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Abstract— The identification of multiple affine subspaces
from a set of data is of interest in fields such as system identifica-
tion, data compression, image processing and signal processing
and in the literature referred to as subspace clustering. If the
origin of each sample would be known, the problem would be
trivially solved by applying principal component analysis to
samples originated from the same subspace. Now, not knowing
what samples that originates from what subspace, the problem
becomes considerably more difficult.

We present a novel convex formulation for subspace cluster-
ing. The proposed method takes the shape of a least-squares
problem with sum-of-norms regularization over optimization
parameter differences, a generalization of the `1-regularization.
The regularization constant is used to trade off fit and the
identified number of affine subspaces.

I. INTRODUCTION

Principal Component Analysis (PCA, [22], [15], also re-
ferred to as the Karhunen-Loeve transform) is a fundamental
tool in areas such as image and signal processing and maybe
the most commonly used method for data analysis. PCA
finds the linear subspace that maximizes the variance of
the projected samples. It can also be shown that this is
the linear subspace which minimizes the sum of squared
distances between the samples and the projections. In a
least squares sense, the projection onto the m dimensional
linear subspace given by PCA is therefore the closest m
dimensional description of the samples. This is of course a
useful property if one seeks a low-dimensional representation
of a set of data and the reason for PCA’s popularity as a
compression method.

PCA assumes that the data is confined to, or in the vicinity
of, a single subspace. Now, if data originates from multiple
linear subspaces, PCA will not give a satisfying result. The
problem also becomes considerably more complex since
it is not known what samples that originates from what
subspace. If the origin of each sample would be known,
the problem would be trivially solved by PCA. We hence
need to estimate the subspaces and decide the origin of
samples simultaneously. Methods dealing with the estimation
of multiple subspaces are in the literature referred to as
subspace clustering methods. For an excellent recent survey
of subspace clustering see [28].

Subspace clustering methods can be divided into algebraic
methods, iterative methods, statistical methods and spectral
clustering methods. Most subspace clustering methods (see
e.g., [28]) require a careful initialization. The main reason
being that most subspace clustering methods lead to non
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convex optimization problems and can get stuck in local
optima leading to poor solutions.

This paper presents a novel approach to subspace cluster-
ing. The proposed method resembles in a convex optimiza-
tion problem with a performance that is comparable to state
of the art subspace clustering methods (when they manage
to find a “good” solution and not get stuck in a “bad” local
optima).

II. PROBLEM FORMULATION

An affine subspace can be defined as the set of points

S = {x ∈ RD : bT (x+ µ) = 0, b ∈ RD×d, µ ∈ RD}. (1)

The d columns of b span the orthogonal space S⊥. For
example, if D = 3, d = 1 and µ = 0, b is the normal to a 2-
dimensional linear subspace. Given a set of points {xt}Nt=1

on some affine subspace, PCA can be used to estimate b.
With a sufficient number of points (≥ D − d + 1) and no
noise, PCA will recover the true b.

Now, consider a data set {xt}Nt=1 sampled from n affine
subspaces. That is, {xt}Nt=1 satisfy

xj ∈
n⋃
i

Si, j = 1, . . . , N, (2a)

with

Si ={x ∈ RD : bTi (x+ µi) = 0, bi ∈ RD×di , µi ∈ RD},
(2b)

for i = 1, . . . , n. If the origin of each of the samples
{xt}Nt=1 was known i.e., if the function c(·) such that xj ∈
Sc(j), j = 1, . . . , N was known, PCA could be applied
to identify bi by applying PCA to {xt}t:c(t)=i. With c(·)
unknown, the problem becomes considerably more difficult.
One then has to, simultaneously, identify to what subspace
a sample belongs and at the same time estimate b and µ of
the subspaces. Note that PCA would not do any good on this
data set. The later, when nor the subspaces or the origin of
the samples are known, is referred to as subspace clustering
and the topic of this paper.

