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Abstract— This paper addresses the problem of hybrid output
regulation for linear systems in the case where the jumps of the
system and exosystem state are triggered by a clock variable
that is not measured. We extend the result presented in [13]
by complementing the hybrid internal model-based regulator
design proposed in that paper with a hybrid clock phase
estimator yielding asymptotic regulation.

I. INTRODUCTION

The problem of synchronizing dynamical systems has

attracted a lot of interest in the control community. Studies in

this field have focused on synchronization of chaotic systems

[14], of linear networked systems [11], and of nonlinear

systems by adaptive tools [1], just to mention a few. A

particular research area related to synchronization is output

regulation ([5], [6], [10]). In the latter the problem consists

of “synchronizing” a controlled system with an exogenous

system (the so-called exosystem) so that the effect of the

latter on a regulation error is compensated.

In this paper we consider a problem of output regulation

for hybrid linear systems [4] in which the jumps of the

exogenous system (exosystem) are triggered by a clock

variable that is not measured. In addressing the problem, we

present a phase clock estimator that, joined to an internal

model-based hybrid regulator, guarantees an asymptotically

vanishing error. The paper complements the theory presented

in [13] in which the problem at hand was addressed by

designing a clock-dependent regulator. In that paper we

developed a notion of steady state for hybrid linear systems

and proposed a robust design solution that extended, to the

hybrid setting, typical “continuous-time paradigms” based on

the internal model principle ([2], [5]).

The solution presented in this paper starts from the so-

lution in [13], and, in a kind of “certainty equivalence”

paradigm, proposes a nonlinear controller obtained by replac-

ing the unknown exogenous clock with a suitable estimate

obtained by dynamically processing the regulation error. It is

shown that, under a persistence of excitation condition and

other technical assumptions, the steady-state control input

converges, in appropriate sense, to the ideal input which

guarantees that the error converges to zero asymptotically.

As in [13] we focus on the class of hybrid linear systems

that are minimum-phase so that the high-gain stabilization

results proposed in [15], [16] can be adopted. Interestingly
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enough, we show that the resulting “closed-loop system” fits

in the framework of [16] in which asymptotic convergence

of the error to zero is guaranteed in spite of the fact that term

driving the error dynamics vanishes everywhere on the zero-

error manifold except at a finite number of nonequilibrium

points.

As the mathematical background regarding hybrid sys-

tems, this work rests upon the general framework and results

of hybrid control systems presented, in an introductory way,

in [4] from where also the hybrid formalism and notation

are taken. We refer the reader to that work for details about

the notion of solution of a hybrid system and the notion of

asymptotic stability for hybrid systems that are extensively

used in this paper.

Notation By R, Z and N we denote the set of real, integer

and nonnegative integers, respectively. With F : Rn
⇉ R

m

we denote a set-valued mapping from R
n to R

m. Tr(M)
denotes the trace of a matrix M while M † represents the

Moore-Penrose pseudoinverse of M and Eig(M) denotes

the spectrum of M . By ‖M‖ we denote the Frobenius

matrix norm of M .

II. THE FRAMEWORK

We consider a hybrid linear system of the form

τ̇ = 1
ẇ = Sw

ẋ = Ax+Bu+ Pw







(τ, w, x) ∈ [0, τmax]×W × R
n

τ+ = 0
w+ = Jw

x+ = Nw +Mx







(τ, w, x) ∈ {τmax} ×W × R
n

(1)

with regulated output e = Cx + Qw in which u ∈ R is

the control input, w ∈ W ⊂ R
s is the exogenous variable

modeling disturbances to be rejected or references to be

tracked, and τ is a clock variable triggering the jumps of the

system that occur every τmax instances of time. In the paper

we assume that w(t, j) ∈ W for all (t, j) in the solution

domain and that W is a compact set. The value of τmax can

be thus considered as a dwell time between two consecutive

jumps. In the framework above our goal is to design a hybrid

regulator of the form

σ̇ = 1

ζ̇ = ϕ(σ, ζ, e)

}

(σ, ζ) ∈ [0, τmax]× R
m

σ+ = 0
ζ+ ∈ ψ(σ, ζ, e)

}

(σ, ζ) ∈ {τmax} × R
m

(2)
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with output u = γ(ζ, e), in which ϕ : [0, τmax]×R
m×R →

