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Abstract— In this paper, we consider the problem
of stability and stabilization of 2D continuous systems
with state delays. The asymptotic stability of this
class of systems described by the Roesser model is
addressed via Lyapunov techniques. It is shown that
linear matrix inequalities (LMIs) can be used to check
the asymptotic stability of 2D linear delayed systems
and this is applied to the case of state feedback
stabilization. A numerical example is introduced to
show the efficiency of the proposed criterion for a 2D
linear delayed system.
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I. INTRODUCTION

As usual in the development of science, the

theory of multidimensional systems (n-D systems)

emerged from the growing complexity of mod-

ern technology particularly in image and signal

processing, coding/decoding, filtering, etc. (for an

overview, see [3]). Another interesting class of

systems which appeared recently is the repetitive

processes (or multipass processes) such as long-

wall coal cutting or metal rolling operations that

can be modeled as n-D systems [14]. It was more

than enough to catch the interest of the scientific

community both in engineering and mathematical

areas as the growing number of recent studies

shows and it is not a surprise that the theory is

now advancing faster than the applications. The

field is not recent though. The first studies on

multidimensional systems started in the early 70s

with the introduction of two well known – in the

multidimensional community – state space models

to describe nD systems; the so called Roesser and

Fornasini-Marchesini models [13], [5] still used to-

day both for discrete systems. It is easy to show that

both models are equivalent; one can be transformed

into another with a simple state substitution (see

for instance [11]). More recently, [2] introduced

the first hybrid system based on an extension of
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the Roesser model adding a continuous part to the

original discrete system.

In this paper, our attention is focused on the

continuous part of this model, generalized to the

delay case (for a survey on time delay systems,

the reader can refer to [7], [6], [15]. Delayed

multidimensional systems have been recently in-

troduced but in the majority of the existing studies

only the discrete case have been analyzed (see e.g.

[12], [16], [10]) except for a few recent papers

that inspired our work [1], [9] where a Lyapunov

approach is applied to continuous Roesser models.

The problem of stability/stabilization is addressed

by the above authors but the results given in terms

of LMIs (linear matrix inequalities, see [4]) are all

delay independent. The aim of this work is to give

less conservative results to design a state-feedback

controller for 2D delayed systems which stabilizes

the system.

The paper is organized as follows. In section

II, we introduce the mathematical background we

need to address the problem. In section III, we

introduce our main results: a sufficient condition to

check the asymptotic stability and the stabilization

of a 2D delayed system. Our approach is based

on Lyapunov techniques; stability and stabilization

criteria are given in form of LMIs. Finally section

IV presents an illustrative example.

II. PROBLEM FORMULATION

The class of 2-D systems with delays under

consideration is represented by an extension of the

Roesser model with (constant) state delays (see

[13] and [2]) of the form:

[

∂xh(t1,t2)
∂t1

∂xv(t1,t2)
∂t2

]

=

[

A11 A12

A21 A22

] [

xh(t1, t2)
xv(t1, t2)

]

(1)

+

[

A11d A12d

A21d A22d

] [

xh(t1 − τ1, t2)
xv(t1, t2 − τ2)

]

+

[

B1

B2

]

u(t1, t2)

where xh(t1, t2) is the horizontal state in IRnh ,

xv(t1, t2) is the vertical state in IRnv , u(t1, t2) is

the control vector in IRm, τ1 and τ2 are the delays

in horizontal and vertical directions respectively

and Aii, Aiid and Bi are real constant matrices of

appropriate dimensions. The initial conditions are
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given by

xh(θ, t2) = f(θ, t2), ∀t2 and − τ1max < θ < 0
xv(t1, θ) = g(t1, θ), ∀t1 and − τ2max < θ < 0

where f and g are continuous functions. For such
a system we denote

x(t1, t2) ≡

[

xh(t1, t2)
xv(t1, t2)

]

,

x(t1 − τ1, t2 − τ2) ≡

[

xh(t1 − τ1, t2)
xv(t1, t2 − τ2)

]

ẋ(t1, t2) ≡

[

∂xh(t1,t2)
∂t1

∂xv(t1,t2)
∂t2

]

and

A =

[

A11 A12

A21 A22

]

, Ad =

[

A11d A12d

A21d A22d

]

, B =

[

B1

B2

]

which allows us to write (1) in the usual form

ẋ(t1, t2) =Ax(t1, t2) +Adx(t1 − τ1, t2 − τ2)

+Bu(t1, t2) (2)

Consider the state feedback control:

u(t1, t2) = Kx(t1, t2) (3)

where the matrix

K =
[

K1 K2

]

is the state feedback gain to be determined. The problem
is then to compute a static feedback control given by (3)
such that the closed-loop 2D system (1) is asymptotically
stable.

