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I. INTRODUCTION

We examine the structure of the Witsenhausen coun-

terexample/problem and its solution. In particular, we find

it useful to work with the associated quantile function,

rather than the controller itself or its distribution. With this

transformation, the problem is reduced to minimization of

a certain criterion over a particular function space. The

optimization criterion is the sum of two functionals. The

first, representing the control cost, is a simple quadratic. The

second, representing the expected squared estimation error,

has a more complex structure over this space. Nonetheless,

it has a unique minimum (i.e., no other local minima). The

problem of determining the parameter region over which the

total cost criterion has a unique minimum remains open,

although numerical experimentation suggests that this may

“typically” be the case. Numerical results also indicate the

form of the solution.

II. BACKGROUND AND DEFINITION

The Witsenhausen counterexample [14] gained substantial

notoriety for several reasons. The first is that it is a simply

formulated problem, which may appear to a casual observer

to be of linear/quadratic form, but is in fact far from such,

and certainly does not have a linear controller as the optimal

solution. Second, it is a problem where there is incomplete

communication between the controller and the estimator. As

such, it can be viewed as a benchmark problem in the area

of networked control problems, which is of course an area of

great current interest. Moreover, the controller is attempting

not only to minimize its own effort, but is also attempting

to aid the estimator through its control action. In fact, it is

this latter role which drives the controller to act at all.

The problem formulation is quite simple, and one might

place it in the arena of optimization rather than control, as

one could argue that the problem does not have the time-

structure which separates control from optimization. The

problem is as follows. The first input is a scalar normal

random variable, W ∼ N (0, c), and we let its range be

denoted as W .
= IR. A “controller”, ζ : W → IR acts

additively on the first input generating output X = W +
ζ(W ). We assume that ζ(·) is measurable, of course. An

observation, Y = X + ν is made, where ν ∼ N (0, d), and
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we let the range of Y be denoted by Y = IR. The estimator

generates estimate eY , knowing Y , but not ζ(W ). Note that

we assume the estimator does know the control strategy to be

followed, ζ(·), but not the actual control applied. The payoff

to be minimized is

Ĵ(ζ(·), e·) .
= E

{

k0|ζ(W )|2 + |X − eY |2
}

, (1)

where k0 ∈ [0,∞). Due to the squared-error form of

the second term on the right, the optimal estimate is the

conditional expectation, which will be denoted by êY , and

given that, we let

J(ζ)
.
= E

{

k0|ζ(W )|2 + |X − êY |2
}

. (2)

Clearly, the solution depends only on the three parameters,

c, d, and k0. Upon examining (2), we see that an optimal

control must not only be measurable, but must have finite

variance. Consequently, we take the control space to be

Z .
=

{

ζ : W → IR | measurable and E[ζ2(W )] < ∞
}

.
(3)

We let

V = V (c, d, k0)
.
= inf

ζ∈Z
J(ζ) = inf

ζ∈Z
J(ζ; c, d, k0). (4)

In this form, we see that the problem reduces to an (infinite-

dimensional) optimization problem.

A good deal of quite interesting work has used this

problem as a basis for development (c.f., [1], [2], [4], [5],

[6], [7], [8], [9], [10], [11], [13]). Of particular relevance

to the analysis here is [7]. In [7], the authors assume a

signaling structure (originally suggested in [14]) for the

controller, where the controller acts to make X take on

one of a small finite set of possible values, the selection

of which is based on input W . This, allows the estimator to

correctly identify X with high probability, particularly if the

gap between possible X values is relatively large compared

with
√
d. Using a more general approach here, we find that

such solutions emerge naturally in an interesting region of

parameter space, while solutions similar to normal random

variables, corresponding to nearly linear controllers, occur

in another region. Hybrids of these appear in intervening

regions.
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III. QUANTILE REPRESENTATION

We will find it helpful to optimize not over controller

u, but instead over the resulting distribution of X , FX .

Further, we will find it helpful to perform the bulk of

the analysis not with distribution function FX , but with

the corresponding quantile function, which we denote as

G. Consequently, it is helpful to review the transformation

between the two representations. Let F denote the space of

probability distribution functions on IR with finite second

moments. Let

G .
=

{

G : (0, 1) → IR
∣

∣

∣

∫

(0,1)

G2(u) du < ∞, mono. inc.,

continuous on the left, limits on the right
}

. (5)

Given F ∈ F , let

I[F ](u)
.
= inf{x | F (x) ≥ u}, (6)

for all u ∈ (0, 1).

