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Abstract—In this paper we consider spatially distributed het-
erogeneous discrete-time systems which are interconnected over
an infinite lattice. An operator-pencil approach is employed to
develop analysis conditions, which are less conservative than
those previously available. Synthesis conditions are also obtained
and are in the form of operator inequalities. In general these
are infinite dimensional but in the case of eventually invariant
systems these reduce to a semidefinite program.

I. INTRODUCTION
The recent past has seen a considerable push in the study

of distributed control, for instance [1]–[7]. In particular the
distributed control over infinite lattice systems have been
studied in [1]–[4]. In this formulation distributed controllers
are sought that inherit the interconnection topology of the
plant. Typical systems that can fit this framework are lumped
approximations of partial differential equations.

In the current paper we will build upon the tools and
concepts that were developed in [2] for infinite heterogeneous
lattice systems. We use an operator-pencil approach to rep-
resent the system dynamics and obtain stability conditions in
the form of a generalized lyapunov inequality coupled with
an inertia condition. A Kalman-Yakubovic-Popov(KYP)-type
lemma is also presented to incorporate performance conditions
in addition to stability. We approach the controller synthesis
problem through the use of an elimination lemma presented
in [8]. This lemma was also used in a similar context in [9],
however in this paper we adapt the elimination lemma to be
applicable to infinite systems. We also show that the inertia
conditions obtained in the analysis step conform well with the
hypothesis of the elimination lemma and no further restrictions
are required. Based on the inertia conditions we develop the
constraints required for the dimensions of the controller. In
general these constraints were found to be tighter than [2].

Although the methods discussed in this paper can be ex-
tended to distributed lattice systems of higher dimensions, for
simplicity we will restrict ourselves mainly to the case of a one
dimensional lattice. Also using the ideas in [10], we can adapt
this work to be applicable for infinite graphs. In [9] the authors
have used dissipativity theory to develop analysis conditions
for system distributed over a finite graph. We point here that
in this work when we restrict the dimensions of the lattice to
be finite, the analysis results thus obtained are equivalent to
that of [9].

Lastly we discuss eventually invariant systems which are
spatially invariant throughout, except over a finite set of
indices. For such systems we argue that, given scaling matrices
exist that satisfy the stability conditions, we can always find
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an eventually invariant version of the same. This would also
lead to eventually invariant controllers which would require us
to solve only a finite number of LMIs.

II. PRELIMINARIES

In this section we will familiarize ourselves with the math-
ematical notations used in the paper. We will denote the
set of real numbers, integers, positive integers, non-negative
integers by R, Z, N and N0 respectively. For a symmetric
matrix H , we define its inertia as the triplet in(H) =
(in+(H), in0(H), in−(H)) which respectively correspond to
the number of positive, zero and negative eigenvalues of H .
For an n × n symmetric matrix H and n × m matrix R
following is a standard result,

in+(H) ≥ in+(R∗HR), in−(H) ≥ in−(R∗HR) (1)

Given a Hilbert space Y we denote its associated norm by
‖ · ‖Y and its inner product by 〈·, ·〉Y . The set of all bounded
linear operators mapping Hilbert spaces Y to Z is denoted
by L(Y,Z). When the two spaces are same we abbreviate
this as L(Y). The induced norm of an operator in L(Y,Z) is
denoted by ‖ · ‖Y→Z . For convenience we will suppress the
subscript when it is obvious. The adjoint of X is written as X∗.
An operator X is coercive if there exists an α > 0 such that
‖Xu‖Z ≥ α‖u‖Y holds for all u in Y . A self adjoint operator
X ∈ L(Y) is negative definite if there exists an α > 0 such
that 〈u,Xu〉Y < −α‖u‖2Y holds for all non-zero u ∈ Y . It is
denoted by X ≺ 0. The direct sum of two Hilbert spaces Y
and Z is denoted by Y ⊕ Z .

We will abbreviate (t, k) ∈ Z2 as k̄. Suppose we have the
sequence n̄(k̄) mapping Z2 to N0, we define `(Z2, {Rn̄(k̄)})
(or ` for short) to be the vector space of mappings w which
satisfy w : k̄ ∈ Z2 7→ w(k̄) ∈ Rn̄(k̄). We will use
`2(Z2, {Rn̄(k̄)}) to be the subspace of ` which is a Hilbert
space under the norm ‖w‖2 =

(∑
k̄∈Z2 |w(k̄)|22

)1/2
where

| · |2 is the Euclidean norm. Further, `2e(Z2, {Rn̄(k̄)}) is used
to denote the subspace of ` satisfying for each fixed t ∈ Z the
inequality

∑
k∈Z |w(t, k)|22 <∞.