R
m is a continuous function and ψ : [0, τmax]×R

m ×R ⇉

R
m is an outer semicontinuous, locally bounded set-valued

mapping, such that all complete trajectories of the resulting

closed-loop system originating from a given compact set are

uniformly bounded and satisfy

lim
t+j→∞

e(t+ j) = 0 . (3)

In (2) the variable σ represents an internal clock of the

regulator not necessarily synchronized with the system clock

τ . Indeed, this article places emphasis on the design of

regulators that do not have access to the measure of τ by

thus extending the design principles of [13] in which τ -

dependent regulators was presented. The need of estimating

the value of τ from the regulated error e will lead us to

design nonlinear regulators obtained by combining internal-

model based hybrid regulators of the form presented in [13]

with dynamic estimators of the phase of τ . It is worth noting

that the dwell time τmax is assumed to be known.

The problem at hand will be solved under some assump-

tions that are presented throughout the paper. As a first

restriction, this paper focuses on systems (1) described in

normal form with unitary relative degree between the input

u and the output e. Specifically, we assume that the state x is

partitioned as x = col(z, e) with z ∈ R
n−1 and the matrices

A,B, P,N,M are accordingly partitioned as

A =

(

A11 A12

A21 A22

)

B =

(

0
1

)

P =

(

P1

P2

)

N =

(

N1

N2

)

M =

(

M11 M12

M21 M22

)

.

In these coordinates, the system in question has a hybrid zero

dynamics of the form

τ̇ = 1 ẇ = Sw

ż = A11z + P1w

}

(τ, w, z) ∈ [0, τmax]×W × R
n−1

τ+ = 0 w+ = Jw

z+ = N1w +M11z

}

(τ, w, z) ∈ {τmax} ×W × R
n−1 .

(4)

On this system we formulate the following two assumptions.

Assumption 1 The eigenvalues of the matrix

M11 exp(A11 τmax ) are within the unitary disk. ⊳

Assumption 2 There exists a T ∈ R
(n−1)×s solution of

0 = A11T − TS + P1 , T J =M11T +N1 . ⊳

The first assumption represents a minimum-phase assumption

for the system (1) and it is motivated by the fact that,

as a stabilization tool, we shall use the high-gain design

paradigm proposed in [15], [16]. The second assumption

restricts the attention to zero dynamics (4) having a steady

state response that is not dependent on τ . Specifically, by

changing coordinates as z 7→ z̃ := z − Tw and using

Assumption 2, system (4) transforms as

τ̇ = 1 ẇ = Sw
˙̃z = A11z̃

}

(τ, w, z̃) ∈ [0, τmax]×W × R
n−1

τ+ = 0 w+ = Jw

z̃+ = M11z̃

}

(τ, w, z̃) ∈ {τmax} ×W × R
n−1 .

(5)

This system, due to Assumption 1, has the set {(τ, w, z̃) ∈
[0, τmax] × W × R

n−1 : z̃ = 0} that is globally asymp-

totically stable, namely z(t, j) converges asymptotically to

Tw(t, j) as t+ j → ∞.

As a further restriction, imposed by the stabilization tool

of [15], [16], we assume that the value of the error e doesn’t

change during jumps and that M11 = I . Namely, we assume

the following.

Assumption 3 M21 = 0 , N2 = 0 , M22 = 1 ,M11 = I . ⊳

It is worth noting that the previous assumption is fulfilled in

the special case where the plant is a continuous-time system

and the jumping disturbance is matched with the input (in

which case M12 = 0, P1 = 0 and P2 = 1). In this special

case Assumption 2 is automatically fulfilled with T = 0 and

Assumption 1 boils down to requiring that the matrix A11 is

Hurwitz.

III. THE REGULATOR AND ITS TUNING

The proposed regulator is a system that flows according

to the dynamics

σ̇ = 1

ζ̇ = A11ζ +A12e

η̇ = F (η −Ge) +Gu

ξ̇ = F (ξ −Ge) +Gu+GA22e+GA21ζ

Ẇ = 0
ṗ = 0

(6)

whenever (σ, ζ,η, ξ,W, p, e) ∈ [0, τmax]×R
n−1×R

ℓ ×R
ℓ ×

P0 × R× R, and jumps according to the rule

σ+ = 0
ζ+ = ζ

η+ = η

ξ+ = ξ

W+ = λW + (ξ −Ge) (ξ −Ge)T

p+ ∈ arg min
p̂∈[0,τmax]

‖Γf(σ + p̂)W Γf(σ + p̂)T ‖

(7)

whenever (σ, ζ,η, ξ,W, p, e) ∈ {τmax} × R
n−1×R

ℓ × R
ℓ ×

P0 × R× R, with control input that is chosen as

u = Γ(σ + p)(η −Ge) + v .