III. MAIN RESULTS

A. Stability criteria

In this section, we investigate stability conditions for
the 2D delayed system (1).

Theorem 1: If there exist symmetric bloc diagonal
matrices P > 0, Q > 0 and R > 0 such that the
following LMI





ATP + PA+Q−R PAd +R τATR

∗ −Q−R τAT
d R

∗ ∗ −R



 ≺ 0

(4)
where

τ =

[

τ1Inh
0

0 τ2Inv

]

,

P =

[

P1 0
0 P2

]

, Q =

[

Q1 0
0 Q2

]

, R =

[

R1 0
0 R2

]

holds true, then the 2D linear delayed system (1) is
asymptotically stable.

Proof: Proof of theorem 1 is given in the ap-
pendix VI-A.

B. Stabilization

The objective of this section is the design of a stabi-
lizing state-feedback controller for system (1). Using the
state-feedback control (3), (1) can be rewritten as:

∂xh(t1,t2)
∂t1

= A11x
h(t1, t2) + A12x

v(t1, t2) + B1K1x
h(t1, t2)

+B1K2x
v(t1, t2) + A11dx

h(t1 − τ1, t2) + A12dx
v(t1, t2 − τ2)

∂xv(t1,t2)
∂t2

= A21x
v(t1, t2) + A22x

v(t1, t2) + B2K1x
v(t1, t2)

+B2K2x
v(t1, t2) + A21dx

v(t1 − τ1, t2) + A22dx
v(t1, t2 − τ2)

or equivalently,

ẋ(t1, t2) = Acx(t1, t2) +Adx(t1 − τ1, t2 − τ2) (5)

where:

Ac =

[

(A11 +B1K1) (A12 +B1K2)
(A21 +B2K1) (A22 +B2K2)

]

Ad =

[

A11d A12d

A21d A22d

]

Theorem 2: If there exist symmetric bloc diagonal
matrices X > 0, Q̄ > 0 and Y > 0 such that the
following LMI





XAT + AX + Y TBT + BY + Q̄ − X AdX + X

∗ −Q̄ − X
∗ ∗

τXAT + τY TBT

τXAT
d

−X



 ≺ 0 (6)

with X = P−1, Y = KX and Q = PQ̄P is verified,
then (5) is asymptotically stable.
The gains K1 and K2 of the controller law (3) are given
by

K1 = Y1X
−1
1 ,K2 = Y2X

−1
2 (7)

Proof: Proof of theorem 2 is given in the ap-
pendix VI-B.

IV. EXAMPLE

In order to show the applicability of our results,
consider a 2D continuous system represented by (1) with:

A11 =

[

1 −0.5
0 −2

]

, A12 =

[

0.1 −1
0 0.1

]

,

A21 =

[

−1 0
0 0.1

]

, A22 =

[

0 −3
1 −0.6

]

,

B1 =

[

1 −1
1 0

]

, B2 =

[

0 0
1 1

]

.

The “delayed” matrices are given by:

A11d =

[

0.30 −0.15
0 −0.60

]

, A12d =

[

0.03 −0.30
0 0.03

]

,

A21d =

[

−0.30 0
0 0.03

]

, A22d =

[

0 −0.90
0.30 −0.18

]

.

For τ2 = 0.1 and τ1 = 1.2, the solutions are given by:

P1 =

[

1.5880 1.2137
1.2137 2.4878

]

, P2 =

[

0.0540 −0.0116
−0.0116 0.1396

]

,

Q1 =

[

0.2717 −0.0574
−0.0574 1.0118

]

, Q2 =

[

0.0112 −0.0328
−0.0328 0.4322

]

.

