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Abstract— The proposed data-based FDI method has the
advantage to require only available data: control signals and
measured outputs. The unique information that we have about
the system is its structure but the parameters values are
supposed to be unknown. This data-based residual method was
described, by the same authors in previous publication, for
linear systems. In this paper we apply this method to bilinear
structure models. A particular focus is made on computational
complexity reduction. It will be shown that a part of the system
dynamics may be neglected with the consequence to simplify
the on-line residual computation. This method is illustrated on
a simulated Activated Sludge Process.

Index Terms— Data driven methods, bilinear systems, acti-
vated sludge process.

I. INTRODUCTION

Fault occurrence and propagation in industrial systems can
cause human injuries, environmental impact and economic
loss. Real time system supervision for early fault detec-
tion and isolation is a crucial task for systems safety and
reliability. Indeed early fault detection and isolation (FDI)
allow fault accommodation and avoid system breakdown.
Several FDI approaches have been developed. In general,
these approaches can be categorized into signal-based and
model-based methods [2]. Model-based methods aim is to
compare system behavior to normal one represented by a
mathematical model. A residual which is a fault indicator
signal is used. The residual is close to zero in a normal
situation and differs from zero if a fault occurs. Three main
classes of residual generation methods are proposed in the
literature:
• observer-based methods [5], [6] and [7]
• analytical redundancy relation (ARR) based methods [1]
• parameters estimation methods [4], [8]

In some cases, an accurate system model is not available.
In many applications data-based methods [2], [12] are

proposed for fault detection and isolation in these situations.
Signal-based methods [11] aim at detecting faults by testing
specific properties of measurement signals using spectral or
statistical analysis. The proposed method here uses only the
information about the system class and no model parameters
knowledge is needed. Thus, the only information which is
needed to apply this method, is the structure of the model
equations, considered as bilinear in this paper. The residual is
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obtained using an input-output matrix relation and under the
hypothesis that the system is stable. This input-output matrix
relation is projected into the kernel of the input matrix.

The proposed method has the advantage of generating
structured residuals for multiple sensors faults, which are
consequently easily detected and isolated.

This data-based residual generation method was described
in details in [10] for switching systems and in [9] linear
systems. We propose here an extension for bilinear structure
models.

Bilinear systems, as a special class of nonlinear systems
have been extensively studied in recent years [3] for three
main reasons. First, it has been shown that bilinear systems
are mathematical models that correspond to many practical
applications. Second, bilinear systems provide an approxi-
mation to a large class of nonlinear systems. Third, bilinear
systems have rich geometric and algebraic structures whose
manipulation is not trivial and consequently are interesting
from theoretical point of view.

The objective of this paper is to extend the data-based
residual generation method for bilinear structure models.
The obtained residual expression is rather complex in this
situation and leads to manipulate high dimensional input-
output matrices. Consequently, the method could be diffi-
cult to implement for on-line diagnosis, where computing
resources are often limited. With the aim to reduce the
computations, we propose to neglect certain terms in the
residual expression. A criterion is proposed for choosing
the tuning parameters of the method (i.e. the window sizes)
which maximizes the fault sensitivity and minimizes the
neglected terms sensitivity. The proposed approach is applied
to a simulated activated sludge process, where detection and
isolation of sensors faults are successfully conducted.

The paper is organized as follows. In section 2, the treated
problem addressed in this paper is presented. In section
3, the output expression is given. In section 4, data-based
residual for sensor fault diagnosis is proposed. A criterion
is proposed to choose the tuning parameters (i.e. window
sizes) that allows certain dynamics to be neglected. In section
5, simulation results on an Activated Sludge Process are
presented to show the effectiveness of our method. Finally,
a conclusion is drawn in section 6.

II. PROBLEM FORMULATION

Consider N known inputs uk ∈ Rm and outputs yk ∈ R`
affected by colored white noise wk ∈ R`. These values are
collected from the following discrete-time bilinear system
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expression given by:{
xk+1 = Axk +G(xk ⊗ uk) +Buk
yk = Cxk +Duk + fk + wk

(1)

where ⊗ represents the Kronecker product, and fk ∈ R`
is the sensor fault vector.