Remark 1 (Noisy data): Data are seldom situated on a
low number of affine subspaces but rather in a vicinity of
a low number of affine subspaces. (2) will therefore never
be satisfied for other than n ≥ N/(D − d + 1) in reality.
This is handled in PCA by seeking the linear subspace that
minimizes the sum of squared distances between the samples
and the projections of the samples onto the subspace.
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III. PREVIOUS WORK

As stated in the introduction, subspace clustering methods
can be divided into algebraic, iterative, statistical and spectral
clustering methods.

Algebraic methods use algebraic properties of the unions
of subspaces. Of rather recent date, compared to PCA, is the
algebraic method Generalized Principal Component Analysis
(GPCA, [30], [31]). GPCA has the ability to identify multiple
affine subspaces and is built around the fact that

⋃n
i Si can

be rewritten as
n⋃
i

Si = {x ∈ RD :

n∏
i

bTi (x+ µi) = 0}. (3)

The coefficients of the n-degree polynomial equation system
given by

n∏
i

bTi (xt + µi) = 0, t = 1, . . . , N, (4)

can easily be found (assuming {xt}Nt=1 are given noise free
data on n affine subspaces and N large enough). However,
in order to recover the subspaces, we also need to compute
the gradient w.r.t. x of this polynomial,

∇x
n∏
i

bTi (x+ µi) =

n∑
j

bTj

n∏
i:i 6=j

bTi (x+ µi). (5)

Evaluated at any x′ ∈ {xt}Nt=1, say that x′ belongs to
subspace k, gives

∇x
n∏
i

bTi (x+ µi)
∣∣∣
x=x′

= bTk

n∏
i:i 6=k

bTi (x′ + µi). (6)

If di = 1, i = 1, . . . , n, the right hand side is a scaled version
of the vector bk (and can be evaluated using the solution of
(4)). The right hand side therefore span the orthogonal space
to Sk and if we define b̄k = bTk

∏n
i:i 6=k b

T
i (x′+µi), the sought

Sk is given by Sk = {x ∈ RD : b̄Tk (x + µk) = 0}. GPCA
proceeds by evaluating (6) at new samples x′ ∈ {xt}Nt=1

until all subspaces have been recovered.
GPCA has attained quite some interest since its intro-

duction and has been applied to a number of applications,
e.g., hybrid system identification [32], image processing
and segmentation [29], [14]. Since GPCA does not make
any assumption concerning the distribution of the data on
the subspaces, GPCA does not give a maximum likelihood
estimate of the subspace parameters. GPCA works very well
in low-noise problems but runs into problems, to estimate
e.g., µ, when data become noisy (see e.g., [8], [28]).

Iterative methods start by an initial guess for the b-
matrices. They then continue in an iterative manner by
assigning samples to the closest subspace (estimated in the
previous step) and then re-estimate b’s from the samples
assign to the subspace. Many variants of this idea exist [2],
[27]. The main advantage of this type of methods is their sim-
plicity. However, just like k-means clustering (using Lloyd’s
algorithm [18]), iterative methods for subspace clustering are
known to be sensitive to initialization.

Statistical methods are based on a model for the data in
subspace i of the form

x = Ais+ ai + ε, s ∼ N(0, I), ε ∼ N(0, σ2
i I). (7)

To find the maximum likelihood solution for {Ai} and {ai},
the Expectation Maximization Algorithm (EM, [5]) is often
used. Statistical methods for subspace clustering are also
known to be sensitive to initialization.

Finally, spectral clustering methods. For this type of
method, an affinity matrix or similarity matrix is a central
concept. The entry ij in this N ×N matrix is desired to be
1 if xi and xj belong to the same subspace and otherwise
small. Spectral clustering methods proceed by seeking for
clusters in the set of eigenvectors to the affinity matrix,
typically using non convex clustering methods such as k-
means clustering (see e.g., [28]).

For a more detailed discussion on algebraic, iterative,
statistical and spectral clustering methods, see [28].