The stabilizing control law (5) is given by (7):

K1 =

[

−0.2691 1.3792
1.2283 0.4440

]

,K2 =

[

−0.0410 −0.1919
0.0243 −1.2210

]
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Fig. 1. The state evolution of the first component of xh(t1, t2)

For τ2 = 0.1 and τ1 = 0.2, we have:

P1 =

[

0.1817 −0.0063
−0.0063 0.0878

]

, P2 =

[

0.0904 −0.0558
−0.0558 0.2780

]

,

Q1 =

[

0.5848 −0.0172
−0.0172 0.1000

]

, Q2 =

[

0.1053 −0.2751
−0.2751 1.3104

]

.

and

K1 =

[

−2.4597 0.9485
1.8430 −0.7777

]

,K2 =

[

0.5039 −1.2618
0.3839 −3.4540

]

Now, in both cases, injecting the values of K1 and K2

back into the system, it is possible to check that the
closed loop system is asymptotically stable using theo-
rem 2. But it is also nice to have a look at the evolution
of the components of states xh(t1, t2) and xv(t1, t2) in
3D graphics (Fig. 1, Fig. 2, Fig. 3 and Fig. 4). The curves
are obtained using a simple discretization method (Euler
type). We have used the sampling periods Th = 0.01s
and Tv = 0.01s and the following initial conditions:

xh(θ, t2) =

[

1
2

]

, ∀t2 and − 0.2 < θ < 0

xv(t1, θ) =

[

3
1

]

, ∀t1 and − 0.1 < θ < 0

Note that i and j presented in these figures are the
indexes of the discretized times t1 and t2 respectively
(t1 = iTh, t2 = jTv). Both vertical and horizontal
states quickly converge to the origin. This can be better
seen in the next set of graphs. Indeed, Fig. 5 shows the
evolution of the horizontal state xh(t1, t2) for a fixed
value of t2 equal to 6s. Same goes for Fig. 6 which
represents the evolution of the horizontal state xh(t1, t2)
for t1 = 8s.

V. CONCLUSION

To conclude, let us highlight the general contribution
of this paper. We first developed a sufficient condition
of asymptotic stability for 2D continuous systems with
state delays. This system is based on the generalization of
the (discrete) commonly used Roesser state space model.
Using Lyapunov approach, we proposed the synthesis
of a state feedback controller. In order to design the
controller, it is necessary to solve an LMI. It is also
important to note that this is the first time a delay
dependant criteria is proposed (see introduction) thus
leading to less conservative results. A numerical example
is provided to illustrate the results.

Fig. 2. The state evolution of the second component of
xh(t1, t2)

Fig. 3. The state evolution of the first component of xv(t1, t2)

Fig. 4. The state evolution of the second component of
xv(t1, t2)
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Fig. 5. The state evolution of the first component of xh(t1, t2)
at time instant t2 = 6s
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Fig. 6. The state evolution of the first component of xh(t1, t2)
at time instant t1 = 8s

VI. APPENDIX

A. Proof of Theorem 1

Proof: Let us define

V (x(t1, t2)) = V1(t1, t2) + V2(t1, t2) (8)

as a possible LK functional candidate for the system (1)
with:

V1(t1, t2) = xhT (t1, t2)P1x
h(t1, t2) +

∫ t1
t1−τ1

xhT (θ, t2)Q1x
h(θ, t2)dθ

+
∫ t1
t1−τ1

(τ1 − t1 + θ)

(

∂xh(θ,t2)
∂t1

)T

(τ1R1)

(

∂xh(θ,t2)
∂t1

)

dθ

V2(t1, t2) = xvT (t1, t2)P2x
v(t1, t2) +

∫ t2
t2−τ2

xvT (t1, θ)Q2x
v(t1, θ)dθ

+
∫ t1
t2−τ2

(τ2 − t2 + θ)
(

∂xv(t1,θ)
∂t2

)T
(τ2R2)

(

∂xh(t1,θ)
∂t2

)

dθ

The derivative of function V (x(t1, t2)) along the vector

ζ(t1, t2) =







∂xh(t1, t2)

∂t1
∂xv(t1, t2)

∂t2






(9)

(what we refer to by the trajectory of (1) in the sequel)
is given by:

∇ζV (x(t1, t2)) = (∇V )
T
ζ(t1, t2) =

[

∂V

∂xh

∂V

∂xv

]

ζ(t1, t2)

=
∂V (t1, t2)

∂xh(t1, t2)

∂xh(t1, t2)

∂t1
+

∂V (t1, t2)

∂xv(t1, t2)

∂xv(t1, t2)

∂t2

=
∂V1(t1, t2)

∂xh(t1, t2)

∂xh(t1, t2)

∂t1
+

∂V2(t1, t2)

∂xv(t1, t2)

∂xv(t1, t2)

∂t2
(10)

where ∇V is the gradient of the function V .
Remark 1: In [9], the authors introduce the notion of

unidirectional derivative. In this paper we refer to this
derivation as the derivative of the function V along the
vector ζ(t1, t2) defined by (9).