The target is to detect and to isolate sensor faults when
supposing that the only available information is the system
structure (bilinear) and input/output data. The system param-
eters (A ∈ Rn×n, B ∈ Rn×m, C ∈ R`×n, D ∈ R`×m, G ∈
Rn×nm) are supposed to be unknown. The linear and bilinear
parts are assumed to be stable i.e. max(|eig(A)|) < 1 and
max(|eig(G)|) < 1.

We will detail our data-based residual generation method
for bilinear systems in section III. Let us first give a general
principle of this method. Under the stability conditions, it
is possible to express the vector of outputs on a given time
window as a function of the inputs and system parameters.
The following expression is thus obtained.

Y = HU (2)
where H depends only on system parameters, U and Y are
matrices of inputs and outputs collected on a given time
window. If the chosen time window is sufficiently large, we
can then project equation (2) on the right kernel Π of U
(UΠ = 0) and we can derive the residual:

r = YΠ = 0 (3)

This relation must be verified in absence of disturbances and
faults.

When a fault occurs, r becomes different from zero and
it can be used for FDI.

It is clear that no system parameter or state estimation is
needed for residual computation since Π depends only on
inputs, which makes residual expression (3) independent on
model parameters.

III. OUTPUT EXPRESSION yk ON A TIME-WINDOW OF
SIZE i

The objective of this section is to show how to derive
equation (2) from system (1). A general expression of the
output yk is first obtained. Then it is shown that the influence
of the state may be neglected under the stability conditions,
which leads to equation (2).

A. Exact expression of the output yk
A general output expression yk can be derived, which is

given in the following proposition and proved by recurrence
in the appendix.

Proposition 1: The general expression of the output yk in
function of the state xk−i, the inputs and system parameters
A, B, C, D, G is given by:

∀i ≥ 0 :

yk = CAixk−i +Hiuk,i + H̃iũk,i +Hiuk,i +
˜̃
Hiũk,i + fk + wk

(4)

where H̃ , ˜̃H , ũ, H , H and u are detailed in what follows.
a) Expression of ũk,i, H̃i and ˜̃

Hi, which represent the
bilinear part of equation (4) are provided in the following
paragraph.

• ũk,i =


...

(uk−s1(j2) ⊗ uk−s2(j2) ⊗ ...⊗ uk−sd(j2))

...


∈ RM(i)×1 is constructed with all possible combinations of

inputs in a time window of size i (there is K(i) =
α=i−2∑
α=0

Ci−αi

possible combination1), where M(i) =
i−2∑
α=0

mi−αCi−αi ,

with the following constraint:

∀j2 ∈ {1, ...,K(i)}, ∀d ∈ {2, ..., i}, ∀sp(j2) ∈ {1, ..., i− 1},

∀p ∈ {2, ..., d}, ∀s1(j2) ∈ {2, ..., i} : s1(j2) > s2(j2) > ... > sd(j2).

Illustration: From the output expression (4) for i = 3,
ũk,3 is given by:

ũk,3 =

uk−3 ⊗ uk−2 ⊗ uk−1

uk−3 ⊗ uk−2

uk−3 ⊗ uk−1

uk−2 ⊗ uk−1


where s1(1) = 3, s2(1) = 2 and s3(1) = 1

s1(2) = 3 and s2(2) = 2
s1(3) = 3 and s2(3) = 1
s1(4) = 2 and s2(4) = 1

• H̃i depends on system parameters, and it is given by:

H̃i =
[
C.Γ1,i.(B ⊗ I)| C.Γ2,i.(B ⊗ I)| · · · | C.ΓK(i),i.(B ⊗ I)

]
where Γj2,i is a product of the matrices A, (A ⊗ I), G

and (G ⊗ I). For each j2 ∈ {1, ...,K(i)}, these matrices
are arranged differently, and they can appear several times
with different powers, the sums of these powers is given by:
ρ1(j2) for A, ρ2(j2) for (A ⊗ I), ρ3(j2) for G and ρ4(j2)
for (G⊗ I). We have the following property:

∀j2 ∈ {1, ...,K(i)} : ρ1(j2) + ρ2(j2) + ρ3(j2) + ρ4(j2) ≤ i− 1 (5)

Illustration: From the output expression (4) for i = 3,
H̃3 is given by:

H̃3 =
[
CG.(G⊗ Im).(B ⊗ Im2 ) |CAG.(B ⊗ Im)|

CG.(A⊗ Im).(B ⊗ Im) |CG.(B ⊗ Im)
]

where ρ1(1) = ρ2(1) = 0 and ρ3(1) = ρ4(1) = 1
ρ2(2) = ρ4(2) = 0 and ρ1(2) = ρ3(2) = 1
ρ1(3) = ρ4(3) = 0 and ρ2(3) = ρ3(3) = 1
ρ1(4) = ρ2(4) = ρ4(4) = 0 and ρ3(4) = 1

1Cpn = n!
(n−p)!p!
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• Unlike H̃i,
˜̃
Hi does not only depend on system

parameters but also on state, it is defined by:

˜̃
Hi =

[
C.Ψ1,i.(xk−i ⊗ I)| C.Ψ2,i.(xk−i ⊗ I)| · · ·

|C.ΨK(i),i.(xk−i ⊗ I)
]

where Ψj2,i is a product of the matrices A, (A ⊗ I), G
and (G ⊗ I). For each j2 ∈ {1, ...,K(i)}, these matrices
are arranged differently, and they can appear several times
with different powers, the sums of these powers is given by:
λ1(j2) for A, λ2(j2) for (A⊗ I), λ3(j2) for G and λ4(j2)
for (G⊗ I). We have the following property:

∀j2 ∈ {1, ...,K(i)} : λ1(j2) + λ2(j2) + λ3(j2) + λ4(j2) = i (6)

Illustration: From the output expression (4) for i = 3,˜̃
H3 is given by:

˜̃
H3 =

[
CG.(G⊗ Im).(G⊗ Im2 ).(xk−3 ⊗ Im3 ) |

CAG.(G⊗ Im).(xk−3 ⊗ Im2 ) |
CG.(A⊗ Im).(G⊗ Im).(xk−3 ⊗ Im2 ) |
CG.(G⊗ Im).(A⊗ Im2 ).(xk−3 ⊗ Im2 )

]
where λ1(1) = λ2(1) = 0, λ3(1) = 1 and λ4(1) = 2

λ2(2) = 0 and λ1(2) = λ3(2) = λ4(2) = 1
λ1(3) = 0 and λ2(3) = λ3(3) = λ4(3) = 1
λ1(4) = 0 and λ2(4) = λ3(4) = λ4(4) = 1

b) Expression of uk,i, Hi and Hi, which represent the
linear part of equation (4) are provided in the following
paragraph.

• uk,i =
[
uTk−i · · · uTk−1 u

T
k

]T ∈ Rm.(i+1)×1

• Hi depends on system parameters, and it is given by:

Hi =
[
CAi−1B| · · · | CB|D

]
∈ R`×m.(i+1).

• Unlike Hi, Hi does not depend only on system
parameters but also on state, and it is given by:

Hi =
[
CAi−1G.(xk−i ⊗ Im)| · · · | CAG.(A⊗ Im)i−2.(xk−i ⊗ Im)

|CG.(A⊗ Im)i−1.(xk−i ⊗ Im)| 0`,m
]
∈ R`×m.(i+1)

B. State-free expression of the output yk
For i sufficiently large, under the stability conditions, the

state influence may be neglected in expression (4). This leads
to the following approximated expression of the output yk,
so one does not need to estimate the system state for fault
diagnosis process.

yk ∼= Hiuk,i + H̃iũk,i + fk + wk (7)

The aforementioned simplification of the state terms is
based on the stability of the linear and bilinear parts (which
is not the global stability).

a) First simplification:
If the linear part of the system is stable, then Ai tends to
zero for i sufficiently large (this implies that (A ⊗ I)i also
tends to zero).