We will now present some operator theoretic representations
which will enable us to compactly represent the distributed
systems. Let n̄ and v̄ be sequences mapping Z2 to N0. A linear
operator Q mapping `2(Z2, {Rn̄(k̄)}) to `2(Z2, {Rv̄(k̄)}) is
said to be a hyperdiagonal operator if there exists a uniformly
bounded sequence of matrices Q(k̄) ∈ Rn̄(k̄)×v̄(k̄) such that
the equality (Qw)(k̄) = Q(k̄)w(k̄) holds for each k̄ ∈ Z2.
For a self-adjoint hyperdiagonal operator Q we define its
inertia as the mapping, In(Q) : Z2 → N3

0 defined by
In(Q)(k̄) := in(Q(k̄)). Similarly the positive and negative in-
ertias of the operator are defined by In+(Q)(k̄) := in+(Q(k̄))
and In−(Q)(k̄) := in−(Q(k̄)) respectively. Following is a
generalization of (1) to hyperdiagonal operators.
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Proposition 1: Suppose Q and M are hyperdiagonal oper-
ators, with Q self-adjoint. Then In+(Q) ≥ In+(M∗QM) and
In−(Q) ≥ In−(M∗QM).
We now consider partitioned operators mapping the spaces
`2(Z2, {Rv̄1(k̄)}) ⊕ `2(Z2, {Rv̄2(k̄)}) to `2(Z2, {Rq̄1(k̄)}) ⊕
`2(Z2, {Rq̄2(k̄)}). Let W =

[
H P
G J

]
be such an operator. We

say that W is a partitioned hyperdiagonal operator if the
constituent operators H , P , G, and J are hyperdiagonal. Given
a hyperdiagonal operator W , we define its hyperdiagonal
representation

[[
W
]]

: `2(Z2, {Rv̄(k̄)}) → `2(Z2, {Rq̄(k̄)}),
(where v̄ = v̄1 + v̄2 and q̄ = q̄1 + q̄2) as the hyperdiagonal
operator given by([[

W
]]
x
)

(k̄) :=

[
H(k̄) P (k̄)
G(k̄) J(k̄)

]
x(k̄)

Clearly these concepts generalize to arbitrary number of
partitions. We will denote the set of all such partitioned hyper-
diagonal operators as P(v̄, q̄). When the partition dimensions
are not important we will use the abbreviation P .

III. SYSTEM MODEL AND REPRESENTATION

We consider a spatially 1-dimensional lattice system G,
having the following representation (introduced in [1], [2],
[11]) x0(t+1, k)

x+(t, k+1)
x−(t, k−1)

=
[[
A
]]

(k̄)x(k̄)+
[[
B
]]

(k̄)

[
w(k̄)
u(k̄)

]
[
z(k̄)
y(k̄)

]
=
[[
C
]]

(k̄)x(k̄)+
[[
D
]]

(k̄)

[
w(k̄)
u(k̄)

]
, (2)

where

A=

A00 A0+ A0−
A+0 A++ A+−
A−0 A−+ A−−

, B=

Bw0 Bu0
Bw+ Bu+
Bw− Bu−

, C=

[
Cz0 Cz+ Cz−
Cy0 Cy+ Cy−

]
,

D=

[
Dzw Dzu
Dyw Dyu

]
, x(k̄) =

[
x0(k̄)T x+(k̄)T x−(k̄)T

]T
.

We combine the spatially shifted component of x as x1(k̄) =[
x+(k̄)T x−(k̄)T

]T
. Let us denote the sequences correspond-

ing to the dimensions of x(k̄), x0(k̄), x1(k̄), x+(k̄) and x−(k̄),
as n̄(k̄), n̄0(k̄), n̄1(k̄), n̄+(k̄) and n̄−(k̄) respectively so that
n̄+ + n̄− = n̄1 and n̄0 + n̄1 = n̄. The dimensions of the inputs
w(k̄), u(k̄) and outputs z(k̄), y(k̄) are given by sequences
n̄w(k̄), n̄u(k̄), n̄z(k̄) and n̄y(k̄) respectively.

We define the following matrices which will be used later
to define the pencil based system description

E=

 I 0 0
0 I 0

A−0 A−+ A−−

, BE=

 0 0
0 0

Bw− Bu−

 (3)

F=

A00 A0+ A0−
A+0 A++ A+−

0 0 I

, BF=

Bw0 Bu0
Bw+ Bu+

0 0


Let us also define the sequences n̄E(k̄) and n̄F (k̄) which
correspond to the output dimensions of

[[
E
]]

(k̄) and
[[
F
]]

(k̄).
It can be seen that n̄E(k̄) = n̄0(k̄) + n̄+(k̄) + n̄−(t, k−1) and
n̄F (k̄) = n̄0(t+1, k) + n̄+(t, k+1) + n̄−(k̄).

