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Abstract— This article presents and discusses necessary con-
ditions of optimality for infinite horizon dynamic optimization
problems with inequality state constraints and set inclusion
constraints at both endpoints of the trajectory. The cost
functional depends on the state variable at the final time, and
the dynamics are given by a differential inclusion. Moreover, the
optimization is carried out over asymptotically convergent state
trajectories. The novelty of the proposed optimality conditions
for this class of problems is that the boundary condition of
the adjoint variable is given as a weak directional inclusion
at infinity. This improves on the currently available necessary
conditions of optimality for infinite horizon problems.

I. INTRODUCTION

This article concerns necessary conditions of optimality
for infinite horizon dynamic optimization problems with state
constraints. The infinite horizon optimal control problem has
been considered since the early seventies and a lot of effort
has been spent on how to define the transversality conditions
to be satisfied by the adjoint variable so that the optimality
conditions remain informative.

The challenges posed by transversality conditions in in-
finite horizon control problems were already identified in
[4] where a problem with an integral cost functional was
considered. After defining an appropriate solution concept,
a maximum principle without transversality conditions is
derived. Later, it is shown in [7], that, under a certain
controllability assumption, the Hamiltonian tends to zero as
time goes to infinity. Inspired by stability theory, a regularity
assumption formulated in terms of Lyapunov exponents to be
satisfied by the adjoint variable is required in [12] in order
to derive necessary and sufficient conditions of optimality
for infinite horizon control problems with a transversality
condition. A nonsmooth maximum principle encompassing
final time transversality conditions was derived in [11] for
nonsmooth optimal control problems with final state depen-
dent cost functional as well as final time state constraints.
However, a linear structure is required for both of these
ingredients. In [14], strong hypotheses implying that the
adjoint variable remains bounded were assumed on the data
of an infinite horizon discounted optimal control problem in
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order to derive a maximum principle with a transversality
condition.

In [6], a new type of transversality condition - directional
weak inclusion at infinity - is proposed by the authors for
optimal control problems with endpoint state constraints and
state dependent cost functional at infinity which are weaker
than the usual ones. This new concept enables the derivation
of necessary conditions of optimality benefiting from the
wealth of information provided by the boundary conditions
of the adjoint equation at infinity, and, at the same time, does
not require strong assumptions on the data of the optimal
control problem that strongly restrict their applicability. This
work has been developed along the lines of the one in [5].

State constraints pose formidable challenges in the deriva-
tion of necessary conditions of optimality in dynamic opti-
mization, even for finite horizon optimal control problems.
To appreciate the most sophisticated results addressing the
deeper issues arising in this context, albeit in a context
different of the one of this article, you should consider the
book of A. Arutyunov, [1].

The literature on necessary conditions for infinite horizon
optimal control problems with state constraints is relatively
limited. In [9], some results are obtained that reveal the
formidable challenges intrinsic to the derivation of necessary
conditions of optimality for this problem: in order to propa-
gate in a informative way the final time boundary condition
of the adjoint variable to any given finite time, one needs to
impose very strict assumptions and this implies restricting the
range of applicability of the derived optimality conditions.

We consider a dynamic optimization problem over the
set of asymptotically convergent state trajectories. Although,
this might sound a somewhat unusual setting in dynamic
optimization, for many applications, the asymptotic conver-
gence to equilibria at “infinity”corresponds to a functional
requirement of the system, and, thus, it is a reasonable
property to be enforced via the overall system design. Our
dynamic optimization problem can be stated as follows:

(P ) Minimize g(ξ) (1)
subject to ẋ(t) ∈ F (t, x(t)), L − a.e. (2)

(x(0), ξ) ∈ C0 × C∞, (3)
h(t, x(t)) ≤ 0, ∀t ≥ 0, (4)
ξ = lim

t→∞
x(t), (5)

where C0 ⊂ IRn and C∞ ⊂ IRn, g : IRn → IR, F : [0,∞)×
IRn → P (IRn), h : [0,∞)× IRn → IRq satisfy the following
set of basic assumptions:
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B1 g is continuously differentiable.
B2 The compact and convex valued set-valued map F is

measurably Lipschitz, i.e., F is Lebesgue measurable
with respect to time and, ∀ t ∈ [0,∞), Lipschitz contin-
uous in x in the Hausdorff sense with time independent
Lipschitz constant.