Hence,
CAixk−i → 0 (8)

b) Second simplification:
∀j1 ∈ {1, ..., i}, using the sub-multiplicative norm,
0 <

∥∥Ai−j1G(A⊗ Im)j1−1
∥∥

2
< (max(‖A‖2 , ‖G‖2 , ‖A⊗ Im‖2))i

The power of the maximum is i, because it represents the
sum of the powers of the matrices A, G and (A ⊗ Im). If
the linear and bilinear parts of the system are stable, then
(max(‖A‖2 , ‖G‖2 , ‖A⊗ Im‖2))i → 0 for i sufficiently
large. As a consequence∥∥Ai−j1G(A⊗ Im)j1−1

∥∥
2
→ 0.

Hence,
Huk,i → 0 (9)

c) Third simplification:

∀j2 ∈ {1, ...,K(i)}, using the sub-multiplicative norm,
0 < ‖Ψj2,i‖2 < (max(‖A‖2 , ‖A⊗ I‖2 , ‖G‖2 , ‖G⊗ I‖2))i . From
equation (6), the power of the maximum is i.

If the linear and bilinear parts of the system are stable, then

(max(‖A‖2 , ‖A⊗ I‖2 , ‖G‖2 , ‖G⊗ I‖2))i → 0

for i sufficiently large. Consequently ‖Ψj2,i‖2 → 0.
Hence,

˜̃
Hũk,i → 0 (10)

IV. DATA-BASED RESIDUAL FOR SENSOR FAULT
DIAGNOSIS IN A BILINEAR SYSTEM

In this section, a data-based residual εk is proposed for
sensor fault detection and isolation.
Consider an integer L, which is chosen such that
L > m.(i + i!) + `. Let us define the following short-hand
matrices:
Yk =

[
yk−L+1 · · · yk−1 yk

]
∈ R`×L

Uk =

[
uk−L+1,i · · · uk−1,i uk,i
ũk−L+1,i · · · ũk−1,i ũk,i

]
∈ Rm(i+1)+M(i)×L

and Πk = IL − UTk (UkU
T
k )−1Uk ∈ RL×L is the projection

matrix, which defines the right kernel of the inputs matrix
Uk. Consequently, we have:

UkΠk = 0. (11)

Proposition 2: The proposed data-based residual is de-
fined as follows:

εk = YkΠkZ ∈ R` (12)

with Z =
[
0| · · · | 0| 1

]T ∈ R` (the last column of YkΠk

is chosen since it represents the current information),
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It is proved that:(fault detection)

• E[εk] = 0 when no fault occurs.
• E[εk] 6= 0 when a fault occurs.
For fault isolation, it is clear to notice that the proposed

residual is structured, where each row of εk is sensitive to
the corresponding sensor fault.

Proof:
By stacking equation (7) on a time window of size L, it

leads to the following expression:

Yk =
[
Hi| H̃i

]
Uk + ∆i

k + Fk +Wk (13)

where the fault matrix Fk and the noise matrix Wk are
constructed similarly as the output matrix Yk using respec-
tively fk and wk instead of yk. ∆i

k =
[
δik−L+1 | · · · |δ

i
k−1 |δ

i
k

]
represents the neglected part (8), (9) and (10) using the
stability assumption on a time window of size L, where
δik = CAixk−i +Hiuk,i +

˜̃
Hiũk,i.

By projecting the output matrix Yk on Πk which is the right-
orthogonal matrix to the input matrix Uk, and by choosing
the last column (using the vector Z) which represents the
current information, equation (13) becomes:
YkΠkZ =

[
Hi| H̃i

]
UkΠkZ + FkΠkZ +WkΠkZ + ∆i

kΠkZ.
From relation (11), it is easy to find that[
Hi| H̃i

]
UkΠkZ = 0`×1. Therefore, for residual computa-

tion, one does not need to estimate analytically the system
parameters involved in Hi and H̃i.