Theorem 3.1: I is a bijection from F to G.

Proof: This is somewhat classical. We mention some

useful points in the proof. Fix F ∈ F , and let G
.
= I[F ].

First note that by the definitions of I and F , G(u) ∈ IR for

all u ∈ (0, 1). For u ∈ (0, 1), let Au
.
= {y ∈ IR |F (y) ≥

u}. It is both useful and not difficult to show that Au =
[G(u),∞). In particular, one immediately sees that v ≥ u
implies that Av ⊆ Au, and consequently, G is monotonically

increasing. Of course, this implies that G has limits on the

right.

To see the left continuity, let {un}n∈N ⊂ (0, 1) be

monotonically increasing, and in particular, let un → û < 1.

Let xn = G(un) ∀n ∈ N and x̂ = G(û). Since G is

monotonically increasing, {xn} is monotonically increasing,

and there exists x̄ ∈ IR such that xn ↑ x̄ ≤ x̂. Suppose

x̄ < x̂. By the definitions of xn and I,

un ≤ F (xn) ∀n. (7)

Let ǫ = (x̂ − xn)/2 > 0. Then, using (7) and the

monotonicity of F ,

un ≤ F (xn + ǫ) = F (x̂− ǫ). (8)

On the other hand, by definition, x̂ = G(û) implies that

inf{x | F (x) ≥ û} = x̂, and consequently, there exists δ > 0
such that

F (x̂− ε) ≤ û− δ. (9)

Combining (8) and (9), we see that un ≤ û − δ for all n,

which is a contradiction. Therefore, xn ↑ x̂, and we have left

continuity.

We refer the reader to standard texts (c.f., [3]) for the

remaining assertions.

Next, given G ∈ G, let

J [G](x)
.
=

{

sup{u |G(u) ≤ x} if {u |G(u) ≤ x} 6= ∅,

0 otherwise,
(10)

for all x ∈ IR.

Theorem 3.2: J = I−1.

Proof: We refer the reader to standard texts (c.f., [3])

for more detail.

Remark 3.3: For purposes of intuition, it is helpful to

consider the simple smooth, strictly increasing case. In this

case, with G
.
= I[F ], we may write G = F−1 where the

inverse function is interpreted in the classical sense, and one

has, formally,

du =
du

dx
dx =

dF

dx
dx = f(x) dx

with f denoting the corresponding density.

Remark 3.4: Further, for square-integrable H ,

E[H(X)] =

∫

IR

H(x) dF (x) =

∫

(0,1)

H(G(u)) du, (11)

where this equivalence holds in the general case, and we do

not include the proof.

IV. COST STRUCTURE

We now examine the structure of the cost criterion, J ,

using a quantile functional representation. First, let

Â(ζ)
.
= E

{

k0|ζ(W )|2
}

and B̂(ζ)
.
= E

{

|Y − êY |2
}

.
(12)

First, we look at B̂. Note that the conditional expectation

of X given Y = y is

êy
.
= E{X |Y = y} =

k1
k0

=

∫

IR
xhd(x, y) dFX(x)

∫

IR
hd(x, y) dFX(x)

(13)

where

hd(x, y)
.
=

1√
2πd

exp

[−(x− y)2

2d

]

.

Employing change of variables (11), this becomes

êy =

∫

(0,1)
G(u)hd(G(u), y) du

∫

(0,1)
hd(G(u), y) du

, (14)

where G = I[FX ] and du indicates integration with respect

to Lebesgue measure. Further, noting that for measurable

C ⊆ IR, P (Y ∈ C) =
∫

C

∫

IR
hd(x, y)dFX(x) dy, we see that

B̂(ζ)=

∫

IR

∫

IR

|x− êy|2hd(x, y) dFX(x) dy,

which again by the change of variables,

=

∫

IR

∫

(0,1)

|G(u)− êy|2hd(G(u), y) du dy
.
= B(G). (15)

Next, we look to represent Â in terms of the quantile

function corresponding to X . Due to the explicit presence of

ζ, one should examine the transformation carefully. Note that

ζ wishes to transform input W into some form (presumably

more useful to the estimator), X . Considering (15), we see

that the expected estimator error, B, depends not on ζ, but

only on the resulting distribution, FX , or equivalently, the

quantile function G. Consequently, ζ would like to generate

any given FX , with the minimum squared effort given by Â.

It seems intuitively clear that in order to minimize cost, for

any given FX , one would choose a monotonically increasing
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ζ(·). However, to be completely rigorous, we do not presume

this form, but find this form, along with the representation

of the problem, in terms of the quantile function.