B3 h is Lipschitz continuous in x and continuous in t.
B4 The endpoint state constraint sets C0, and C∞ are

closed.
Although assumption (B1) can be weakened to mere Lip-
schitz continuity, we keep it in order to facilitate some
developments discussed later in this article. With the (B1)
weakened to Lipschitz continuity, and (B2) somewhat fur-
ther weakened, (B1) − (B4) are the standing assumptions
usually considered for finite horizon problems.

The article is organized as follows. In the next section,
we present some preliminary concepts and definitions. Some
of these concern additional assumptions on the data of the
problem, as well as the class of solutions on which the
optimization is to be considered, and some others concern a
refinement of the framework for the new concept of boundary
condition first introduced in [6]. Then, in section 3, we
present and discuss the necessary conditions of optimality,
as well as some specific technical assumptions required on
the data of the problem in order to prove the stated result.
The main points of the proof are provided in its outline given
in section 4 and some brief conclusions are given in the last
section.

II. PRELIMINARY DEFINITIONS

In this section, we list a number of definitions required to
formulate and prove our main result.

Since the optimization is carried out over all feasible
control processes that converge asymptotically to some point
in the infinite time horizon, we need to define equilibrium
at infinity.

Definition 1. We say that the point ξ ∈ IRn is an equilibrium
as t→∞ if ∃ a feasible trajectory x(·) such that

lim
t→∞

x(t) = ξ, and 0 ∈ lim
t→∞

infF (t, x(t)),

where the limit is in the sense of Hausdorff and the limit set
is assumed to be nonempty.

Definition 2. A trajectory is said to be feasible if it satisfies
x(0) ∈ C0, ẋ(t) ∈ F (t, x(t)), L-a.e., lim

t→∞
x(t) = ξ for some

equilibrium ξ ∈ C∞ and h(t, x(t)) ≤ 0 for all t ≥ 0.

Definition 3. The state constraints are said to be compatible
with the end-point constraints at the pair (x̄(0), ξ̄) if any
(x(0), ξ) ∈ (C0 × C∞) ∩

[
(x̄(0), ξ̄) + εB2n

]
with ξ =

lim
t→∞

x(t), satisfies h(0, x(0)) ≤ 0, and lim
t→∞

h(t, x(t)) ≤ 0

for some ε > 0.

Definition 4. The state constraints are regular if ∀(t, x) ∈
IRn+1, such that h(t, x) ≤ 0, ∃π ∈ IRn satisfying 〈π, ζi〉 >
0, ∀ζi ∈ ∂xh

i(t, x), ∀i such that hi(t, x) = 0. Here, the

generalized derivative ∂xhi(t, x) is considered in the sense
of Clarke, (see [2] for details).

These two last definitions correspond to technical assump-
tions to be imposed on the data of the problem enabling the
derivation of nondegenerate nontrivial multipliers.

In order to capture the behavior of the adjoint variable
as time goes to infinity, we specify the final endpoint
transversality condition in terms of directional inclusion at
infinity. This will call for a number of concepts introduced
in [10] enabling to deal with the extended IRn.

We consider a direction to be a ray, i.e., a closed half-
line emanating from the origin. We think of rays as abstract
direction points which lie beyond IRn and form the horizon
of IRn, denoted by hznIRn. We represent a direction point by
dirx, where x is any nonzero vector in the ray representing
the direction point in question. The cosmic space csm IRn

is the union of the IRn with its horizon hzn IRn. With this
definition, it becomes clear that the cosmic IRn is a compact
space.

A sequence of points xk ∈ IRn converges to a direction
point dir x, written xk → dir x, x 6= 0, if λkxk → x for
some choice of λk ↘ 0, i.e., λk > 0 and λk → 0.

Given a set C ⊂ IRn, the cosmic closure closure of C is
given by

csmC := clC ∪ hznC,

where clC is the usual closure of C in IRn while the hznC
is the collection of all direction points obtained with limits
of sequences of points in C.

Given a cone K ⊂ IRn, denote the set of direction points
defined by the rays of K by dirK.

For a given nonempty set C in IRn, the horizon cone
representing the direction set hznC, is defined by

C∞ = {x : ∃xk∈C, λk↘ 0, with λkxk → x}.