Hence, the evaluation form of the residual εk = YkΠkZ
is obtained as: εk = FkΠkZ +WkΠkZ + ∆i

kΠkZ.
The mathematical expectation of the residual εk is:

E[εk] = E[FkΠkZ] + E[WkΠkZ] + E[∆i
kΠkZ] (14)

Since noise is centered, we have E[WkΠkZ] = 0, and
relation (14) becomes:E[εk] = E[FkΠkZ] + E[∆i

kΠkZ].
Since deterministic faults are considered, and ∆i

k is also
a deterministic matrix, we have: E[εk] = FkΠkZ + ∆i

kΠkZ,
where ∆i

kΠkZ represents the contribution of the initial state
vector, theoretically it is not equal to zero but it will be
discussed in the next section. A threshold decision procedure
has to be done for residual mean E[εk] evaluation, because
residual mean depends on faults and the neglected dynamics.

Notice that the proposed data-based residual εk is not
sensitive to sensor faults fk if span(Fk) ⊂ span(Uk).

V. DATA-BASED RESIDUAL COMPUTATION

In the previous section, a data-based residual has been
proposed for sensor fault detection and isolation in bilinear
systems. Note that the computation form of the residual
εk depends only on outputs Yk and inputs through matrix
Πk (Πk is the right kernel of Uk). However, the on-line
computation of Πk ∈ RL×L needs the input matrix
Uk ∈ Rm(i+1)+M(i)×L which is of high dimension. In
this section, we will show that the computations may be
reduced, because certain terms that appears in residual
computation form may be neglected.

The effect of the residual neglected terms is minimized and
the residual sensitivity to faults is maximized by proposing
an appropriate criterion.

We introduce index i1. Theoretically, we should have i =
i1, but i and i1 are chosen different to overcome the heavy
calculations.
If i1 < i, expression of yk given by equation (7) can be
written differently as follows:

yk = Hiuk,i +
[
H̃i1 | H̃i1+1:i

] [ ũk,i1
ũk,i1+1:i

]
+ fk + wk + δik (15)

where ũk,i1+1:i =


...

(uk−g1(j5) ⊗ uk−g2(j5) ⊗ ...⊗ uk−gd(j5))

...


∈ R(M(i)−M(i1))×1 is similar to ũk,i by removing

combinations with g1 < i1 + 1, in other words, ũk,i1+1:i is
constructed with all possible combinations of inputs in a
time window of size i with the following constraint:
∀j5 ∈ {1, ..., (K(i)−K(i1))}, ∀b ∈ {2, ..., i},

∀gq(j5) ∈ {1, ..., i− 1},∀q ∈ {2, ..., d}, ∀g1(j5) ∈ {i1 + 1, ..., i} :

g1(j5) > g2(j5) > ... > gd(j5).

Illustration: From the output expression (4) for i = 3, if
i1 = 2, the expression of ũk,2+1:3 is given by:

ũk,2+1:3 =

[
uk−3 ⊗ uk−2 ⊗ uk−1

uk−3 ⊗ uk−2

uk−3 ⊗ uk−1

]
and H̃i1+1:i contains the corresponding terms for

ũk,i1+1:i.
Illustration: From the output expression (4) for i = 3,
if i1 = 2, H̃i1+1:i is given by: H̃i1+1:i =[
CG.(G⊗ Im).(B ⊗ Im2 ) |CAG.(B ⊗ Im)| CG.(A⊗ Im).(B ⊗ Im)

]
.

The neglected part which can not be calculated is
H̃i1+1:iũk,i1+1:i. Consequently, another output expression
yk is given by:

yk = Hiuk,i + H̃i1 ũk,i1 + fk + wk + δi,i1k (16)

• i appears in terms with uk,i ∈ Rm(i+1)×1, where
is chosen sufficiently large to be able to neglect the
contribution of the initial state, this choice is involved
with the inputs u because the inputs u are not big in
size

• i1 appears in terms with ũk,i1 ∈ RM(i1)×1, where i1 is
small enough to allow the residual computation.