In the previous equations λ is a parameter fulfilling λ ∈
(0, 1), P0 is the set of symmetric positive semidefinite

matrices in R
ℓ×ℓ, (F,G) ∈ R

ℓ×ℓ × R
ℓ×1 is a controllable

pair, Γ : [0, 2τmax] → R
1×ℓ and Γf : [0, 2τmax] → R

ν×ℓ are

matrix-valued functions, v is a residual control input. The

degree-of-freedom of the controller are ℓ, ν, (F,G), Γ, Γf

and v, which will be fixed in a while.

7411



The regulator state variables have the following meaning:

σ is the internal clock of the regulator that is not necessarily

synchronized with τ , p is the estimation of the clock phase

(ideally, σ+p converges, modulo τmax, to τ ), W is the matrix

state of a “state-shared” estimator (by using the terminology

of [3]) needed for tuning the phase variable p. The η and ξ are

state variables of two internal model units (chosen exactly

alike in the proposed solution) that are crucial to compute

the steady state control input and to drive the W dynamics.

Finally, the ζ dynamics introduces a partial replica of the zero

dynamics of the system in the regulator. As clarified by the

forthcoming analysis, the ζ-dynamics is introduced in order

to make, in appropriate coordinates, the phase-estimation

dynamics not affected by e.

In the following part of the section we complete the

regulator design by fixing the degree-of-freedom ℓ, ν, (F,G),
Γ, Γf .

As far as ℓ and the pair (F,G) are concerned, we choose

ℓ ≥ s+ 1, (F,G) controllable, with F fulfilling

Eig(exp(Fτmax)) ∩ Eig(J exp(Sτmax)) = ∅ ,

and

ι ∈ Eig(exp(Fτmax)) ⇒ |ι| < 1 .

By Proposition 1 in [13], the F with the above properties

guarantees that there exists a continuously differentiable

function Π : [0, τmax] → R
ℓ×s solution of the following

equations

dΠ(τ)

dτ
= FΠ(τ) −Π(τ)S −GP̄2

0 = Π(τmax)−Π(0)J
(8)

with P̄2 := A21T + P2. In fact, the expression of Π(τ) is

given by

Π(τ) = (exp(Fτ)Π(0) +D(τ)) exp(−Sτ)

with D(τ) solution of

dD(τ)

dτ
= FD(τ)−GP̄2exp(Sτ) D(0) = 0

and Π(0) solution of the Sylvester equation

exp(Fτmax)Π(0)−Π(0)Jexp(Sτmax) +D(τmax) = 0 .

The tuning of the controller proceeds under a technical

assumption, already present in [13], involving Π(τ).

Assumption 4 There exists r ≤ s such that rankΠ(τ) = r

for all τ ∈ [0, τmax]. ⊳

This assumption guarantees that Π(τ)† : [0, τmax] → R
s×ℓ

is a continuous function (see [12]). With the function Π(τ)
and the number r in hand, the matrix-valued function Γf(ς) :
[0, 2τmax] → R

ν×ℓ can be constructed as follow. Take

ν = ℓ − r and let L : [0, τmax] → R
ℓ×ℓ−r be obtained

by integrating

L̇(ς) = (−Π(ς)†)T (Π̇(ς))TL(ς)

with initial condition L(0) satisfying

L(0)T
[

Π(0) L(0)
]

=
[

0 Iℓ−r

]

.

It turns out that L(τ)TL(τ) = I for all τ ∈ [0, τmax].
Furthermore, using the fact that L(0) and L(τmax) are

unitary matrices, let Um ∈ R
ℓ−r×ℓ−r be such that UmU

T
m =

I and L(τmax)Um = L(0) and construct U : [0, τmax] →
R

ℓ−r×ℓ−r in such a way that (see Example 8.2 of [8])

U(ς)U(ς)T = Iℓ−r, U(0) = Iℓ−r and U(τmax) = Um. Then,

Γf can be chosen as

Γf(ς) = U(ς)T L(ς)T

for ς ∈ [0, τmax] and Γf(ς) = Γf(ς − τmax) for ς ∈
(τmax, 2τmax]. Note that Γf(τmax) = Γf(0) = L(0)T ,

namely, Γf : [0, 2τmax] → R
ν×ℓ is continuous.