Let FW denote the distribution corresponding to (normally

distributed) input W , and let GW
.
= I[FW ], which is of

course, C∞.

Theorem 4.1: For any G ∈ G,

min
ζ

{

E[ζ2]
∣

∣I[FX ](·) = G(·)
}

=

∫

(0,1)

[G(u)−GW (u)]2du.

Proof: We first demonstrate that there is a ζ such that

E[ζ2] =

∫

(0,1)

[G(u)−GW (u)]2du.

Equivalently, we construct a function, X̂(w), with distribu-

tion FX such that
∫

R

[X̂(w) − w]2P (dw) =

∫

(0,1)

[G(u)−GW (u)]2du. (16)

For each w ∈ R, define

X̂(w)
.
= G(FW (w)). (17)

Note that FW belongs to the class indicated in Remark 3.3,

and consequently, GW = F−1
W in the classical sense. Thus,

it suffices to show
∫

R

[X̂(w)− w]2P (dw) =

∫

(0,1)

[X̂(GW (u))−GW (u)]2du.

(18)

The proof proceeds by approximating the arguments of the

integrals in (18) by simple functions.

Denote the Lebesgue measure on (0, 1) as λ(·) and define

the indicator function IA(x), with argument x, to equal 1

when x ∈ A and 0 otherwise. Given a Borel set B ⊂ (0, 1),
a useful fact (see, for instance, [12]) is that

P (B) = λ({u|GW (u) ∈ B}). (19)

Since X̂ and W have finite second moments, the integrand

of the left-hand side of (18) is dominated by an integrable

function, specifically [X̂(w) − w]2 ≤ 2[X̂2(w) + w2].
Now we are in a position to define a sequence of domi-

nated simple functions, {sn(w)}n∈N,

sn(w) ,
∑

k

βn(k)IBn(k)(w) ≤ 2[X̂2(w) + w2], a.e.,

which converges as limn→∞ sn(w) = [X̂(w) − w]2 for al-

most every w ∈ R. By the Lebesgue Convergence Theorem,

E[sn] =

∫

R

sn(w)P (dw) =
∑

k

βn(k)P (Bn(k)) (20)

−→
n→∞

∫

R

[X̂(w) − w]2P (dw).

(21)

Also, because the mapping between almost every u ∈ (0, 1)
and almost every w ∈ R is bijective and continuous,

Sn(u) , sn ◦GW (u) =
∑

k

βn(k)I{u|GW (u)∈Bn(k)}(u)

−→
n→∞

[X̂(GW (u))−GW (u)]2

almost everywhere. Furthermore, Sn(FW (w)) is dominated

by 2[X̂(w)2 + w2]; thus, Sn(u) is dominated almost every-

where by an integrable function. Using (19) and (20),

E[sn] =
∑

k

βn(k)P (Bn(k))

=
∑

k

βn(k)λ({u|GW (u) ∈ Bn(k)}) =
∫

(0,1)

Sn(u)du.

(22)

Again using the Lebesgue Convergence Theorem,

lim
n→∞

∫

(0,1)

Sn(u)du =

∫

(0,1)

[X̂(GW (u))−GW (u)]2du.

(23)

Combining (21)–(23), we arrive at
∫

R

[X̂(w)− w]2P (dw) =

∫

(0,1)

[X̂(GW (u))−GW (u)]2du.

It remains to prove the reverse inequality. This proof is

substantially more technical, and we do not include it here,

although we do note that if one assumes ζ to be monoton-

ically increasing, the proof is substantially less demanding.

Given Theorem 4.1, it is natural to define

A(G)
.
=

∫

(0,1)

[G(r) −GW (r)]2dr. (24)

Then, combining the above, and with a bit more work, one

finally finds that problem (4) is equivalently

V = V (c, d, k0) = inf
G∈G

J̄(G) = inf
G∈G

J̄(G; c, d, k0), (25)

where

J̄(G) = k0A(G) +B(G). (26)

Further, given an optimal G, one could construct the cor-

responding controller from ζ(w) = X̂(w) − w where X̂ is

given by (17).

V. SOLUTION FORM

We make some remarks on the form of the solution of

our optimization problem. First, of course, in this quantile

representation, the A(G) functional is simply a quadratic,

with minimum of zero at G = GW .