Observe that C is bounded if and only if C∞ = {0}. With
this notation, we have that hznC = dirC∞ and csmC =
clC ∪ dirC∞.

A subset of csm IRn, written as C∪dirK, for a set C ⊂ IRn
and a cone K ⊂ IRn, is closed in csm IRn if C and K are
closed in IRn and C∞ ⊂ K. The cosmic closure of C∪dirK
is

csm(C ∪ dirK) = clC ∪ dir(C∞ ∪ clK).

Now, we are in position to define the concept of directional
inclusion at infinity. This enables us to state boundary
conditions involving variables which may either become
unbounded or persist in a certain set as time goes to infinity.

Definition 5. Let y : [0,∞)→ IRn be a continuous function.
Let IP (y) := IPL(y)∪ dirIP∞(y), also alluded to as the set of
persistency points of y, where
• IPL(y) := {ξ∈IRn : ∃ ti →∞, lim

i→∞
y(ti) = ξ}

• dirIP∞(y):={ξ∈IRn:∃ti→∞, λi↘0, lim
i→∞

λiy(ti)=ξ}.

Given a function y :[0,∞)→IRn and a set C ⊂ IRn we
say that y satisfies the weak directional inclusion in C at ∞
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if IP (y) ∩ csmC 6= ∅. In order to shorten the notation, this
relation will be referred to by y ∈∗∞ C.

III. NECESSARY CONDITIONS OF OPTIMALITY
This problem is cast in the context of nonsmooth analysis

(see [3]) due to both the assumptions on its data and the
approach used to derive the optimality conditions.

We consider the following additional assumptions on the
data of the problem:
A1 The state and endpoint constraints are compatible (see

Definition 3).
A2 The state constraints are regular (see Definition 4).
A3 The lim

t→∞
inf F (t, x(t)) exists in the sense of Hausdorff

and is denoted by F∞(ξ), where ξ := lim
t→∞

x(t).

A4 Let ξ∗ := lim
t→∞

x∗(t). There exists δ > 0 such that,
∀ x ∈ ξ∗ + δB,

0 ∈ Int lim
t→0

inf F (t, x∗(t)).

A5 F0(x∗(0)) := lim
t→0

inf F (t, x∗(t)) has nonempty interior,
and ∃ v0 ∈ IntF0(x∗(0)) satisfying:{

either x∗(0)∈IntC0,
or 〈ζ0, v0〉<0, ∀ζ0∈NC0

(x∗(0)).

Conditions (A1)− (A5) are additional technical assump-
tions required to prove the stated necessary conditions of
optimality. While [A1] and [A2] ensures the derivation of
a nonempty set of multipliers that do not degenerate, that
is, they remain always informative, (A3) reflects a kind of
persistence of the velocity set at the limiting value of the state
variable that enables the extraction of limits of the necessary
conditions of optimality as time goes to infinity. Another
technical property required in the proof is (A4) which
implies the controllability in a neighborhood of the optimal
reference trajectory as time goes to ∞, and (A5) reflecting
an initial point controllability condition with respect to the
initial state constraint. Conditions (A3) − (A5) could be
somewhat simplified if the continuity of F in t was assumed.

Our necessary conditions of optimality for (P ) are stated
in the form of a maximum principle and they involve the
Hamiltonian defined as

H(t, x, p) := sup{〈p, v〉 : v ∈ F (t, x)}.

The adjoint variable p : [0,∞) → IRn satisfies a boundary
condition at t =∞. This is stated as the existence of a non
empty subset of its persistence points, IP (p), on the cosmic
closure of the right hand side set of the usual transversality
conditions. Moreover p can be regarded as a subgradient of
the value function V at the optimum state trajectory value,
which, for the subset of trajectories being considered for
optimization, is defined by

V (t, z) := Min{g(ξ) : all admissible x on [t,∞)

s.t. x(t) = z, lim
τ→∞

x(τ) = ξ}.

In particular, if p converges asymptotically to some point p̄,
then IP (p) = {p̄}. If p approaches a limit cycle CL at infinite

time, then IP (p) = CL. The pattern of realization of the
limiting approach towards a given infinitely often visited set
of points might not be periodic. Below, ∂xf , ∂Px f and ∂Mx f
denote the generalized gradients of f with respect to x, in the
Clarke (see [2]), proximal (see [2]), and Mordukhovich (also
known as limiting gradient) (see [8]) senses, respectively.