In the following we will take an optimization approach to
the subspace clustering problem. Something that will be used
is a concept called regularization. Regularization has gained
a lot of publicity through methods such as the lasso method
[26] and Compressed Sensing (CS, [6], [4]). Both these meth-
ods use a `1-regularization to find sparse solutions. A slightly
more general type of regularization is the sum-of-norms
regularization. In a statistical linear regression framework,
sum-of-norms regularization is called group-lasso [33], since
it results in estimates in which many groups of variables
are zero. Sum-of-norms regularization has previously been
applied to the identification of segmented ARX models [21],
piecewise affine systems [20] and to clustering [16].

IV. SUBSPACE CLUSTERING THROUGH
OVERPARAMETRIZATION AND SUM-OF-NORMS

REGULARIZATION

Consider the case where b ∈ RD×1 and n = 1. Let
{xt}Nt=1 be a set of data situated on a D − 1-dimensional
linear subspace. Let b0 be the true b-vector. To find the
linear subspace, we could consider the convex optimization
problem

min
b

N∑
t=1

‖bTxt‖22, s.t. aT b = 1. (8)

This optimization will perfectly recover the linear subspace
if a is such that aT b0 6= 0. To see this, let b̄ be b0

aT b0
,

note that b̄Txt = 0, t = 1, . . . , N, and that aT b̄ = 1. b̄
is hence the solution to (8). In practice, a can be sampled
from a D-dimensional unit Gaussian distribution, making the
probability that aT b0 = 0 equal to zero.

Example 1 (Comparison to PCA): To examine the ability
of the convex formulation (8) to recover the linear subspace
of a set of data, we let

b0 =

[
0
1

]
(9)

and sample 100 data points from[
1
0

]
s+ ε, s ∼ U(−0.5, 0.5), ε ∼ N(0, 0.01I). (10)
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The data is shown with black dots in the left plot of Figure 1.
PCA and (6) (a in (6) was sampled from a unit Gaussian)
were now applied to the data to get an estimate of b0. The
left plot of Figure 1 shows the b0-estimates from PCA with
dashed line and that of (6) with solid line. Since the data has
been disturbed off the one dimensional linear subspace by
noise, neither PCA nor (6) give the true b0. However, we see
that the convex optimization approach to estimate b0 (6) is
doing fairly well. In the right plot of Figure 1, the resulting
estimates and data from 100 runs have been plotted on top
of each other (new x’s and a new a in each run).
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Fig. 1. Left plot: Data shown with black dots, estimate of b0 given by
PCA showed using dashed line and by (6) by solid black line. Right plot:
The same as in the left plot but the result from 100 runs plotted on top of
each other. For visualization purposes, a rotation of 180◦ was applied to
some of the b-estimates so that the PCA estimate are all between 180◦ and
360◦ and the estimate from (6) between 0◦ and 180◦.

Remark 2 (Convex optimization formulations of PCA):
(6) has the advantage of being a convex optimization
problem. Some convex optimization formulations of PCA
has been proposed in the literature [24], [25], [3]. We
do not believe that (6) can perform better than these but
the simplicity made (6) an attractive approach for what is
coming. However, any of the methods developed in [24],
[25], [3] could potentially also be used in the coming
derivations. This has not been exploited.

Remark 3 (Subspace of less dimensions than D − 1):
Let say that {xt}Nt=1 is a set of data situated on a linear
subspace of less dimension that D−1. b0 is then a matrix. If
we still seek a b ∈ RD×1 by (6), the found b will be in the
orthogonal space to the linear subspace that the data is in
(as long as aT b0 6= 0). Having found the D− 1-dimensional
subspace containing the data, (6) could now be applied in
this D− 1-dimensional space to find the D− 2-dimensional
space containing the data, and so on. One could continue
this procedure as long as the sum of squared distances
between the samples and the projections of the samples
onto the subspace is below some threshold.