By stacking equation (16) on a time window of size L, it
leads to the following expression:

Yk =
[
Hi| H̃i1

]
Uk + Fk +Wk + ∆i,i1

k (17)

Consequently, data-based residual is calculated similarly as
in equation (12) but input matrix Uk becomes:

Uk =

[
uk−L+1,i · · · uk−1,i uk,i
ũk−L+1,i1 · · · ũk−1,i1 ũk,i1

]
∈ Rm(i+1)+M(i1)×L
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where it is obvious that the size of Uk becomes lower than
the previous one, with ∆i,i1

k
=

∆i
k + H̃i1+1:i

[
ũk−L+1,i1+1:i | · · · |ũk−1,i1+1:i |ũk,i1+1:i

]
repre-

sents the initial state contribution and H̃i1+1:iũk,i1+1:i. In
order to find a good trade-off between the high sensitivity to
sensor faults and low sensitivity to the neglected terms, the
following criterion is proposed.
The choice of the two indexes i and i1 corresponds to
min(J(i, i1)), where J(i, i1) is the proposed criterion for a
good trade-off between high sensitivity to sensor faults and
low sensitivity to neglected part.

The criterion J(i, i1) is given by:

J(i, i1) =
J1(i,i1)
J2(i,i1)

=

∑k=i+ϕ

k=i0+1
‖YkΠk‖∑k=i+ϕ

k=i0+1
‖FkΠk‖

=∑k=i+ϕ

k=i0+1

∥∥∆
i,i1
k

Πk+WkΠk

∥∥∑k=i+ϕ

k=i0+1
‖FkΠk‖

Calculation is started from i0, since matrices collection
needs historical data in this paper.
YkΠk, FkΠk represent respectively the projection on the
input kernel Πk of the output matrix Yk in a healthy case and
the fault matrix Fk with a unique direction (fk =

[
1 · · · 1

]T
in this paper because it contains all the other possible faults
directions).

Where ϕ is an integer to be selected by the designer, and
J1(i, i1), J2(i, i1) are defined as follows:

J1(i, i1) =

∑k=i+ϕ

k=i0+1
‖YkΠk‖∑k=i+ϕ

k=i0+1
‖Yk‖

=

∑k=i+ϕ

k=i0+1

∥∥∆
i,i1
k

Πk+WkΠk

∥∥∑k=i+ϕ

k=i0+1
‖Yk‖

J2(i, i1) =

∑k=i+ϕ

k=i0+1
‖FkΠk‖∑k=i+ϕ

k=i0+1
‖Yk‖

with i0 is the starting time for calculation, since the
proposed residual need the collection of the historical data.

Remark:
The denominator

∑k=i+ϕ
k=i0+1 ‖Yk‖ of J1(i, i1) and J2(i, i1)

is used to normalize J1(i, i1) and J2(i, i1). To prove the
normalization process, we have the sub-multiplicative norm:
‖YkΠk‖ ≤ ‖Yk‖ ‖Πk‖.
It is known that ‖Πk‖ = 1, this leads to ‖YkΠk‖

‖Yk‖ ≤ 1

VI. EXAMPLE AND RESULTS

A. The activated sludge process

The activated sludge process (ASP) is a biological method
of wastewater treatment that is performed by a variable and
mixed community of micro-organisms in an aerobic aquatic
environment.

The overall goal of the activated-sludge process is to
remove substances that have a demand for oxygen from the
system.
The simulated process [13] is divided into three sub pro-
cesses, denoted S1, S2 and S3. The first sub process S1

describes the rate of change of the ammonium concentration
in the aerobic compartments. The inputs are the measurable
d1 and the control variable u1, thus the process describes
the nitrification process, which generally occurs when the

time that the sludge stays in the system (called the mean
cell residence time, or MCRT) is increased.

The second and the third sub processes are not detailed,
because we did the application of our method only on the
first process, which is a discrete-time bilinear system.

Numerical values of the bilinear model for the ASP are
taken from [13]. These values are used for input/output
generation but not used for residuals generation. System
inputs and system outputs are plotted in figures (3) and (4).