The B(G) functional is more complex, and is the source of

the difficulties. Fix some G ∈ G. We will consider certain L2

variations around G. Let γ ∈ L2(0, 1) (with specific form to

follow), and δ > 0. Recall from (13) that êy = k1/k0 where

k1, k0 are given there. By standard computations,

k1(G+ δγ)− k1(G)

= δ

∫

(0,1)

hd(y,G(v))

[

1 +G(v)

(

y −G(v)

d

)]

γ(v) dv

+O(δ2), (27)

k0(G+ δγ)− k0(G)

= δ

∫

(0,1)

hd(y,G(v))

(

y −G(v)

d

)

γ(v) dv +O(δ2). (28)
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Taking a similar differential in (13) , and employing (27) and

(28), one obtains

êy(G+ δγ)− êy(G) = δ

∫

(0,1)

hd(y,G(v))

k0(y,G)

·
{

1 +

[

G(v)− k1(y,G)

k0(y,G)

](

y −G(u)

d

)}

γ(v) dv

+O(δ2)

.
= δ

∫

(0,1)

∆0
e(y,G,G(v))γ(v) dv +O(δ2), (29)

where, for clarity, we remark that when G(v) appears as an

argument, it indicates dependence on G evaluated at v, and

when G appears as an argument with no argument of its

own, this indicates dependence on the entire function.

Continuing with this process, and suppressing dependence

of êy on y,G, we find

B(G+ δγ)−B(G) = δ

∫

(0,1)

∫

IR

hd(y,G(u))

·
[

2(G(u)− êy) + |G(u)− êy|2
(

y −G(u)

d

)]

+∆1
e(y,G)∆0

e(y,G,G(u)) dy γ(u) du+O(δ2)

.
= δ

∫

(0,1)

b(G,G(u))γ(u) du +O(δ2), (30)

where

∆1
e(y,G)

.
=

∫

(0,1)

2(êy −G(v))hd(y,G(v)) dv. (31)

It is worthwhile explicitly noting that for α ∈ IR,

b(G,α) =

∫

IR

{

hd(y, α)

·
[

2(α− êy(G)) + |α− êy(G)|2
(

y − α

d

)]

(32)

+∆1
e(y,G)

hd(y, α)

k0(y,G)

[

1 +

(

α− k1(y,G)

k0(y,G)

)(

y − α

d

)]}

dy

which is clearly C∞ in α.

Now, recalling that G is monotonically increasing, there

exists at most a countably infinite number of discontinuities.

Consequently, there exists a finite or countably infinite set of

open intervals {(βk, βk+1)}k∈K such that G is continuous

on each open interval and such that (0, 1)\⋃k∈K(βk, βk+1)
consists of at most a countably infinite number of points.

Suppose there exist k ∈ K, β̂k ∈ (βk, βk+1), ε̂k > 0
and δ̃k > 0 such that Bε̂k(β̂k) ⊆ (βk, βk+1) and G(v) −
G(u) ≥ δ̃k(v − u) for all v ≥ u in Bε̂k(β̂k). (Otherwise,

G is piecewise constant.) Suppose b(G,G(β̂k)) 6= 0, and in

particular, suppose b(G,G(β̂k)) > 0. Since b(G,α) is C∞

in α, there exists δ̄k > 0 and b̄k > 0 such that

b(G,α) > b̄k ∀α ∈ Bδ̄k
(G(β̂k)). (33)

Also, since G ∈ C((βk, βk+1)), there exists ε̄k ∈ (0, ε̂k)
such that

G(u) ∈ Bδ̄k
(G(β̂k)) ∀u ∈ Bε̄k(β̂k). (34)

Again, recalling that IA denotes the indicator function for

measurable set A, let

γ(u)
.
= I[β̂k,β̂k+ε̄k)

(u)(β̂k + ε̄k − u),

and let δ ∈ (0, δ̃k). Then,

(G(v) + δγ(v))− (G(u) + δγ(v)) ≥ (δ̃k − δ)(v − u) ≥ 0

for all v ≥ u in (β̂k, β̂k + ε̄k). Consequently, G + δγ ∈ G
for all δ ∈ [0, δ̃k).