Finally, we design Γ : [0, 2τmax] → R
1×ℓ as Γ(ς) =

−P̄2 Π(ς)
† for ς ∈ [0, τmax] and Γ(ς) = Γ(ς − τmax) for

ς ∈ (τmax, 2τmax]. Note that, in general, Γ(0) 6= Γ(τmax),
namely, Γ : [0, 2τmax] → R

1×ℓ is discontinuous. Indeed, for

the sake of robustness, a set-valued regularization of Γ will

be considered in the following analysis.

IV. MAIN RESULT

The following result provides the choice of the residual

input v that guarantees the fulfillment of the regulation

objective (3). The result is formulated under two additional

assumptions specified below. The first is motivated by the so-

called “partial injectivity condition” introduced in the output

regulation context in [9] (see also [10], [7]). The second is

a persistence of excitation condition requiring a minimum

energy value to the regularly sampled exosystem trajectory.

Assumption 5 There exists a µ > 0 such that

|P̄2w1 − P̄2w2| ≤ µ|Π(τ1)w1 −Π(τ2)w2|

for all (w1, w2) ∈ W2 and (τ1, τ2) ∈ [0, τmax]
2. ⊳

Assumption 6 (Persistence of excitation) There exists an

α > 0 such that for each increasing sequence {tk}0−∞, with

the property that (tk, k) belongs to the solution domain of

the exosystem and tk − tk−1 = τmax, the following holds

0
∑

k=−∞

λ−kw(tk, k)w(tk, k)
T > αI . ⊳

Proposition 1: Let Assumptions 1-6 be fulfilled. Let

K1 ⊂ R
n−1 × R and K2 ⊂ R

n−1×R
ℓ × R

ℓ ×
P0 × R be given compact sets. There exists a con-

tinuous function κ : R → R such that for all

(τ(0, 0), σ(0, 0)) ∈ [0, τmax] × [0, τmax], (z(0), e(0)) ∈
K1 and (ζ(0, 0),ξ(0, 0), η(0, 0),W (0, 0), p(0, 0)) ∈ K2 the

trajectories of (1) in closed-loop with (6)-(7) and

v = −sgn(e)κ(|e|) (9)

are bounded and (3) holds true.

In the following part of the section we present the proof

of the proposition. The proof rests upon the following ideas.

First, it is shown that the closed-loop system preserves,

in appropriate coordinates, the property of being a hybrid

nonlinear system in normal form with relative degree-one

between the input v and the error e. The body of the proof
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is then the study of the associated hybrid zero dynamics

that present a cascade structure, with (5) driving a system in

cascade dependent on the regulator dynamics. It is shown

that, due to the design choice in Section III, the hybrid

zero dynamics presents an asymptotically stable compact

set, denoted by M, on which the interconnection term

with the error dynamics is everywhere zero except a finite

number of nonequilibrium points. This fact allows us to

frame the stabilization problem in the framework of [16]

and to conclude semiglobal asymptotic stability of the set

M × {0} with an high-gain law of the form (9). Due to

space constraint, we omit all the proofs of the forthcoming

technical results that can be found in the journal version of

this paper under preparation.

Consider the change of variables η 7→ χη = η − Ge,

ξ 7→ χξ = ξ − Ge and ζ 7→ ez = ζ − z̃. In the new

coordinates, the closed-loop system is a hybrid system that

flows according to the dynamics

τ̇ = 1 , σ̇ = 1 , ẇ = Sw
˙̃z = A11z̃ +A12e

ėz = A11ez
χ̇η = Fχη −GP̄2w −GA21z̃ −GA22e

χ̇ξ = Fχξ −GP̄2w+GA21ez
Ẇ = 0
ṗ = 0
ė = A21z̃ +A22e+ P̄2w + Γ(σ + p)χη + v

(10)