Fig. 1. Activated sludge process

B. Computation of the criterion J and the residual

We choose ϕ = 100, L = 223, i0 = 244.
The criterion J is computed and plotted in figure (2). The
optimal couple (i, i1) corresponds to the minimum of J(i, i1)
is (i = 20, i1 = 3).
The 3 data-based residuals are computed and represented in
figure (5).
It is obvious that we can easily detect and isolate the
three faults. Note that in a no fault situation, residuals are
not exactly zero due to the contribution of noise and the
neglected terms.
When the fault disappears, the corresponding residual stays
strongly different from zero during one time window. This
is due to the computation method of the residual that uses
historical data on a time window.

VII. CONCLUSION

A data-based residual method is proposed in this paper
for sensor fault diagnosis in a bilinear system without using
system parameters values. The proposed method has the
advantage of generating structured residuals for multiple
sensors faults, but a drawback is that high dimensional
input-output matrices must be manipulated. A method is
proposed to reduce computational complexity, by neglecting
certain terms in the residual evaluation, while maintaining the
fault sensitivity. The residual generation method approach is
illustrated on a simulated activated sludge process, where
detection and isolation of sensors faults were successfully
conducted.
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VIII. APPENDIX

Recurrence method is used to prove correctness of the gen-
eral output expression (4), which can be written differently
as follows:

yk = CAixk−i+

C
i∑

j1=1

Aj1−1G.(A⊗ Im)i−j1 .(xk−i ⊗ Im).uk−j1

+C(Duk +
i∑

j1=1

Aj1−1Buk−j1 )

+C
K(i)∑
j2=1

Ψj2,i.(xk−i ⊗ I).

(uk−s1(j2) ⊗ uk−s2(j2) ⊗ ...⊗ uk−sd(j2))

+C
K(i)∑
j2=1

Γj2,i.(B ⊗ I).

(uk−s1(j2) ⊗ uk−s2(j2) ⊗ ...⊗ uk−sd(j2)) + fk + wk

(18)

1) Writing the proposal that we are going to prove

The proposal to be demonstrated is given by equations
(18), (6) and (5) for ∀i ≥ 0.

2) Inductive step

Assuming that the proposal holds for i, let us prove
that it holds for i+ 1 also:

yk = CAi+1xk−i−1+

C
i+1∑
j3=1

Aj3−1G.(A⊗ Im)i+1−j3 .(xk−i−1 ⊗ Im).uk−j3

+C(Duk +
i+1∑
j3=1

Aj3−1Buk−j3 )

+C
K(i+1)∑
j4=1

Ψj4,i+1.(xk−i−1 ⊗ I).

(uk−s1(j4) ⊗ uk−s2(j4) ⊗ ...⊗ uk−sd(j4))

+C
K(i+1)∑
j4=1

Γj4,i+1.(B ⊗ I).

(uk−s1(j4) ⊗ uk−s2(j4) ⊗ ...⊗ uk−sd(j4)) + fk + wk
(19)

ϑ1(j4) + ϑ2(j4) + ϑ3(j4) + ϑ4(j4) = i+ 1 (20)

φ1(j4) + φ2(j4) + φ3(j4) + φ4(j4) ≤ i (21)

where ϑ, φ are defined for Ψj4,i+1 and Γj4,i+1

similarly as λ, ρ are defined for Ψj2,i and Γj2,i
respectively, with ∀j4 ∈ {1, ...,K(i + 1)}, ∀j3 ∈
{1, ..., i+ 1}, ∀d ∈ {2, ..., i+ 1},

∀sp(j4) ∈ {1, ..., i},∀p ∈ {2, ..., d} :

s1(j4) ∈ {2, ..., i+ 1} : s1(j4) > s2(j4) > ... > sd(j4).