In [9], the authors also proved that using this deriva-
tion, the “usual” Lyapunov theorem is true (roughly

speaking V̇ < 0 implies asymptotic stability).
Computing1 the derivative of V1(t1, t2) along the

trajectories of (1) gives:

∂V1(t1,t2)

∂xh(t1,t2)

∂xh(t1,t2)
∂t1

=
(

∂xh(t1,t2)
∂t1

)T

P1x
h(t1, t2) + xhT (t1, t2)P1

(

∂xh(t1,t2)
∂t1

)

+xhT (t1, t2)Q1x
h(t1, t2) − xhT (t1 − τ1, t2)Q1x

h(t1 − τ1, t2)

+

(

∂xh(t1,t2)
∂t1

)T

(τ2
1R1)

(

∂xh(t1,t2)
∂t1

)

−
∫ t1
t1−τ1

(

∂xh(θ,t2)
∂t1

)T

(τ1R1)

(

∂xh(θ,t2)
∂t1

)

dθ

Lemma 1 ([8]): For any constant matrix W ∈

IRn×n,W = WT
≻ 0, scalar γ > 0, and vector function

ẋ : [−γ, 0] → IRn such that the following integration is
well defined, then

−γ
∫ 0
−γ

ẋT (t + ξ)WẋT (t + ξ)dξ

≤
[

xT (t) xT (t − γ)
]

[

−W W
W −W

] [

x(t)
x(t − γ)

]

Using lemma 1, we obtain

−
∫ t1
t1−τ1

(

∂xh

∂t1

)T
(θ, t2)(τ1R1)

(

∂xh

∂t1

)

(θ, t2)dθ

≤

[

xh(t1, t2)

xh(t1 − τ1, t2)

]T [

−R1 R1

R1 −R1

] [

xh(t1, t2)

xh(t1 − τ1, t2)

]

Let J =
[

−I I
]

, then

[

−R1 R1

R1 −R1

]

= J
T
(−R1)J

Hence

−
∫ t1
t1−τ1

(

∂xh

∂t1

)T
(θ, t2)(τ1R1)

(

∂xh

∂t1

)

(θ, t2)dθ

≤

[

xh(t1, t2)

xh(t1 − τ1, t2)

]T

JT (−R1)J

[

xh(t,t2)

xh(t1 − τ1, t2)

]

Now, let us introduce the augmented state ξ as:

ξ(t1, t2) =

[

x(t1, t2)
x(t1 − τ1, t2 − τ2)

]

=









xh(t1, t2)
xv(t1, t2)

xh(t1 − τ1, t2)
xv(t1, t2 − τ2)









With this in mind, we can write
(

∂xh

∂t1

)T
(t1, t2)(τ

2
1R1)

(

∂xh

∂t1

)

(t1, t2) =

ξ(t1, t2)
T









AT
11

AT
12

AT
11d

AT
12d









(τ2
1R1)









AT
11

AT
12

AT
11d

AT
12d









T

ξ(t1, t2)

1To make the proof easier to follow for the reader, we will
only explicit the calculations in one dimension, the horizontal
one, as the expressions are similar in the vertical one.
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Then, following the same logic with the other dimen-
sion, we can show that

V̇ (t1, t2) ≤ ξ
T
(t1, t2)Θξ(t1, t2)

where

Θ =

[

ATP + PA + Q − R + AT (τ2R)A

AT
d P + R + AT

d (τ2R)A

PAd + AT (τ2R)Ad + R

−Q − R + AT
d (τ2R)Ad

]