We define the temporal shift operator, S0 : `(Z2, {Rq̄(k̄)} →
`(Z2, {Rq̄0(k̄)}) by (S0v)(k̄) = v(t−1, k) and spatial shift op-
erator, S1 : `(Z2, {Rq̄(k̄)})→ `(Z2, {Rq̄1(k̄)}) by (S1v)(k̄) =

v(t, k−1), where q̄0(t+1, k) = q̄(t, k) and q̄1(t, k+1) = q̄(t, k)
are some predefined sequences. These shifts are also invertible,
so we can similarly write (S−1

0 v)(k̄) = v(t + 1, k) and
(S−1

1 v)(k̄) = v(t, k+1). We also note that the shift operators
are unitary. We can now compactly write (2) in an operator
form as

Ex = ΛFx+ (ΛBF −BE)

[
w
u

]
(4)[

z
y

]
= Cx+D

[
w
u

]
,

where E, F , BF , BE , C and D are hyperdiagonal operators
defined in (2)-(3) and Λ := diag(S0, S1) is a composite shift
operator with compatible partitioning. The operator equations
in (4) can be interpreted by expanding them point-wise at
k̄ and using the properties of hyperdiagonal operators (for
example (Ex)(k̄) =

[[
E
]]

(k̄)x(k̄)) and the shift operator.
Assuming (E −ΛF ) has an algebraic inverse, the input to

output mapping is given by

G = −C(E −ΛF )−1(BE −ΛBF ) +D (5)
The above description contains the operator (E − ΛF )

which we call an operator pencil1.

IV. ANALYSIS

In this section we will discuss the conditions for well-
posedness and stability for the system and develop a version
of KYP lemma required for controller synthesis.

Definition 2: A system of the form (2) is said to be well-
posed if, given inputs w, u ∈ `2e, equations (2) admit unique
solutions x0, x1 ∈ `2e and the corresponding mappings are
causal.
Moreover from (4) it is clear that the system is well-posed only
if the operator E−ΛF has an algebraic inverse on `2e⊕ `2e.

Definition 3: A system of the form (2) is said to be stable
if it is well-posed and, given inputs w, u ∈ `2, equations
(2) admit unique solutions x0, x1 in `2 with corresponding
mappings being causal.

If we define a partitioned hyperdiagonal operator X =
diag(X0, X1), then for a compatibly partitioned Λ, we
have Λ∗XΛ and ΛXΛ∗ in P . Further Λ∗XΛ =
diag(S∗0X0S0, S

∗
1X1S1). We define the set of invertible oper-

ators X ⊂ P to be the self-adjoint, partitioned hyperdiagonal
operators of the form

X = {X ∈ P(n̄E) : X = diag(X0, X1), X = X∗,

X−1 ∈ L(`2 ⊕ `2), X0 � 0
}

(6)
Here the partitioning of

[[
X
]]

(k̄) is done such that X0(k̄)
and

[[
X1

]]
(k̄) have dimensions n̄0(k̄) and (n̄+(k̄) + n̄−(t, k−

1)) respectively.
We now develop a stability result for systems described

by equations of the form (4). It gives us sufficient conditions
under which the operator (E −ΛF ) is invertible on `2 ⊕ `2.
But first we present the following intermediate Lemmas.

1strictly speaking the operator pencil is the affine map E − λΛF of
the complex variable λ; our terminology is motivated by the fact that, by
exploiting the properties of the shift and hyperdiagonal operators, it is possible
to show that for each λ on the unit circle the spectrum of the image operator
is equal to that of E − ΛF .
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Lemma 4: Given sequences n̄X , n̄Y , n̄ and hyperdiagonal
operators E ∈ P(n̄X , n̄) and F ∈ P(n̄Y , n̄), suppose there
exists self-adjoint hyperdiagonal operators, X and Y satisfying
the inequality

E∗XE − F ∗Y F � 0 (7)
and inertia condition In+(X)+In−(Y ) = n̄, then there exists
a self-adjoint operator Z ∈ P(n̄) satisfying E∗XE − Z � 0
and Z − F ∗Y F � 0. Further Z satisfies In+(Z) = In+(X)
and In−(Z)=In−(Y ).
The proof is skipped and will appear in the journal version.

Lemma 5: Given operators E,F in L(Y,Z), if there exists
a self-adjoint X ∈ L(Z) satisfying E∗XE − F ∗XF � 0,
then the operator (E − F ) is coercive.
Proof follows from the equality E∗XE−F ∗XF = E∗X(E−
F ) + (E − F )∗XE − (E − F )∗X(E − F ).

Lemma 6: Given hyperdiagonal operators E ∈ P(n̄E , n̄)
and F ∈ P(n̄F , n̄), if there exists a X ∈ X satisfying the
inequality

E∗XE − F ∗Λ∗XΛF � 0 (8)
and the inertia condition In+(X) + In−(Λ∗XΛ) = n̄ then
(E −ΛF ) is invertible on `2 ⊕ `2.