when ((τ, σ), w, z̃, ez, χη, χξ,W, p, e) ∈ [0, τmax]
2 × W ×

R
n−1×R

n−1×R
ℓ×R

ℓ×P0×R×R, and that jumps according

to the rules

τ+ = 0 , σ+ = σ , w+ = Jw

z̃+ = z̃ , e+z = ez
χη

+ = χη , χξ
+ = χξ , W+ =W , p+ = p

e+ = e
(11)

when (τ, σ, w, z̃, ez,χη, χξ,W, p, e) ∈ {τmax} × [0, τmax] ×
W × R

n−1×R
n−1 × R

ℓ × R
ℓ × P0 × R× R and

τ+ = τ , σ+ = 0 , w+ = w

z̃+ = z̃ , e+z = ez
χη

+ = χη , χξ
+ = χξ

W+ = λW + χξ χ
T
ξ

p+ ∈ arg min
p̂∈[0,τmax]

‖Γf(σ + p̂)W Γf(σ + p̂)T ‖

e+ = e
(12)

(τ, σ, w, z̃, ez,χη, χξ,W, p, e) ∈ [0, τmax] × {τmax} × W ×
R

n−1×R
n−1×R

ℓ×R
ℓ×P0×R×R. This hybrid system is in

normal form with unitary relative degree between the input

v and the output e. Motivated by the results in [15], [16],

we start studying the zero dynamics of the system that are

given by a hybrid system flowing according to the dynamics

τ̇ = 1 , σ̇ = 1 , ẇ = Sw
˙̃z = A11z̃ , ėz = A11ez

χ̇η = Fχη −GP̄2w −GA21z̃

χ̇ξ = Fχξ −GP̄2w+GA21ez
Ẇ = 0 , ṗ = 0

(13)

when ((τ, σ), w, z̃, ez,χη, χξ,W, p) ∈ [0, τmax]
2 × W ×

R
n−1 × R

n−1×R
ℓ × R

ℓ × P0 × R, and jumping according

to the rules

τ+ = 0 , σ+ = σ , w+ = Jw

z̃+ = z̃ , e+z = ez
χη

+ = χη , χξ
+ = χξ , W+ =W , p+ = p

(14)

when (τ, σ, w, z̃, ez,χη, χξ,W, p) ∈ {τmax}×[0, τmax]×W×
R

n−1 × R
n−1×R

ℓ × R
ℓ × P0 × R and

τ+ = τ , σ+ = 0 , w+ = w

z̃+ = z̃ , e+z = ez , χη
+ = χη , χξ

+ = χξ

W+ = λW + χξ χ
T
ξ

p+ ∈ arg min
p̂∈[0,τmax]

‖Γf(σ + p̂)W Γf(σ + p̂)T ‖

(15)

(τ, σ, w, z̃, ez,χη, χξ,W, p) ∈ [0, τmax] × {τmax} × W ×
R

n−1 × R
n−1×R

ℓ × R
ℓ × P0 × R.

The zero dynamics has a nice cascade structure that is

employed in the next part of the section in which the

asymptotic properties of (13)-(15) are analyzed. With the

theoretical support of Corollary 19 in [4], the asymptotic

properties of a specific system of the cascade are studied by

considering the driving system in steady-state. According to

this, by bearing in mind Assumption 1, we consider z̃ = 0
and ez = 0 we start studying the hybrid system with flow

dynamics

τ̇ = 1 , σ̇ = 1 , ẇ = Sw

χ̇η = Fχη −GP̄2w , χ̇ξ = Fχξ −GP̄2w
(16)

governing the system when ((τ, σ), w, χη , χξ) ∈ [0, τmax]
2×

W × R
ℓ × R

ℓ, and jump rule given by

τ+ = 0 , σ+ = σ , w+ = Jw

χη
+ = χη , χξ

+ = χξ ,
(17)

when (τ, σ, w, χη , χξ) ∈ {τmax} × [0, τmax]×W ×R
n−1 ×

R
ℓ × R

ℓ and

τ+ = τ , σ+ = 0 , w+ = w

χη
+ = χη , χξ

+ = χξ
(18)

when (τ, σ, w, χη , χξ) ∈ [0, τmax]×{τmax}×W ×R
ℓ×R

ℓ.

The asymptotic properties of this system are detailed in

the next proposition that follows immediately from (8) and

from the definition of F .

Proposition 2: The set

{((τ, σ), w, χη, χξ) ∈ [0, τmax]
2 ×W × R

ℓ × R
ℓ :

χη = Π(τ)w , χξ = Π(τ)w}

is globally asymptotically stable for (16)-(18).