≺ 0

which can be written as

Θ =







Θ11 Θ12 Θ13 Θ14

∗ Θ22 Θ23 Θ24

∗ ∗ Θ33 Θ34

∗ ∗ ∗ Θ44







with

Θ11 = AT
11P1 + P1A11 + Q1 − R1 + AT

11(τ
2
1R1)A11 + AT

21(τ
2
2R2)A21

Θ12 = P1A12A
T
21P2 + AT

11(τ
2
1R1)A12+

AT
21(τ

2
2R2)A22

Θ13 = P1A11d + A11(τ
2
1R1)A11d + R1+

AT
21(τ

2
2R2)A21d

Θ14 = P1A12d + A11(τ
2
1R1)A12d+

AT
21(τ

2
2R2)A22d

Θ22 = AT
22P2 + P2A22 + Q2 − R2 + AT

12(τ
2
1R1)A12 + AT

22(τ
2
2R2)A22

Θ23 = P2A21d + AT
12(τ

2
1R1)A11d + AT

22(τ
2
2R2)A21d

Θ24 = P2A22d + R2 + AT
12(τ

2
1R1)A12d + AT

22(τ
2
2R2)A22d

Θ33 = AT
11d(τ

2
1R1)A11d − R1 − Q1 + AT

21d(τ
2
2R2)A21d

Θ34 = AT
11d(τ

2
1R1)A12d + AT

21d(τ
2
2R2)A22d

Θ44 = −R2 − Q2 + AT
12d(τ

2
1R1)A12d+

AT
22d(τ

2
2R2)A22d

As we still have nonlinear terms in these last inequali-
ties, we need to apply the Schur complement twice. After
the first one, we have

Θ =













φ11 φ12 φ13 φ14 τ1A
T
11R1

∗ φ22 φ23 φ24 τ1A
T
12R1

∗ ∗ φ33 φ34 τ1A
T
11dR1

∗ ∗ ∗ φ44 τ1A
T
12dR1

∗ ∗ ∗ ∗ −R1













≺ 0 (11)

where

φ11 = Γ11 +AT
21(τ

2
2R2)A21

φ12 = Γ12 +AT
21(τ

2
2R2)A22

φ13 = Γ13 +AT
21(τ

2
2R2)A21d

φ14 = Γ14 +AT
21(τ

2
2R2)A22d

φ22 = Γ22 +AT
22(τ

2
2R2)A22

φ23 = Γ23 +AT
22(τ

2
2R2)A21d

φ24 = Γ24 +AT
22(τ

2
2R2)A22d

φ33 = Γ33 +AT
21d(τ

2
2R2)A21d

φ34 = Γ34 +AT
21d(τ

2
2R2)A22d

φ44 = Γ44 +AT
22d(τ

2
2R2)A22d

with

Γ11 = (AT
11 + αInh

)P1 + P1(A11 + αInh
) +Q1 −R1

Γ12 = P1A12 +AT
21P2

Γ13 = P1A11de
ατ1 +R1

Γ14 = P1A12de
ατ2

Γ22 = (AT
22 + αInv )P2 + P2(A22 + αInv ) +Q2 −R2

Γ23 = P2A21de
ατ1

Γ24 = P2A22de
ατ2 +R2

Γ33 = −R1 −Q1

Γ34 = 0
Γ44 = −R2 −Q2

Applying the Schur complement a second time to elim-
inate the last non linear terms gives

Θ =

















Γ11 Γ12 Γ13 Γ14 τ1A
T
11R1 τ2A

T
21R2

∗ Γ22 Γ23 Γ24 τ1A
T
12R1 τ2A

T
22R2

∗ ∗ Γ33 Γ34 τ1A
T
11dR1 τ2A

T
21dR2

∗ ∗ ∗ Γ44 τ1A
T
12dR1 τ2A

T
22dR2

∗ ∗ ∗ ∗ −R1 0
∗ ∗ ∗ ∗ ∗ −R2

















≺ 0

(12)

which corresponds to the LMI (4) and thus concludes
the proof.

B. Proof of Theorem2
Proof: Using the same Lyapunov functional as

mentioned in the section III, we have

V̇ (t1, t2) ≤ ξ
T
(t1, t2)Γξ(t1, t2)

where

Γ =

[

AT
c P + PAc + Q − R + AT

c (τ2R)Ac

AT
d P + R + AT

d (τ2R)Ac

PAd + AT
c (τ2R)Ad + R

−Q − R + AT
d (τ2R)Ad

]

Consider the case where R = P , then

Γ =

[

AT
c P + PAc + Q − P + AT

c (τ2P )Ac

AT
d P + P + AT

d (τ2P )Ac

PAd + AT
c (τ2P )Ad + P

−Q − P + AT
d (τ2P )Ad

]

In view of Schur complement, Γ ≺ 0 if there exist real
matrices P ≻ 0, Q ≻ 0 such that





AT
c P + PAc + Q − P PAd + P τAT

c P

∗ −Q − P τAT
d P

∗ ∗ −P



 ≺ 0 (13)

Note that this last condition is bilinear matrix vari-
ables P and K and therefore it may be considered
as a BMI problem. To obtain the LMI (6), it is nec-
essary to pre- and post-multiply inequality (13) by
diag

{

P−1, P−1, P−1
}

.
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