Proof: Using Lemma 5, the inequality (8) directly gives
us that (E −ΛF ) is coercive. Now using Lemma 4 we know
that there exists a Z ∈ P(n̄) satisfying

E∗XE − Z � 0, Z − F ∗Λ∗XΛF � 0 (9)
Now applying the Schur’s complement formula to each of

the above inequalities we obtain
In(EZ−1E∗ −X−1) = In(E∗XE − Z) + In(−X) − In(−Z)

In(Λ∗X−1Λ− FZ−1F ∗)

= In(Z − F ∗Λ∗XΛF ) + In(Λ∗XΛ) − In(Z)

Here we have used the fact that In(X) = In(X−1) and
In(Λ∗XΛ) = In(Λ∗X−1Λ). Since Z satisfies In+(Z) =
In+(X) and In−(Z) = In−(Λ∗XΛ) we have both
{In(−X)− In(−Z)} and {In(Λ∗XΛ)− In(Z)} with strictly
positive inertias. Also using (9) we have the inertias of
(EZ−1E∗ −X−1) and (X−1 −ΛFZ−1F ∗Λ∗) to be strictly
positive and hence

EZ−1E∗ −X−1 � 0, X−1 −ΛFZ−1F ∗Λ∗ � 0

Adding the above inequalities, we have
EZ−1E∗ −ΛFZ−1F ∗Λ∗ � 0

From the above inequality we obtain (E∗ − F ∗Λ∗) to be
coercive and hence (E −ΛF ) is invertible.

We will now apply the above lemma to the system in (2)
where the corresponding E and F operators (defined using
(3)) are structured. The advantage of using an operator pencil
approach lies in the fact that we can choose the structure of[[
X1

]]
(k̄) to be full-block as opposed to that of [2] where[[

X1

]]
(k̄) had to be chosen block-diagonal. This difference is

made possible mainly due to the structure of the composite
shift operator Λ = diag(S0, S1) used here, compared to
diag(S0, S1, S

−1
1 ) in [2].

For a multidimensional system of the form in (2) we can find
a permutation operator P (a partitioned hyperdiagonal operator
which is a sequence of permutation matrices

[[
P
]]

(k̄)) so that,[[
E
F

]]
(k̄) =

[[
P
]]

(k̄)

[
I[[

A
]]

(k̄)

]
.

We can thus have the following alternative form of (8)[
I
A

]∗
P ∗
[
X 0
0 −Λ∗XΛ

]
P

[
I
A

]
� 0 (10)

The point-wise inequalities thus obtained are similar to
the Lyapunov inequalities developed in [9] where systems
over finite dimensional graphs are considered. In this regard
we have Remark 7 below. But first we obtain the following
inequality by applying Proposition 1 to (10)

In+(X) + In−(Λ∗XΛ) ≥ n̄ (11)
So the inertia condition in Lemma 6 ensures that the above

holds with equality.
Remark 7: In the case of distributed systems with finite

indices, we can eliminate the need of the inertia condition
in Lemma 6 because it is satisfied by default when inequality
(8) holds. This can be proved by showing that the sum of the
left and right hand sides of (11) over all spatial indices are
infact equal.

Here is a version of KYP lemma which adds a performance
criteria to the earlier discussed concept of stability.

Lemma 8: Suppose X ∈ X and the inertia condition
In+(X) + In−(Λ∗XΛ) = n̄ is satisfied then the following
inequality implies that the system G is stable and the mapping
G in (5) is causal and strictly contractive:[
E BE
0 I

]∗[
X 0
0 I

][
E BE
0 I

]
−
[
F BF
C D

]∗[
Λ∗XΛ 0

0 I

][
F BF
C D

]
�0 (12)

The proof utilizes the result in Lemma 6 and follows argu-
ments in [2, Lemma 14], but is skipped in interest of space.
Note that for the proof of causality we require E, F and B
to be structured as in (3) at least for the temporal update (i.e.
first block row).

When we restrict ourselves to structured matrices as in (3)
we have the following alternative form for (12): I

A B
C D

P ∗
X I

−Λ∗XΛ
−I

P
 I
A B
C D

 � 0 (13)

where P is a permutation operator (similar to the one in (10))

V. SYNTHESIS

This section deals with the synthesis of distributed linear
controllers and the general technique follows [12]–[14]. For
the system G, we define an admissible controller to be one
which ensures that the closed-loop system is stable and
achieves the performance criteria of ‖w 7→ z‖ < 1. The
hyperdiagonal system operators for the controller will be
denoted by (AK , BK , CK , DK) and that of the closed loop

system by (Acl, Bcl, Ccl, Dcl). Defining Q=

[
AK BK
CK DK

]
, we

have the following relation[
Acl Bcl
Ccl Dcl

]
=

 A+BuDKCy BuCK Bw+BuDKDyw
BKCy AK BKDyw

Cz+DzuDKCy DzuCK Dzw+DzuDKDyw


= R+ U∗QV,

where

R=

 A 0 Bw
0 0 0
Cz 0Dzw

, U=

[
0 I 0
B∗u 0D∗zu

]
, V =

[
0 I 0
Cy 0Dyw

]
.