We proceed by studying the W dynamics specialized with

z̃ = 0, χξ = Π(τ)w, namely the hybrid system governed by

the flow dynamics

τ̇ = 1 , σ̇ = 1 , ẇ = Sw , Ẇ = 0 (19)

when ((τ, σ), w,W ) ∈ [0, τmax]
2 ×W ×P0, and jump rules

given by

τ+ = 0 , σ+ = σ , w+ = Jw , W+ =W (20)
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when (τ, σ, w,W ) ∈ {τmax} × [0, τmax]×W ×P0 and

τ+ = τ , σ+ = 0 , w+ = w

W+ = λW +Π(τ)w (Π(τ)w)T
(21)

when (τ, σ, w,W ) ∈ [0, τmax] × {τmax} × W × P0. In the

study of this system it turns out convenient to introduce

an additional hybrid dynamics obtained by “sampling and

holding” the exogenous dynamics at the times at which σ

switches. Specifically, let (tj , j) be a pair in the solution

domain such that σ(tj , j) = τmax and τ(tj , j) ∈ (0, τmax]
and let1 τs := τ(tj , j). Furthermore, let

Js = exp(S τs) J exp(S (τmax − τs)) (22)

and consider the system

σ̇ = 1 , ẇs = 0 (σ,ws) ∈ [0, τmax]×W

σ+ = 0 , w+
s = Jsws (σ,ws) ∈ {τmax} ×W

(23)

with initial condition that is set to

ws(0, 0) = exp(S(τmax − σ(0, 0)))w(0, 0)

if σ(0, 0) ≥ τ(0, 0) and

ws(0, 0) = exp(S(τ(0, 0)− σ(0, 0))) J ·
·exp(S(τmax − τ(0, 0)))w(0, 0)

otherwise. By letting (tj , j) such that σ(tj , j) = τmax and

τ(tj , j) ∈ (0, τmax], namely a time at which a switch of

σ, and possibly of τ , are going to occur, the previous

initialization of ws guarantees that ws(tj , j) = w(tj , j).
Then the following proposition holds.

Proposition 3: Let

H(ws) =

0
∑

k=−∞

λ−k(Jk−1
s ws) (J

k−1
s ws)

T .

The set

{((τ, σ), (w,ws),W ) ∈ [0, τmax]
2 ×W2 × P0 :

W = Π(τs)H(ws)Π(τs)
T }

is globally asymptotically stable for (19)-(21), (23).

As last step in the study of the zero dynamics, we an-

alyze the asymptotic behavior of p by setting W =
Π(τs)H(ws)Π(τs)

T . Specifically, we focus on the hybrid

system having flow dynamics

σ̇ = 1 , ẇs = 0 , ṗ = 0 (24)

taking place when (σ,ws, p) ∈ [0, τmax]×W×R and jumping

according to the rule

σ+ = 0 , w+
s = Jsws

p+ ∈ arg min
p̂∈[0,τmax]

‖Γf(σ + p̂)Π(τs)H(ws)Π(τs)
T Γf(σ + p̂)T ‖

(25)

when (σ,ws, p) ∈ {τmax} ×W × R.

1Namely, τs coincides with the value of τ at the time in which σ switches
if σ and τ are not synchronized, otherwise it is set equal to τmax.

For this system the following proposition holds.

Proposition 4: The set

P = {p ∈ R : Γf(τmax + p)Π(τs) = 0}

is not empty. As a consequence, under Assumption 6, the

set [0, τmax] ×W × P is globally asymptotically stable for

(24)-(25).

Overall, the previous arguments have shown that the set

A := {((τ, σ), (w,ws), (z̃, ez), (χη, χξ),W, p) ∈

[0, τmax]
2 ×W2 × R

2(n−1) × R
2ℓ × P0 × P such that

(z̃, ez) = 0 , χη = χξ = Π(τ)w ,W = Π(τs)H(ws)Π(τs)
T
}

is globally asymptotically stable for the (13)-(15), (23).

We study now the interconnection term between the zero

dynamics and the error dynamics in (10), namely the function

γ(σ,w, z̃, χη, p) = A21z̃ +A22e+ P̄2w + Γ(σ + p)χη .