Next, we state the main result of this article.

Theorem.
Let x∗ be an optimal trajectory for problem (P ).
Then, there exists a multiplier (p, ν, λ0), with λ0 ≥ 0,

p ∈ AC([0,∞), IRn), and ν ∈ C∗([0,∞), IRq+) supported
on the set {t ≥ 0 : h(t, x∗(t)) = 0} and a ν-measurable
function γ : [0,∞)→ IRn×q , with γ(t)∈∂>x h(t, x∗(t)), ν-
a.e., satisfying:

a) λ0 + ‖p‖+ ‖ν‖TV 6= 0 (nontriviality).
b) ∃p(0)∈NC0(x∗(0)) for which there is a solution to

−ṗ(t) ∈ ∂xH(t, x∗(t), p̄(t)), L-a.e.,

satisfying:

(i)− p̄(t)− γ(t)ν({t}) ∈ λ0∂Px V (t, x∗(t)),

L and ν-a.e. on [0,∞);

and (ii)IP (−p̄− γ̃) ∩ csm
[
λ0∂

Mg(ξ∗)+NC∞(ξ∗)
]
6=∅,

where p̄(t) = p(t)+

∫
[0,t)

γ(s)ν(ds), the set valued map

∂>x h(t, x) is defined as in [2] by

co
{

lim
i→∞

γi : γi∈∂xh(ti, xi), ti→t, xi→x, h(ti, xi) > 0
}
,

and γ̃ is such that αγ̃∈∂xh̃(ξ∗) for some α>0, with h̃(ξ∗)=
lim
t→∞

h(t, x∗(t)), being ξ∗= lim
t→∞

x∗(t).

Remark that IP (−p̄ − γ̃) ∩ csm
(
λ0∂

Mg(ξ∗)+NC∞(ξ∗)
)

can be interpreted as ∃ζ ∈ λ0∂g(ξ∗) +NC∞(ξ∗) for which
• either ζ ∈ IPL(−p̄), if p̄ is bounded,
• or ζ ∈ dirIP∞(p̄), otherwise.
The information provided by this concept is certainly

weaker than the one given by the boundary condition of the
adjoint variable for finite time horizon dynamic optimization
problems. In general, there are many functions p that persist
in an absolute or a directional sense towards a point of
λ0∂

Mg(ξ∗) + NC∞(ξ∗) at infinite time. Nevertheless, this
information is still useful in delimiting the number of mul-
tipliers which satisfy the maximum condition.

IV. OUTLINE OF THE PROOF

The proof is based on considering a sequence of auxiliary
finite time horizon optimal dynamic optimization problems
without state constraints approximating (P ) for which known
results can be applied to yield an associated sequence of
multipliers satisfying necessary conditions of optimality.
Then, under the assumptions considered here, we are able to
extract a subsequence of multipliers converging in a certain
sense to another one satisfying the conditions stated in our
main result.

6719



Take {Tk}, Tk ↑ ∞ and consider the following auxiliary
problem.

(PTk
) Minimize V (Tk, x(Tk))

subject to ẋ(t)∈F (t, x(t)), L-a.e. in [0, Tk],

h(t, x(t))≤0,∀t∈[0, Tk],

x(0) ∈ C0,

where V (t, z) : [0,∞)×IRn→IR is defined by

V (t, z) := min{g(ξ) : ẋ ∈ F (τ, x), L-a.e. in [t,∞),

h(τ, x(τ))≤0, ∀τ ≥ 0, x(t) = z,

lim
τ→∞

x(τ) = ξ∈C∞}.

Notice that, by the principle of optimality, the optimal
trajectory to (PTk

), denoted by x∗k, coincides with x∗, the
optimal trajectory to (P ) on [0, Tk]. Unfortunately, this
auxiliary sequence of problems does not serve our purpose
of supplying a sequence of multipliers from which a con-
veniently converging subsequence can be extracted. This is
due to the facts that on the one hand, V is, in general,
merely lower semi-continuous due to the presence of state
constraints, and, on the other hand, measures are components
in the multipliers associated with the sequence auxiliary
problems from which a convergent subsequence has to be
extracted.