In the above equation we have assumed Dyu = 0 in order
to have the above affine relation with respect to Q. We will
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denote the state dimensions of the controller and closed loop
system by the sequences n̄K and n̄cl = n̄+ n̄K .

We can thus write (13) for the closed loop system as[
I

R+ U∗QV

]∗
P ∗WclP

[
I

R+ U∗QV

]
� 0 (14)

where, Wcl =

Xcl I −Λ∗XclΛ
−I

 and Xcl ∈ Xcl cor-

responds to the closed loop version of the set (6), with
appropriate dimensions.

Following is an infinite dimensional extension to the Elim-
ination lemma developed in [8] and forms the basis of the
synthesis step.

Lemma 9: For sequences n̄, m̄, p̄ and q̄ suppose we have
operators R ∈ P(n̄, m̄), U ∈ P(p̄, n̄), V ∈ P(q̄, m̄), operators
U⊥ and V⊥ satisfying Im

([[
U⊥
]]

(k̄)
)

= Ker
([[
U
]]

(k̄)
)

and
Im
([[
V⊥
]]

(k̄)
)

= Ker
([[
V
]]

(k̄)
)

are coercive and W ∈ P
is self-adjoint and invertible with In+(W )(k̄) = m̄(k̄) and
In−(W )(k̄) = n̄(k̄), then there exists a partitioned hyperdiag-
onal operator Q ∈ P(p̄, q̄) satisfying[

I
R+ U∗QV

]∗
W

[
I

R+ U∗QV

]
≺ 0 (15)

if and only if the following operator inequalities hold

V ∗⊥

[
I
R

]∗
W

[
I
R

]
V⊥≺0, U∗⊥

[
−R∗
I

]∗
W−1

[
−R∗
I

]
U⊥�0. (16)

Since we are dealing with infinite dimensional operators
here, apart from proving the pointwise matrix inequalities in
lines of [8], we also have to prove the existence of uniform
bounds for the same. However we skip the proof of this lemma
due to lack of space.

Let us denote the dimension of the closed loop state vectors
and its components in the the same way as defined for the plant
but with an additional subscript cl (as n̄cl, n̄cl,0, n̄cl,1, n̄cl,+
and n̄cl,−). In order to apply Lemma 9 to the closed loop
system we need to ensure that the inertia of Wcl (in (14)) and
the dimensions of R comply with each other according to the
hypothesis of the Lemma. The inertia of Wcl is
in+(

[[
Wcl

]]
(k̄)) = in+(

[[
Xcl
]]

(k̄))+in−(
[[
Λ∗XclΛ

]]
(k̄))+n̄w(k̄)

= n̄cl(k̄) + n̄w(k̄)

in−(
[[
Wcl

]]
(k̄)) = in−(

[[
Xcl
]]

(k̄))+in+(
[[
Λ∗XclΛ

]]
(k̄))+n̄z(k̄)

= n̄cl,+(t, k+1) + n̄cl,−(t, k−1) + n̄z(k̄)

which are respectively equal to the column and row dimen-
sions of

[[
R
]]

(k̄) and hence we can apply Lemma 9.

Since V⊥ =

 Ker(Cy)
0

Ker(Dyw)

 and U⊥ =

 Ker(B∗u)
0

Ker(D∗zu)

, inequal-

ities (16) reduce to[
Ker(Cy)

Ker(Dyw)

]∗ I[
A Bw
Cz Dzw

]∗P ∗WP

 I[
A Bw
C1 Dzw

][ Ker(Cy)
Ker(Dyw)

]
≺0

(17)[
Ker(B∗u)
Ker(D∗zu)

]∗[ A Bw
Cz Dzw

]
−I

∗P ∗W−1P

[ A Bw
Cz Dzw

]
−I

[ Ker(B∗u)
Ker(D∗zu)

]
�0

(18)

where

W =

X I
−Λ∗XΛ

−I

, W−1 =

Y I
−Λ∗YΛ

−I


are the sub-matrices of Wcl and W−1

cl which are constructed
by retaining only the sub-matrix X and Y (corresponding
exclusively to the plant) of Xcl and X−1

cl as shown below:

Xcl =

[
X XGK

X∗GK XK

]
X−1
cl =

[
Y YGK
Y ∗GK YK

]
(19)

The operator inequalities (17) and (18) are in fact sequences
of LMIs in variables X(k̄) and Y (k̄). Solving this system of
inequalities for X and Y , the next step involves the completion
of the operator Xcl. To meet this end we invoke the following
lemma proved in [2, Lemma 21].