We now turn to the considerably more difficult problem of
identifying multiple linear subspaces from a set of samples
{xt}Nt=1. Assume for now that the µ’s are zero i.e., we con-
sider linear subspaces. Also, we will assume that subspaces
are D−1-dimensional. Subspaces of lower dimension can be
handled as discussed in Remark 3 and not further discussed.
Since it is unknown what sample that originates from what
subspace, we overparametrize and estimate a parameter b for

each sample. To avoid a severe over fit, a regularization that
aims at making b’s identical if there is “no need” for them
to be different is used. We denote the b associated with xj
with bj . The proposed criterion now takes the form

min
bj ,j=1,...,N

N∑
j=1

‖(bj)Txj‖22 + λ

N∑
k,l=1

k(xk, xl)‖bk − bl‖2,

s.t. aT bj = 1, j = 1, . . . , N (11)

k(·, ·) : RD × RD → R+ is a kernel. This kernel can be
used to introduce prior information and should ideally be
positive if xk and xl belongs to the same subspace and 0
otherwise. Also in spectral clustering-based methods, this
type of similarity kernel is used and there is therefore a
whole literature on how to find k(·, ·), see e.g., [7], [17],
[28] for interesting choices.

The first term in the objective of (11) can be seen as a fit
term and the second a regularization. The fit term will be zero
if (bj)Txj = 0, j = 1, . . . , N , that is, if bj is orthogonal to
xj for all j = 1, . . . , N . Note that as long as aTxj 6= 0, j =
1, . . . , N , there is bj , j = 1, . . . , N, that makes the fit term
equal to zero and satisfies the constraint aT bj = 1, j =
1, . . . , N (also for noisy data). The vector a ∈ RD is in the
coming assumed sampled from a unit Gaussian.

The regularization term is a Sum-Of-Norms regularization
(SON regularization). Note that there is no square on the
norm in the regularization, this is hence not a sum of squared
norms. Sum-of-norms regularization is a well known sparsity
regularization, see e.g., [33]. Hence, at the optimum, several
of the terms ‖bi − bj‖2 will (typically) be exactly zero.
Equivalently, several of the {bj}Nj=1 will be identical, and
associated x’s can be seen as belonging to the same linear
subspace.

Remark 4 (Sum-of-norms regularization): The SON reg-
ularization used in (11) is an `1-regularization of the 2-norm
of differences bk−bl, k, l = 1, . . . , N . That is, the SON term
is the `1-norm of the vector obtained by stacking ‖bk−bl‖2,
for k, l = 1, . . . , N . Hence, this stacked vector, and not the
individual b-vectors, will become sparse.

The regularization parameter λ > 0 is a parameter that
will control the tradeoff between fit and the number of
subspaces. This parameter can be chosen by considering how
the sum of squared distances between the samples and the
projections of the samples onto the subspaces changes with
λ. We will use this in the coming examples to choose λ.

Another key property of the proposed criterion for sub-
space clustering is that the criterion (11) is convex. That
means that the global optimum can be found independently
of initialization. Many existing subspace clustering methods
are dependent of a good initialization for a good result (see
e.g., [28]). The convexity also implies that convex constraints
easily can be added.

The estimated b’s of (11) will be biased due to the
regularizatioon and to obtain unbiased estimates, PCA is
applied to x’s having the same b’s.
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Example 2 (Multiple Linear Subspaces): Let n = 2,
D = 2, d = 1 and sample 120 samples from(

α(b01)⊥ + (1− α)(b02)⊥
)
s+ ε, (12)

with s sampled from a uniform distribution, s ∼
U(−0.5, 0.5), α = 1 with probability 0.5 and 0 with
probability 0.5, ε ∼ N(0, 0.0049I) and

b01 =

[
−1
−0.5

]
, b02 =

[
−1
0.5

]
. (13)

The data is shown in Figure 2. Motivated by the discussion
following (11), we chose

k(xk, xl) = e
|xT

k xl|
0.2‖xk‖‖xl‖ . (14)

Now apply (11) for a number of λ’s, see Figure 3. As seen,
the sum of squared differences is rather flat for λ < 0.002,
indicating that two subspaces (two distinct values in the
estimated {bj , j = 1 . . . , N}) is a good choice. We chose
λ = 0.001. The members of the two groups are visualized in
Figure 2 by the use of a ’o’-symbol for members of the first
group and a ’*’-symbol for members of the second group.
The resulting estimates of b01 after using PCA on the x’s of
the first group is given by a dashed line in Figure 2. The
solid line in Figure 2 gives the estimate of b02 obtained by
using PCA on the x’s of the second group.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x[1]

x[
2]