Thus, an adequate sequence of auxiliary dynamic opti-
mization optimal control problems overcoming these obsta-
cles has to be constructed.

Consider some δ > 0 and choose Tk =
1

δ
. For t ≤

Tk, let h̄(t, z) = max{0, h1(t, z), . . . , hq(t, z)}, h̃t(x) =
sup

τ∈[t,Tk)

{h̄(τ, x(τ))} and, for any feasible state trajectory x

s.t. lim
τ→∞

x(τ) = ξ, for some ξ ∈ C∞, let

ḡδt (x) = g(ξ) +
1

δ
h̃t(x).

Now, for t ≤ 1

δ
, let

V δ(t, z) = min{ḡδt (x) : ẋ∈F (τ, x) a.e. on [t,
1

δ
],

lim
τ→∞

x(τ)=ξ∈C∞, x(t)=z}.

In the limit above, x is, for t >
1

δ
a feasible trajectory

for the original dynamical control system that converges
asymptotically to ξ.

Notice that, now in the absence of state constraints and
under our assumptions, V δ(t, z) is Lipschitz continuous in
z with a constant that depends on δ.

Let

S(t, z) := {(x, ξ) : x:[t,∞)→IRn, ẋ(τ)∈F (τ, x(τ)),

x(t)=z, x(τ)→ξ, for some ξ∈C∞} .

By introducing an appropriate topology in S(t, z), it
is possible to prove that bounded subsets of S(t, z) are
sequentially compact. Indeed, for each compact set K ⊂

[t,∞), consider the norm ‖(x, ξ)‖K := ‖x‖∞+‖ξ‖, where
‖x‖∞ :=

∑
sup
K
‖x(s)‖, and ‖ξ‖ is the Euclidean norm.

Endow S(t, z) with the topology τ for which the convergence
of a sequence (xN , ξN ) ∈ S(t, z) to a pair (x, ξ) ∈ S(t, z)
means that (xN , ξN ) → (x, ξ) with respect to the norm
‖(x, ξ)‖K for all compact set K ⊂ [t,∞). If C∞ ⊂ IRn

is closed, then the set of admissible arcs S(t, z) with the τ
topology just defined is a complete space. With the additional
assumption that C∞ is compact, we can now prove the
following result.

Proposition 2. Under the above assumptions, we have that:
• ḡδt (·) is continuous on S(t, z) w.r.t. the τ topology and

consequently V δ(t, z) is everywhere finite;
• the value function V δ(t, z) is lower semi-continuous in
t; and

• if ḡδt (·) is Lipschitz continuous, then so is V δ(t, ·).
Moreover, it can be shown that ∃δ̄ > 0 s.t. ∀ z ∈ x∗(t) +

δ̄B ∩ {z ∈ IRn : h(t, z) ≤ 0},

lim
δ→0

V δ(t, z) = V (t, z),

where V is the value function defined for the original
problem with state constraints.

Moreover, if x∗t is the trajectory on [t,∞), with
lim
τ→∞

x∗t (τ) = ξ∗ ∈ C∞, such that V (t, x∗t (t)) = g(ξ∗), and

if xδt is the trajectory on [t,∞), with lim
τ→∞

xδt (τ) = ξδ ∈ C∞,

such that V δ(t, xδt (t)) = ḡδt (x), then lim
δ→0

xδt = x∗t .

Now, for a sequence {δk}, s.t. δk > 0, and δk ↓ 0, let
us consider the following auxiliary, standard finite horizon
dynamic optimization problem.

(P δk) Minimize V δk(1/δk, x(1/δk))

subject to ẋ(τ)∈F (τ, x(τ)), L-a.e. in [0, 1/δk],

h(τ, x(τ)≤0,∀t ∈ [0, 1/δk],

x(0)∈C0,

For any given δk > 0 sufficiently small, there is ε[:=
ε(δk)], such that x∗ (the solution to the original infinite
horizon problem restricted to the interval [0, 1

δk
] is a “ε-

solution”to (P δk ). Since the underlying trajectory space can
be endowed with a complete metric, ∆k, we may apply Eke-
land’s variational principle and apply this well known proof
methodology, [2]. Ekeland’s theorem allows us to obtain a
a trajectory xδk,ε solving an auxiliary problem (P δk,ε) with
cost functional V δk,ε

(
1
δk
, x( 1

δk
)
)

, which results from (P δk )

by an well known appropriate penalization, i.e.,

V δk,ε
(

1

δk
, x(

1

δk
)

)
= V δ

(
1

δk
, x(

1

δk
)

)
+ε∆k(xδk , xδk,ε).