Further, with this choice of δ and γ, and using (31),

B(G+ δγ)−B(G) = δ

∫

(0,1)

b(G,G(u))γ(u) du +O(δ2)

= δ

∫

(β̂k,β̂k+ε̄k)

b(G,G(u))(β̂k + ε̄k − u) du+O(δ2),

which by (33) and (34)

> δb̄k

∫

(β̂k,β̂k+ε̄k)

(β̂k + ε̄k − u) du+O(δ2)

= δb̄kε̄k +O(δ2) > 0

for δ > 0 sufficiently small. Consequently, G cannot be

optimal. The case where b(G,G(β̂k)) < 0 is similar. We see

that if G is optimal and not constant on some (β̂k, β̂k+1),
then b(G,G(u)) = 0 for all u ∈ (β̂k, β̂k+1). As it appears

technically demanding to prove, for the present, we assume:

b(G,α) has only isolated zeros as a function of

α for any G ∈ G. (A.1)

The reader may choose to examine (32) for an understanding

of the motivation behind this assumption. If G is not constant

on (β̂k, β̂k+1), then by (A.1) and the continuity of G
over this interval, there exists u ∈ (β̂k, β̂k+1) such that

b(G,G(u)) 6= 0, and so G cannot be optimal. We have:

Lemma 5.1: Assume (A.1). Suppose B has a local mini-

mum at Ḡ ∈ G. Then, Ḡ is piecewise constant.

We say G ∈ G is antisymmetric (around 1/2) if G(u) =
−G(1 − u) for almost every u ∈ (0, 1). (Alternatively,

G(1/2− δ) = −G(1/2 + δ) for almost every δ ∈ (0, 1/2).)
Similarly, F ∈ F is antisymmetric (around range value 1/2)

if F (−x) = 1−F (x) for all x ∈ IR. Both of these correspond

to a symmetric density function when such exists. Let

Ga .
= {G ∈ G |G is antisymmetric}.

The following is obivous.

Lemma 5.2: The minimum of B (as well as the minimum

of A) over G is attained on Ga.

Of the piecewise constant quantile functions, the entirely

constant function is important. Suppose there exists ḡ ∈ IR
such that G(u) = ḡ for all u ∈ (0, 1). Then,

êy(G) =
k1(y,G)

k0(y,G)
=

ḡk0(y,G)

k0(y,G)
= ḡ.

Consequently, |êy(G)−G(u)|2 = 0 for all y, u, and we see

B(G) = 0.
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Now, suppose G is not constant. Then, noting the mono-

tonicity, there exist ε > 0 and 0 < ū < v̄ < 1 such that

G(v̄)−G(ū) = ε. This implies

G(u) ≤ G(ū) ∀u ∈ (0, ū]

G(u) ≥ G(v̄) ∀u ∈ [v̄, 1).

Therefore, since êy(G) is independent of u, for any y ∈ IR,

either |G(u)− êy(G)| ≥ ε

2
∀u ∈ [v̄, 1),

or |G(u)− êy(G)| ≥ ε

2
∀u ∈ (0, ū].

Employing this in (15), one finds

B(G)≥
∫

IR

min

{
∫

[v̄,1)

ε2

4
hd(y,G(u)) du,

∫

(0,ū]

ε2

4
hd(y,G(u)) du

}

dy > 0.

Consequently, we have

Lemma 5.3: If G is constant, then B(G) = 0; otherwise,

B(G) > 0.

At this point, one knows that any G that minimizes B
is piecewise constant, and that one may restrict the search

for minima to Ga. One also knows that constant functions

yield the minimum, with the constant function, Ḡ0(u) ≡ 0
being the minimizer within Ga. We have not yet shown that

there do not exist other local minima. We briefly indicate

this result.

Lemma 5.4: Neglecting the absolute minimizer, Ḡ0(u) ≡
0, there are no other local minimizers of B over Ga.

Proof: (Sketch of proof.) Here we find it convenient

to work with FX ∈ F and the corresponding density “func-

tion” represented in terms of Dirac δ functions. Consider a

piecewise constant Gp ∈ Ga. Associated to this is a density

function. Without loss of generality, we let this density be

fp(x) = λ0δ0(x) +

N
∑

i=1

λi

2
[δξi(x) + δ−ξi(x)] ,

where λ0, λi ∈ [0, 1] and λ0 +
∑N

i=1 λi = 1. We will show

that one can construct a path from Gp to Ḡ0 such that B(G)
monotonically decreases along the path. As our proof is quite

technical, the details cannot be included here. However, the

main points will be indicated. We will take ξ̂ > 0 sufficiently

large such that several terms in B become quite small. Let

µ ∈ [0, λN ], and let ẽy(µ)
.
= k̃1(µ,y)

k̃0(µ,y)
where

k̃0(µ, y) =λ0hd(0, y) +

N−1
∑

i=1

λi

2
[hd(ξi, y) + hd(−ξi, y)]

+
λN − µ

2
[hd(ξN , y) + hd(−ξN , y)]

+
µ

2

[

hd(ξ̂, y) + hd(−ξ̂, y)
]

,

k̃1(µ, y) =

N−1
∑

i=1

λi

2
ξi [hd(ξi, y)− hd(−ξi, y)]

+
λN − µ

2
ξN [hd(ξN , y)− hd(−ξN , y)]

+
µ

2
ξ̂
[

hd(ξ̂, y)− hd(−ξ̂, y)
]

.