Our goal is to show that, along trajectories taking place in A,

the function γ is identically zero, possibly with the exception

of a finite number of nonequilibrium points in which it is not

vanishing.

To this end, pick an initial condition of (13)-(15), (23) in

A and note that, on the resulting trajectory,

γ(σ(t, j), w(t, j), z̃(t, j), χη(t, j), p(t, j)) =

P̄2w(t, j) + Γ(σ(t, j) + p(t, j))Π(τ(t, j))w(t, j)

with p(t, j) ∈ P for all (t, j).
In the following proposition we denote by H ⊂ R≥0 ×N

the hybrid time domain of system (13)-(15), (23) associated

to the selected initial condition.

Proposition 5: There exists a set S ⊂ R≥0×N composed

of isolated points, such that

Γ(σ(t, j) + p(t, j))Π(τ(t, j))w(t, j) =

Γ(τ(t, j))Π(τ(t, j))w(t, j) ∀ (t, j) ∈ H \ S .

(26)

By taking advantage from the previous proposition and

from the fact that, under Assumption 4 and ℓ ≥ s, P̄2w =
P̄2Π(τ)

†Π(τ)w for all τ ∈ [0, τmax] (see Proposition 4 in

[13]), it turns out that

P̄2w + Γ(σ(t, j) + p(t, j))Π(τ(t, j))w(t, j)

= P̄2w + Γ(τ(t, j))Π(τ(t, j))w(t, j)

= P̄2w − P̄2Π(τ(t, j))
†Π(τ(t, j))w(t, j) = 0

for all (t, j) ∈ H \ S.

This fact allows us to cast the stabilization problem in the

framework of [16].

Specifically, we let x0 = col(w,ws, ez, χξ, p,W ), x1 =
col(z̃, χη), and rewrite the error dynamics in (10) as

ė = A21z̃ +A22e+ P̄2w + Γ(σ + p)χη + v

= F2(τ, σ, x0, x1, e) + F3(τ, σ, x0) + v
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with

F2 = A21z̃ +A22e+ P̄2w + Γ(σ + p)χη

−
(

P̄2w + Γ(σ + p)Π(τ)w
)

and F3 = P̄2w + Γ(σ + p)Π(τ)w .

In this way, system (10)-(12) and (23) fits in the framework

of [16] by which the claim of Proposition 1 follows.

V. SIMULATION RESULTS

We consider the linear hybrid system in R
3 that flows

according to the dynamics

τ̇ = 1 , ż = −z + e , ė = z + e+ u+ w1

and regularly jumps according to the jump rule τ+ = 0,

z+ = z+e and e+ = e whenever τ gets the value τmax = 2.

The variable w1 denotes a matched exogenous disturbance

generated by a third order exosystem that is constant during

flows, i.e. S = 0, and jumps according to the ”shift rule”

w+
1 = w2 , w+

2 = w3 , w+
3 = w1

whenever the system jumps. It is easy to check that the

system fulfills the minimum-phase Assumption 1 and As-

sumptions 2 and 3 with T = 0. The regulator in Section III

has been tuned with

F =









0 1 0 0
0 0 1 0
−8 −20 −16 1
0 0 0 −10









G =









0
0
0
1









,

λ = 0.001 and κ = 80. By simulation, it is possible to

verify that Assumptions 4 and 5 are also fulfilled. The initial

condition of the exosystem have been taken as w(0) =
(1,−0.5, 2) so that the persistence of excitation condition in

Assumption 6 is also fulfilled for some positive α. Simulation

results are shown in Figures 1-2. In particular Figure 1 plots

the disturbance w1 against the control input u (with negative

sign) while Figure 2 plots the regulation error e and the phase

offset estimation parameter p against the initial condition of

the clock variable, τ .
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Fig. 1. Plot of the matched disturbance w1 and of −u.
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Fig. 2. Plot of the regulation error e (left), and of the phase estimation p

(right).

VI. CONCLUSIONS

We considered the problem of hybrid output regulation for

a class of linear systems. With respect to our earlier work on

the subject, here we addressed the case in which the jump of

the exosystem and of the plant are triggered by a clock that

is not accessible for feedback. In this context we proposed

a phase clock estimator that, joined to an internal model

based regulator of the form proposed in [13], guarantee

the fulfillment of the regulation objective. Future works

on the subject are mainly directed to improve the solution

in presence of parametric uncertainties characterizing the

system and exosystem.
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