Now, we can apply, the standard necessary conditions of
optimality for finite time dynamic optimization problems
with dynamics given by differential inclusions and whose
state trajectory satisfies both state constraints and endpoint
constraints.

6720



Let xδk,ε be a solution to (P δk,ε).
Then, there exists a multiplier (pδk,ε, νδk,ε, λδk,ε0 ), with

pδk,ε ∈AC(IR+, IRn), λδk,ε0 ≥ 0, and νδk,ε ∈C∗(IR+, IRq+)
supported on the set {t ∈ [0, 1

δk
] : h(t, xδk,ε(t))≤ 0}, and

a νδk,ε-measurable function γδk,ε : [0, 1
δk

] → IRn×q , with
γδk,ε(t)∈∂>x h(t, xδk,ε(t)), νδk,ε-a.e., satisfying:

1. λδk,ε0 +‖pδk,ε‖+‖νδk,ε‖TV 6= 0 (nontriviality).
2. ∃pδk,ε(0) ∈ NC0(xδk,ε(0)) for which there is a solution

to

−ṗδk,ε(t) ∈ ∂xH(t, xδk,ε(t), p̄δk,ε(t)), L-a.e.,

satisfying:

−p̄δk,ε(t)− γδk,ε(t)νδk,ε({ 1

δk
})

∈ λδk,ε0 ∂xV
δk,ε

(
1

δk
, xδk,ε(

1

δk
)

)
.

where p̄δk,ε(t) = pδk,ε(t)+

∫
[0,t)

γδk,ε(s)νδk,ε(ds).

It can be shown that limε,δk→0 x
δk,ε = x∗ uniformly

on any finite subinterval [0, t]. We can also show that the
ingredients of the multiplier pδk,ε, νδk,ε, and λδk,ε0 converge
in appropriate senses, as δk, and ε go to 0, respectively,
to some p, ν and λ0 that satisfy −p̄(t) + γk(t)ν({t}) ∈
λ0∂

P
x V (t, x∗(t)).

Now, we need to determine an the estimate of
∂Px V

δk,ε
(

1
δk
, xδk,ε( 1

δk
)
)

in order to show our transversality
conditions in the limit.

To simplify notation, let us put Tk =
1

δk
and drop the

indexes δk and ε whenever there is no ambiguity.

Proposition 3. Under the assumptions (H1)−(H6), we have
that ∂Px V (Tk, x

∗(Tk)) contains the set

{p̄k∈IRn : ∃(p̄, ν̄, λ̄) satisfying :

(i) ‖p̄(·)‖+ ‖ν̄‖+ λ̄ 6= 0, λ̄ ≥ 0

(ii)− ˙̄p(t) ∈ ∂xH(x∗(t), p̃(t)), [Tk,∞)-a.e.
(iii) p̄(Tk) = p̄k

(iv) IP (−p̃− γ̃) ∩ csm
[
λ0∂

Mg(ξ∗)+NC∞(ξ∗)
]
6= ∅

(v) ẋ∗(t) maximizes in F (t, x∗(t)), [Tk,∞)-a.e.,
the map v → 〈p̃(t), v〉},

where
• αγ̃∈∂xh̃(ξ∗) for some α>0, being ξ∗= lim

t→∞
x∗(t) and

h̃(ξ∗)= lim
t→∞

h(t, x∗(t)),

• p̃(t)=p̄(t)+

∫
[Tk,t)

γ(τ)ν(dτ),

• γ(t)∈∂>x h(t, x∗(t)), ν-a.e., and
• ν∈C∗([Tk,∞), IRq) is supported on the set

{t ∈ [Tk,∞) : h(t, x∗(t))=0}.