Lemma 10: Given symmetric, nonsingular matrices X and
Y with dimension η, and non-negative integers i+, i− and κ
such that i+ + i− = η+κ, then there exists matrices X2, Y2 ∈
Rη×κ and symmetric matrices X3 , Y3 ∈ Rκ×κ satisfying[
X X2

X∗2 X3

]−1

=

[
Y Y2

Y ∗2 Y3

]
and in

([
X X2

X∗2 X3

])
= (i+, 0, i−)

if and only if, in+

([
X I
I Y

])
≤ i+ and in−

([
X I
I Y

])
≤ i−.

The following lemma is a modified version of [2, Lemma
22], to serve the pencil setting. This lemma checks the
feasibility of the controller dimensions along a spatial direction
(with shift operator S and indexed by k ∈ Z).

Lemma 11: Given sequences n̄+, n̄−, n̄, h̄+, h̄−, h̄, η̄
and κ̄ satisfying n̄ = n̄+ + n̄− , h̄ = h̄+ + h̄−, η̄(k) =
n+(k) + n−(k − 1) and κ̄(k) = h+(k) + h−(k − 1), and
hyperdiagonal operators X and Y in P(η̄), we can find
hyperdiagonal operators X2, Y2 in P(η̄, κ̄) and X3, Y3 in P(κ̄)

satisfying
[
X X2

X∗2 X3

]−1

=

[
Y Y2

Y ∗2 Y3

]
and

In+

([[
X X2

X∗2 X3

]])
+ In−

(
S∗
[[
X X2

X∗2 X3

]]
S

)
= n̄+ h̄ (20)

if and only if the following holds

max
j∈Z

{
In+

([[
X I
I Y

]])
(j)− (n̄+ + h̄+)(j)

}
+

max
l∈Z

{
In−

([[
X I
I Y

]])
(l)− (n̄− + h̄−)(l − 1)

}
≤ 0. (21)

Remark 12: In the earlier lemma, we can choose h̄+ and
h̄− sufficiently large so that (21) is always satisfied. One
way to do so is to set the terms in the brackets in (21) to
be independently less that or equal to zero. This yields the
condition,
h̄+(k) ≥ n̄+(k)+2n−(k−1), h̄−(k) ≥ n̄−(k)+2n+(k+1)

We now extend the earlier lemma to multi-dimensional setting.
Theorem 13: Given the system as in (2) and sequences

n̄K0, n̄K+, n̄K− corresponding to the controller dimensions,
we can find an admissible controller with the specified dimen-
sions if there exists X = diag(X0, X1) and Y = diag(Y0, Y1)
in X satisfying inequalities (17), (18) and

In+

([[
X0 I
I Y0

]])
≤ n̄0 + n̄K0, In−

([[
X0 I
I Y0

]])
= 0
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max
j∈Z

{
In+

([[
X1 I
I Y1

]])
(j)− (n̄+ + n̄K+)(j)

}
+

max
l∈Z

{
In−

([[
X1 I
I Y1

]])
(l)− (n̄− + n̄K−)(l − 1)

}
≤ 0

The proof uses the results in Lemma 11 applied to the spatial
dimension but overall technique is similar to [2, Theorem 25].

VI. EVENTUALLY INVARIANT SYSTEMS

We define an eventually invariant operator as one which can
be varying over a finite set of indices but eventually settles on
to an invariant structure in both time and space. Eventually
invariant systems which are defined by such operators are of
particular interest because they lead to finitely representable
controllers which can be solved by SDP. Particularly we would
like to obtain eventually invariant scaling matrices that satisfy
(12), given that some solution exists. However in contrast
to [15] (where eventually time-periodic LTV systems are
considered) doing so in the current work is difficult due to
the additional inertia conditions which are not convex. For the
sake of brevity we will prove the results only to incorporate
stability, while noting that adding performance measure is a
simple extension utilizing the Lemma 8.

Lemma 14: Suppose operators E,F ∈ P representing an
eventually invariant 1-dimensional lattice system (structured
as in (3)) have the spatially invariant components defined as

(E(k̄), F (k̄))=

{
(Ē(t), F̄ (t)) for k=−1,−2, . . .

(Ê(t), F̂ (t)) for k=N,N+1, . . .
(22)

and further for fixed k, E(k̄) and F (k̄) are invariant for t ≥
T . If we have an X ∈ X satisfying the operator inequality
F ∗Λ∗XΛF − E∗XE ≺ 0, then there exists an eventually
invariant X̃ ∈ X which satisfies the inequality.