Fig. 2. Data showed with ’*’ and ’o’-symbols. The ’*’-marked data got
the same b-estimate using the criterion (11). The ’o’-marked data also got
the same b-value but a different value than that of the ’*’-marked data. The
PCA-estimate of the true b obtained by applying PCA to either the ’*’ or
the ’o’-marked data is also shown using a solid and dashed line.

Example 3 (Larger D, n and N ): To demonstrate that
the proposed method (11) is also practical to use on larger
problems, the same λ and kernel as in the previous example
was used (a threshold was however applied to set k(xk, xl)
to zero if not large enough) on a data set with 40 samples
from 10 99-dimensional linear subspaces in 100 dimensions.
That is D = 100, n = 10, N = 400 and d = 1. The true
b’s were generated by sampling from a zero mean Gaussian
distribution. Data was made noisy by adding zero mean
Gaussian noise with a variance of 0.25. One simulation (see
also Section IV-A) took ∼ 4 minutes on a standard desktop
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Fig. 3. The number of distinct b’s (or estimated # of subspaces, dashed line)
and the sum of squared distances between the samples and the projections
of the samples onto the subspaces (solid line) as a function of λ.

machine. Over 10 runs, no samples were associated with the
wrong subspace and the number of subspace were correctly
found.

So far we have only discussed multiple linear subspaces.
Its however straight forward to also handle affine subspaces
by a small modification of (11). For affine subspace we
propose to consider

min
bj ,µj ,j=1,...,N

N∑
j=1

∥∥(bj)Txj − µj
∥∥2
2

+λ

N∑
k,l=1

k(xk, xl)

∥∥∥∥ [µkbk
]
−
[
µl

bl

] ∥∥∥∥
2

, (15)

s.t. aT bj = 1, j = 1, . . . , N.

Example 4 (Multiple Affine Subspaces): Let n = 3, D =
2, d = 1 and sample 120 samples from

α(b01)⊥s+ µ1 + ε, with probability 1/3,

α(b02)⊥s+ µ2 + ε, with probability 1/3,

α(b03)⊥s+ µ3 + ε, with probability 1/3,

(16)

with s ∼ U(−0.5, 0.5), ε ∼ N(0, 0.004I) and

b01 =

[
0
1

]
, b02 =

[
−1
−0.5

]
, b03 =

[
−1
0.5

]
, (17)

µ1 =

[
0
−0.7

]
, µ2 =

[
0
0

]
, µ3 =

[
0
0

]
. (18)

We now apply (15) with

k(xk, xl) = e
− ‖xk−xl‖2

0.15 +
|xT

k xl|
0.15‖xk‖‖xl‖ (19)

and for a number of different λ’s, see Figure 5. As seen,
the sum of squared differences is rather flat for λ < 2,
indicating that four subspaces is a good choice. λ = 0.2 was
therefore chosen. The data associated with the first group is
visualized with ’*’-symbols in Figure 4. Data associated with
the second group, with ’o’ and so on. The resulting estimates
after having applied PCA to the data of each group is also
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showed in Figure 4. As seen, one of the three affine subspaces
has been divided into two. This could possibly have been
avoided by a better choice of kernel k.
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Fig. 4. Data sampled with noise from three affine subspaces. (15)
groups the optimization variables into four groups. The associated points of
different groups are shown with different symbols while points of the same
group with the same symbol. The figure also shows the computed estimates
of the b’s and the µ’s.
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Fig. 5. The number of distinct b’s (or estimated # of subspaces, dashed line)
and the sum of squared distances between the samples and the projections
of the samples onto the subspaces (solid line) as a function of λ.