Using equation (1), we replace
xk−i = Axk−i−1 +G.(xk−i−1 ⊗ uk−i−1) +Buk−i−1

into the expression (18) of yk at i , we derive the
following expression:

yk = CAi+1xk−i−1 + CAiG.(xk−i−1 ⊗ Im).uk−i−1+

CAiBuk−i−1 + C(Duk +
i∑

j1=1

Aj1−1Buk−j1 )+

C
i∑

j1=1

Aj1−1G.(A⊗ Im)i−j1+1.(xk−i−1 ⊗ Im).uk−j1

+C
i∑

j1=1

Aj1−1G.(A⊗ Im)i−j1 .(G⊗ Im).(xk−i−1 ⊗ Im2 ).

(uk−i−1 ⊗ uk−j1 )+

C
i∑

j1=1

Aj1−1G.(A⊗ Im)i−j1 .(B ⊗ Im).(uk−i−1 ⊗ uk−j1 )+

C
K(i)∑
j2=1

Γj2,i.(B ⊗ I)

.(uk−s1(j2) ⊗ uk−s2(j2) ⊗ ...⊗ uk−sd(j2))

(22)
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+C
K(i)∑
j2=1

Ψj2,i.(A⊗ I).(xk−i−1 ⊗ I).

(uk−s1(j2) ⊗ uk−s2(j2) ⊗ ...⊗ uk−sd(j2))

+C
K(i)∑
j2=1

Ψj2,i.(G⊗ I).(xk−i−1 ⊗ I).

(uk−i−1 ⊗ uk−s1(j2) ⊗ uk−s2(j2) ⊗ ...⊗ uk−sd(j2))

+C
K(i)∑
j2=1

Ψj2,i.(B ⊗ I).

(uk−i−1 ⊗ uk−s1(j2) ⊗ uk−s2(j2) ⊗ ...⊗ uk−sd(j2)) + fk + wk

Let us present the used mathematical expressions for
the previous equation simplification, which are easy to
prove:

• (Z1 ⊗ Z2)(Z3 ⊗ Z4)=(Z1 Z3) ⊗ (Z2 Z4)
• (Z1 ⊗ Z2)=(Z1 ⊗ I)Z2

• i+ 2K(i) = K(i+ 1)
• Cq+1

p+1 = Cq+1
p + Cqp

where Z1, Z2, Z3, Z4 are matrices with appropriate
dimensions. By identifying expressions (19) and (22),
one can find:

C
i+1∑
j3=1

Aj3−1G.(A ⊗ Im)i+1−j3 .(xk−i−1 ⊗ Im).uk−j3 =

CAiG.(xk−i−1 ⊗ Im).uk−i−1 +

C
i∑

j1=1

Aj1−1G.(A⊗ Im)i−j1+1.(xk−i−1 ⊗ Im).uk−j1

C(Duk +
i+1∑
j3=1

Aj3−1Buk−j3 ) =

CAiBuk−i−1 + C(Duk +
i∑

j1=1

Aj1−1Buk−j1 )[
Ψ1,i+1 | · · · |ΨK(i+1)−1,i+1 |ΨK(i+1),i+1

]
=[

G.(A⊗ Im)i−1.(G⊗ Im) |A1G.(A⊗ Im)i−2.(G⊗ Im)|

· · · |Ai−1G.(A⊗ Im)i−i.(G⊗ Im) |Ψ1,i.(A⊗ Im)|

Ψ2,i.(A⊗ Im) | · · · |ΨK(i),i.(A⊗ Im) |Ψ1,i.(G⊗ Im)|

Ψ2,i.(G⊗ Im) | · · · |ΨK(i),i.(G⊗ Im)
]

[
Γ1,i+1 | · · · |ΓK(i+1)−1,i+1 |ΓK(i+1),i+1

]
=[

G.(A⊗ Im)i−1 |A1G.(A⊗ Im)i−2 | · · · |

Ai−1G.(A⊗ Im)i−i |Γ1,i |Γ2,i | · · · |ΓK(i),i|

Ψ1,i |Ψ2,i | · · · |ΨK(i),i

]
It is straightforward to prove that the proposal for i+1
(equations (19), (20) and (21)) holds.

Fig. 2. Criterion to be minimized J(i, i1)

Fig. 3. System input

Fig. 4. System output

Fig. 5. blue: residuals expectation, red: faults occurrence
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