Proof: The proof is by construction. The earlier inequality
implies the existence of an ε > 0 such that the following
component-wise inequality is satisfied:
F (k̄)∗

[
X0(t+1, k)

X1(t, k+1)

]
F (k̄)−

E(k̄)∗
[
X0(k̄)

X1(k̄)

]
E(k̄)≺−εI (23)

By averaging the scaling matrices X(k̄) for k ≥ N and
k < 0 separately, we can argue that there exists corresponding
operators X̂ and X̄ which are invariant in k and satisfy

F̂ (t)∗
[
X̂0(t+1)

X̂1(t)

]
F̂ (t)−Ê(t)∗

[
X̂0(t)

X̂1(t)

]
Ê(t)≺−εI

(24)
F̄ (t)∗

[
X̄0(t+1)

X̄1(t)

]
F̄ (t)−Ē(t)∗

[
X̄0(t)

X̄1(t)

]
Ē(t)≺−εI

For any µ ≥ 0 we can take a weighted sum of (23) and (24)
to have

F̂ (t)∗
[
X̂0µ(t+1, k)

X̂1µ(t, k+1)

]
F̂ (t)−

Ê(t)∗
[
X̂0µ(k̄)

X̂1µ(k̄)

]
Ê(t)≺−εI for k ≥ N

(25)
F̄ (t)∗

[
X̄0µ(t+1, k)

X̄1µ(t, k+1)

]
F̄ (t)−

Ē(t)∗
[
X̄0µ(k̄)

X̄1µ(k̄)

]
Ē(t)≺−εI for k ≤ −1

where X̂iµ(k̄) = 1
1+µ

(
Xi(k̄) + µX̂i(t)

)
and X̄iµ(k̄) =

1
1+µ

(
Xi(k̄) + µX̄i(t)

)
for i = 0, 1.

The inequalities (25) suggest that we can find ξ > 0 and
0 < ε′ ≤ ε such that for all µ ≥ 0 the following holds

F̂ (t)∗
[
X̂0µ(t+1, k)

X̂1(µ+ξ)(t, k+1)

]
F̂ (t)−

Ê(t)∗
[
X̂0µ(k̄)

X̂1µ(k̄)

]
Ê(t)≺−ε′I for k ≥ N

(26)

F̄ (t)∗
[
X̄0µ(t+1, k)

X̄1(µ−ξ)(t, k+1)

]
F̄ (t)−

Ē(t)∗
[
X̄0µ(k̄)

X̄1µ(k̄)

]
Ē(t)≺−ε′I for k ≤ −1

Here X̂1(µ+ξ) and X̄1(µ+ξ) are defined in the same way as
X̂1µ and X̄1µ by replacing µ with µ+ ξ.

We define ζ(k̄) =

{
(k−N−1)ξ for k > N

(−k+1)ξ for k < −1
using which we can define, Xζ(k̄) =

1
1+ζ(k̄)

(
X(k̄) + ζ(k̄)X̂(t)

)
for k > N

1
1+ζ(k̄)

(
X(k̄) + ζ(k̄)X̄(t)

)
for k < −1

X(k̄) otherwise

In inequalities (26) if we substitute µ = ζ(k̄) then we obtain
the inequality F ∗Λ∗XζΛF−E∗XζE ≺ 0. Clearly as |k| tends
to infinity X̂iζ(k̄) and X̄iζ(k̄) respectively tend to X̂i(t) and
X̄i(t) for i = 1, 2. We can thus choose integers N1 ≥ N and
N2 ≤ 0 such that replacing Xζ(k̄) with X̂(t) for k ≥ N1

and with X̄(t) for k ≤ N2, Xζ still satisfies the preceding
inequality. The operator Xζ thus constructed is eventually
invariant only in the spatial dimension. Since the system is
also eventually invariant in time, by a similar argument we
can also replace Xζ(k̄) by time invariant matrices as t is
sufficiently large. The resulting operator (heterogeneous over
finite indices) which we constructed is the desired X̃ .

Following lemma shows that under the given inertia con-
ditions for scaling matrices, their inertias are uniquely deter-
mined by the system matrices in the spatially invariant region.

Lemma 15: Given operators E,F as defined in Lemma 14,
if there exists an operator X ∈ X satisfying the inequality
F ∗Λ∗XΛF−E∗XE ≺ 0 and the inertia condition In+(X)+
In−(Λ∗XΛ) = n̄, then at time t the inertia of X1(k̄) (and
hence X(k̄)) is invariant over the indices k ≥ N and k ≤ −1
and is completely determined by Ê(t), F̂ (t) and Ē(t), F̄ (t)
respectively.