A. Solution Algorithms and Software

Many standard methods of convex optimization can be
used to solve the problem (11) and (15). Systems such as
CVX [13], [12] or YALMIP [19] can readily handle the sum-
of-norms regularization, by converting the problem to a cone
problem and calling a standard interior-point method. Re-
cently, many authors have developed fast, first order methods
for solving `1 regularized problems, and these methods can
be extended to handle the sum-of-norms regularization used
here; see, for example, [23, §2.2]. The simulations shown in
this paper was carried out in MATLAB using CVX. A code-
package for solving (11) and (15) using CVX will be made
available for download on http://www.control.isy.
liu.se/˜ohlsson/code.html.

V. COMPARISON WITH CONVENTIONAL SUBSPACE
CLUSTERING METHODS

In this section we apply generalized PCA with polynomial
differentiation and spectral clustering (see [28], Sect. 2.4)
and sparse subspace clustering [7] using implementations1

kindly provided by the Vision Lab at Johns Hopkins Univer-
sity. The same data that was used in Examples 2 and 4 were
used. GPCA with polynomial differentiation and spectral
clustering (using homogeneous coordinates, see [28], and the
default for the input parameters) was first applied. The data
used in Example 2 resulted in the same plot as Figure 2 and
hence an identical result to that of the proposed approach.
The data used in Example 4 resulted in the left plot of
Figure 6 (cf. Figure 4). Generalized PCA with polynomial
differentiation and spectral clustering has some problems
finding the true subspaces that the data belongs to but it
does a fairly good job in finding the b’s and µ’s.

Also sparse subspace clustering (λ = 0.001) recover a
result identical to that of the proposed method for the data
of Example 2. Data used in Example 4 resulted in the right
plot of Figure 6 (cf. Figure 4). As seen, sparse subspace
clustering has some problems to recover the affine subspaces.
λ = 0.0001 gave the best result in sparse subspace clustering
and was used in the right plot of Figure 6.
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Fig. 6. Data sampled with noise from three affine subspaces. The results
should be compared to those shown in Figure 4. Left plot: Results using
generalized PCA with polynomial differentiation and spectral clustering.
Right plot: Results using sparse subspace clustering.

VI. EXTENSIONS

Many subspace clustering methods can be extended to
handle the identification of hybrid systems and so also the
proposed scheme. In fact, it has been shown [20] that the
criterion

min
θk, k=1,...,N

N∑
k=1

∥∥∥∥yk − θTk [xk1
]∥∥∥∥2

2

+λ

N∑
k,j=1

k(xk, xj)‖θk−θj‖p

(20)
is very suitable for the identification of piecewise affine
systems. y is here the measured output of a hybrid system
and x the regressor. The θ’s are the sought system parameters
associated with the different subsystems. Since {yk}Nk=1

now hinders the optimization variables θk from becoming

1http://www.vision.jhu.edu/gpca.htm, code version: April
19th, 2010 for GPCA with polynomial differentiation and spectral clustering.
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identical to zero, a constraint like in (11) and (15) is not
needed. See [20] for details.

The proposed framework could also be used to estimate
nonlinear surfaces or manifolds using kernelization tech-
niques developed in [9].

VII. CONCLUSIONS AND FUTURE WORKS
This paper presents a novel intuitive method to subspace

clustering. The formulation takes the form of a convex
optimization problem and does hence not need a careful
initialized, like many other subspace clustering methods. The
regularization parameter regulates the number of subspaces
identified and is relatively easy to find a good value for. The
similarity kernel can be used to introduce prior information.
The method’s simplicity together with that it performs well
in comparison to state of the art subspace clustering methods
should make the method into an attractive choice.

A proper evaluation on large scale real data sets is impor-
tant and something that is to be done. For this purpose, an
implementation using Alternating Direction Method of Mul-
tipliers (ADMM, [10], [11], see also [1]) is in preparation.

Some convex optimization formulations of PCA have
been proposed in the literature [24], [25], [3]. These could
potentially be used to develop subspace clustering methods
in a very similar way as presented in this paper. This has not
been exploited but seen as interesting future work.
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