-half of the instantaneous vertical vorticity. The
point-symmetric flow model may represent a variety of
flow phenomena as they are observed in nature, such as
large-scale vortical motions and eddy-driven upwelling
or downwelling at the ocean surface. The result can
be used to set up efficient numerical routines to find
extremal trajectories in time-varying flow structures.
In addition to finding extremal trajectories in specific
scenarios, the result also gives an intuitive rule of thumb
as of how to helm a ship or aircraft in a point-symmetric
flow-field. This rule could be potentially exploited in
present day human piloted marine vehicle operations.
One such area is underwater gliders, which are deployed
at an increasing rate to collect oceanographic data.
Although there has been considerable effort recently to
equip them with optimal trajectory planning methods,
presently these vehicles are almost exclusively piloted
by human operators, who provide way-point commands
between consecutive dives.
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