Let x ∈ AC([0,∞); IRn) be such that x(Tk) = z, ẋ(t) ∈
F (t, x(t)) a.e., h(t, x(t)) ≤ 0, ∀t > Tk, and lim

t→∞
x(t) = ξ

asymptotically. Then, by using the fact that g is assumed to
be C1, we have

g(ξ) = g(z) +

∫ ∞
Tk

∇g(x(t))ẋ(t)dt.

We also need an additional auxiliary variable y satisfying
ẏ = 0 with y(Tk) ∈ C∞ and also lim

t→∞
(y(t) − x(t)) = 0.

Note that, since C̃ := {(x, y) : x = y}, we have that, for
any (x, y) ∈ C̃, NC̃(x, y) = {(p̄x, p̄y) : p̄x = −p̄y}.

Now, notice that V (Tk, z) is the minimum cost of the
following auxiliary optimal control problem

Minimize
∫ ∞
Tk

∇g(x(t))ẋ(t)dt

subject to ẋ(t) ∈ F (t, x(t)), ẏ(t) = 0, [Tk,∞)-a.e.,
h(t, x(t)) ≤ 0, ∀t ∈ [Tk,∞),

lim
t→∞

(x(t), y(t)) ∈ C̃,

(x(Tk), y(Tk)) ∈ {z} × C∞.

Observe that the generalized gradient of V with respect
to x at time Tk at x∗(Tk) is given by the set of values of
the (symmetric of the) adjoint variable at time Tk. Remark
also that the cost functional of this problem does not depend
on state at the final time (∞). The final endpoint constraint
does not cause any difficulty since it is affine in the state
variable and always active.

By applying the maximum principle to this auxiliary
problem, and, then, by expressing the obtained conditions in
terms of the data of the original problem, it is straightforward
to derive the intended characterization of the estimate of
∂Px V

(
1
δk
, x∗( 1

δk
)
)

.
Indeed, we have

H(t, x, y, px, py, λ0) = sup
v∈F (t,x)

{〈px, v〉 − λ0∇g(x)v}

and, thus:
• −ṗx(t) ∈ ∂xH(t, x∗(t), y∗(t), p̄x(t), py(t), λ0).
• −ṗy(t)≡0, and py(t)≡py(Tk)∈NC∞(x∗(Tk)).
• ∃{ti}, ti ↑ ∞, ∃{αi}, αi > 0, αi → α∞ ≥ 0, such that

lim
i→∞

αipx(ti) = −py(Tk),

where p̄x(t)=px(t)+

∫
[Tk,t)

γ(τ)ν(dτ), being γ(t) a ν-a.e. mea-

surable selection of ∂>x h(t, x∗(t)), with ν∈C∗([Tk,∞); IRq)
supported on the set {t∈[Tk,∞) : h(t, x∗(t))=0}.

Notice that the third item arises naturally from the fact
that the adjoint equation relative to px, involving also λ0,
can be scaled down by some positive number.

Now, by putting p(t) = px(t) − λ0∇g(x∗(t)), we have
that

−ṗ(t) ∈ ∂xH(t, x∗(t), p(t)),

and, by considering sequences {ti} and {αi} with either
α∞ > 0 or α∞ = 0 we have the stated transversality
conditions.

To complete the proof of Theorem 1, it is enough to
show that the desired conditions are obtained as the limit
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of the necessary conditions derived for (PTk
). By once

more recalling the principle of optimality, the properties of
V , and by using the characterization of the estimate of its
generalized gradient in a proximal sense derived in the above
proposition, we readily obtain the desired conclusions, i.e.,
the necessary conditions of optimality for (P ).

V. CONCLUSIONS

In this article, necessary conditions of optimality in the
form of the Hamiltonian inclusions and featuring a novel
transversality condition were given for an infinite horizon
dynamic optimization problem with dynamics given by a
differential inclusion and whose state trajectories have to
satisfy state constraints, endpoint constraints, and are as-
sumed to converge asymptotically to an equilibrium point is
constrained to a given closed set. This result extends previous
work of the author for optimal control problems without state
constraints. Various comments relating the obtained result are
included.
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[14] T. Weber, Necessary Conditions for Nonsmooth Infinite-Horizon Opti-

mal Control Problems, Journal of Economic Dynamics and Control, 30,
2006, pp. 229–241.

6722