Proof: Since E,F is structured as in (3), we can have
the following partitioning to separate the temporal and spatial
components (i.e. n̄0(k̄) and n̄1(k̄))2

E(k̄)=

[
I 0

E10(k̄)E11(k̄)

]
, F (k̄)=

[
F00(k̄) F01(k̄)
F10(k̄) F11(k̄)

]
(27)

Substituting the above into inequality (23) and considering the
(2, 2) block

2Note that the second block row/column of the matrices E(k̄) and F (k̄) are
further structured as in (3), but are not explicitly shown as it is not required
for the proof
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F01(k̄)∗X0(t+1, k)F01(k̄) + F11(k̄)∗X1(t, k+1)F11(k̄)

−E11(k̄)∗X1(k̄)E11(k̄) ≺ −εI
⇒F11(k̄)∗X1(t, k+1)F11(k̄)−E11(k̄)∗X1(k̄)E11(k̄)≺−εI

(28)
The last inequality holds because X0 is positive-definite. Let
us partition Ê(t), F̂ (t) and Ē(t), F̄ (t) as in (27). Now starting
with inequalities in (24) and following the steps above, we can
arrive at the following matrix inequalities

F̂11(t)∗X̂1(t)F̂11(t)−Ê11(t)∗X̂1(t)Ê11(t)≺−εI
F̄11(t)∗X̄1(t)F̄11(t)−Ē11(t)∗X̄1(t)Ē11(t)≺−εI (29)

We know that the solutions of the above inequalities exist,
as the solution X̂ and X̄ can be constructed from operator
X . It is also known that the inertia of X̂(t) (and similarly
for X̄(t)) is determined by the number of eigenvalues of the
matrix pencil (λÊ(t)− F̂ (t)) inside and outside of the unit
circle3. Now to relate these inertias to that of X1, we take a
convex combination of (28) and (29) for k ≥ N as
F̂11(t)∗X1θ(t, k+1)F̂11(t)−Ê11(t)∗X1θ(k̄)Ê11(t)≺−εI

Here X1θ(k̄) = θX1(k̄)+(1−θ)X̂1(t), for θ ∈ [0, 1]. Now if
inertias of X1(k̄) and X̂1(t) are not the same, we can increase
θ from 0 until an eigenvalue of X1θ(k̄) is 0. In such a scenario
we will have in+(X1θ(k̄)) + in−(X1θ(t, k + 1)) < n̄1(k̄)
which would violate the above inequality. Hence we conclude
that the inertia of X1(k̄) should be same as that of X̂1(t) for
k ≥ N which is uniquely determined by Ê(t), F̂ (t). A similar
argument can be given for k < 0.

Following result incorporates the inertia condition into
Lemma 14 and completes the construction of the eventually
invariant scaling operator (equivalently the existence of even-
tually invariant controller) which guarantees stability of the
system.

Theorem 16: Suppose E,F are eventually invariant op-
erators as defined in Lemma 14 and suppose there exists
X ∈ X satisfying F ∗Λ∗XΛF − E∗XE ≺ 0 and the
inertia condition In+(X) + In−(Λ∗XΛ) = n̄ then there
exists eventually invariant X̃ ∈ X which satisfies both the
inequality F ∗Λ∗X̃ΛF −E∗X̃E ≺ 0 and the inertia condition
In+(X̃) + In−(Λ∗X̃Λ) = n̄.

Proof: The construction of eventually invariant X̃ is
exactly same as that in Lemma 14 and as a result we get
F ∗Λ∗X̃ΛF − E∗X̃E ≺ 0. As in Lemma 14 we first
construct an eventually spatially invariant Xζ and prove the
inertia condition for the same. Since X1ζ(k̄) = X1(k̄) for
k = −1, . . . , N + 1, we have

in(X1ζ(k̄)) = in(X1(k̄)) for k = −1, . . . , N + 1 (30)
This leads to the following for all t

in(X1ζ(t,−1)) = in(X1(t,−1)) = in(X̄1(t)),

in(X1ζ(t,N)) = in(X1(t,N)) = in(X̂1(t)) (31)

3Matrix inequalities of the form F̃ ∗Y F̃ − Ẽ∗Y Ẽ ≺ 0 appear in
literature as generalized lyapunov inequalities. For this and background on
matrix/operator pencils and their eigenvalues readers are directed to [16], [17]
and references therein

The second equalities in the above lines result from Lemma
15. Using (11) and the fact that X0ζ(k̄) is positive definite we
have in−(X1ζ(t, k+ 1)) + in+(X1ζ(k̄)) ≥ n̄1(k̄). Further for
indices where the system is spatially invariant the preceding
inequality is same as
in−(X1ζ(t, k+ 1)) ≥ in−(X1ζ(k̄)) for k ≥ N, k ≤ −1 (32)

By construction we have
X1ζ(k̄) = X̂1(t) for k � N and
X1ζ(k̄) = X̄1(t) for k � −1 (33)

Combining (30)-(33), we have In(Xζ) = In(X). To complete
the proof, we can follow a similar procedure in the temporal
dimension to prove In(X̃) = In(Xζ) = In(X).

VII. CONCLUSIONS
This paper discusses an operator-pencil approach for anal-

ysis of systems distributed over an infinite lattice. The corre-
sponding synthesis conditions thus obtained are less conserva-
tive than earlier work on heterogeneous systems. The special
case of eventually invariant lattice systems is also analyzed.
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