Letting B̃(µ) denote the corresponding cost, one has B̃(µ) =
B(G̃µ) where G̃µ is the quantile function corresponding to

density

f̃µ(x) =λ0δ0(x) +

N−1
∑

i=1

λi

2
[δξi(x) + δ−ξi(x)]

+
λN − µ

2
[δξN (x) + δ−ξN (x)] +

µ

2

[

δ
ξ̂
(x) + δ−ξ̂

(x)
]

.

Note that

B̃(µ)=

∫

IR

{

λ0ẽ
2
y(µ)hd(0, y)

+

N−1
∑

i=1

λi

2

[

|ξi − ẽy(µ)|2hd(ξi, y)+ |ξi + ẽy(µ)|2hd(−ξi, y)
]

+
λN − µ

2

[

|ξN − ẽy(µ)|2hd(ξN , y)

+|ξN + ẽy(µ)|2hd(−ξN , y)
]

+
µ

2

[

|ξ̂ − ẽy(µ)|2hd(ξN , y)

+|ξ̂ + ẽy(µ)|2hd(−ξN , y)
]

}

dy.

One shows that for ξ̂ sufficiently large, B̃(µ) is mono-

tonically decreasing in µ. For intuition, note that as one

may choose ξ̂ quite “far” from the ξi, when y is large

positive, the estimator predicts ẽy(µ) to be quite close to

ξ̂, and thus the contribution from this term is lower than that

from the ξN term. Thus, as one increases µ from 0 to λN ,

the cost decreases. Next, one proceeds to apply the same

method to the N − 1 term in the sum, with exactly the same

(sufficiently large) ξ̂. By induction, one finally obtains G2

which is piecewise constant, with at most three segments,

and a corresponding density

f2(x) = λ0δ0(x) +

(

1− λ0

2

)

[

δ
ξ̂
(x) + δ−ξ̂

(x)
]

,

where B(G2) ≤ B(Gp). Lastly, one shows that there is a

path from G2 to Ḡ0 along which B(G) is monotonically

decreasing.

The above simple results indicate something of the struc-

ture of the optimization problem. One desires to minimize

the sum of a quadratic, A, with minimum at G = GW , and

a functional, B, with the somewhat odd structure indicated

here. This interplay is what leads to the variety of solutions

one finds over the parameter space, where the “signaling”

optima are those where the B component plays a more

significant role than the cases where the solution looks

closer to a normal random variable. Note that although both

A and B have unique minima, this does not imply that

J̄ = k0A + B does not possess extraneous local minima.

Sufficient conditions guaranteeing such will be the subject

of a longer paper.
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VI. NUMERICAL RESULTS AND COMMENTS

Although a complete analysis indicating under exactly

what parameter sets we are able to guarantee that the total

cost, J̄(G)
.
= k0A(G)+B(G), has no extraneous local min-

ima is not included, we nonetheless begin experimentation to

verify the structure of the optimal distribution. In particular,

a gradient-descent algorithm has been constructed to search

for the optimum under various sets of parameter values. We

note that this algorithm obtains the same numerical values

(to the published number of digits) as obtained in [2] for

the cases given there. The algorithm optimizes over the

quantile representation of the control-induced distribution of

X . Roughly, at each iteration, it proceeds by moving in the

direction opposite the gradient, until the cost begins to rise.

At that point another gradient calculation is done, and the

process is repeated. It is not fruitful to indicate the finer

details such as stopping criteria at this point, and in the

limited space.

In some parameter regions, the algorithm finds (approxi-

mate) optima which are of the signaling form discussed in

[7], [14], while in other regions, the optima are generated by

controllers that are roughly linear. Intuitively, the distinction

flows from the relative importance of k0A and B in the total

cost, where consideration of A alone would lead to linear

optima, while B (with some impetus from A) pushes the

solution toward signaling forms. We include three figures

below. Perhaps the most interesting is the second figure,

where the parameters are in an area between these two

regions, and the optimal solution appears to have a mix of

the two forms.
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Fig. 1. Approximate solution: c = 2, d = 5, k0 = 0.05 .
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