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Abstract— Classical identification cannot be applied when
no output measurements are available. In many situations
however, discrete information on the unmeasured outputs can
still be obtained and used to identify the underlying dynamics.
An example is a moving object where an optical sensor can
detect whether or not is in the sensors line of sight but whose
position is not measured. Using these discrete data sources to
estimate a model for the underlying dynamics is equivalent to
the estimation of the linear parameters of a Wiener system,
which has a known but non-invertible static non-linearity
with two output levels. Techniques are derived to perform
this estimation, using sequential quadratic programming to
minimize a least squares goal function. Simulations are used
to validate the proposed approach, yielding good convergence
of the linear model parameters to their targets and a high
prediction accuracy for the unmeasured variable of the Wiener
system.

keywords: identification, wiener model, gauss-newton, least
squares, sequential quadratic programming, discrete sensor
data, linear model estimation

I. INTRODUCTION

Most existing identification techniques employ measure-
ments of the inputs and outputs of a system in order to esti-
mate their relation. Typically, these measurements are made
at discrete, closely sampled time intervals and with small
quantization errors, such that these effects can be neglected
and the measurements can be considered quasi-continuous.
In many applications however it is too costly or impractical
to install sensors measuring the output. Despite the lack
of continuous output measurements, discrete information on
the output can sometimes still be derived. An example is a
moving object whose position is not measured, but where it
can be detected once it passes a specific point. This can be
done by an optical sensor or even indirectly due to a change
in the behavior of the rest of the application.

In this paper, this discrete information will be used to
estimate a model of the underlying dynamics. The resulting
model can be used to gain insight into the process or for
modelbased control purposes. An alternative approach to
control such a system would be to use modelfree learning
algorithms such as reinforcement learning. It then becomes
possible to experimentally determine the best parameters of a
parameterized input signal, such that for example the output
passes by the sensor as close as possible to a given point
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Fig. 1. Considered system consisting of a linear and a non-linear static
part.

in time. A drawback of these modelfree techniques is that
they are not able to predict the output for another input or
to adapt the control to perform a similar operation, as they
require repetitiveness in order to learn.

If the system to be modeled is linear, estimating the model
parameters based on discrete information is equivalent to
finding the parameters of the linear part of the Wiener system
shown in Fig 1. In this system, the non-linear static part is
known and represents the discrete measurement y(k) of the
unmeasured output x(k) of the linear system, with

y(k) = F(x(k)), (1)

where F : R→R is a function that equals 0 as long as x(k)
does not exceed a given, known threshold, and equals 1 once
x(k) does exceed it. Here, the threshold is arbitrarily fixed
at 1, so that F is defined as

F(x(k)) =

{
0 x(k)< 1,
1 x(k)≥ 1. (2)

In these equations, x(k) is the unmeasured output of the linear
system. It can be related to the input u(k) using the linear
systems’ transfer function G(q), as

x(k) = G(q)u(k), (3)

with q−1 the delay operator such that q−1u(k) = u(k− 1).
The goal for the estimation is then to find a discrete-time
linear model Ĝ(k) that approximates the behavior of the
linear system G(q) as closely as possible.

Plenty of literature is available on the identification of
Wiener models, but the assumption is usually made that
the nonlinearity is invertible. This is not the case for the
specific function F considered in this paper, which is a
non-invertible function with only two possible outputs. The
number of papers that consider non-invertible non-linearities
is very limited. In the majority of these, polynomial parame-
terizations are used for the non-linearities [1], [2], but these
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Fig. 2. Proposed estimation algorithm, with the model parameters θ chosen
to minimize the difference between the predicted ŷ(k) and measured y(k).

functions are smooth and fail to accurately describe F as
given by (2). Some other papers describe algorithms for non-
invertible non-linearities with different parameterizations,
like piecewise-linear functions, dead zones, preload, etc [3],
[4], [5]. Even though they manage to describe discontinuous
functions they are, to the author’s knowledge, still not able
to describe the F considered in this paper.

When only the linear part has to be identified and the
non-linear static function F is non-invertible but known,
some alternative techniques can be employed. For a first
alternative, consider the specific model structure as a com-
bination of a linear dynamic part with noise added to its
output. It then follows from [6] that a Gaussian input u(k)
results in a non-parametric best linear approximation that
asymptotically converges to the underlying dynamics of
G(q). This procedure would require long measurements due
to the low signal to noise ratio, but it can be used to get an
initial idea of the dynamics and to initialize other methods.

Another alternative is to exploit the knowledge of F and
focus on the discrete nature of the output y(k), which is
the approach taken in this paper. The suggested estimation
algorithm is illustrated in Fig. 2. It consists of comparing the
measured outputs y(k) to some values ŷ(k), predicted using
the known F , and selecting the model parameters θ such that
the difference y(k)− ŷ(k) is minimized [7]. Comparing these
two discrete functions yields a discontinuous cost function
that can not be handled using the standard least squares
formulation. Some modifications are therefore introduced to
make the cost function continuous, once again exploiting the
knowledge of F . Two separate cases are discussed. The first
deals with a long measurement, with x(k) passing the thresh-
old many times causing many switches in the output y(k).
The second considers a sequence of short measurements with
only 1 switch in each measurement, making the estimation
applicable to many practical situations.

The remainder of this work is structured as follows. First,
in section II the methodology to estimate the linear model
parameters is discussed and several estimation algorithms are
derived. These techniques are then applied to a simulation
example in section III as a proof of concept and illustration
of the estimation process. The main results of this work are
then summarized in section IV, while some suggestions and
plans for future research are given in section V.

II. ESTIMATION METHODOLOGY

In this section the methodology used to estimate the linear
model parameters is derived. In II-A, this is first done
for the case where a single, long measurement of in- and
outputs is available, while the needed adjustments to combine
information from several short measurement are discussed
in II-B.

Initially, the techniques are discussed assuming the correct
model structure is selected and no noise is present, which al-
lows convergence to the real parameters. In II-C the effect of
a model structure mismatch is investigated and the influence
of noise is discussed.

A. Estimation based on a single measurement

Consider first a measurement of inputs u(k) and outputs
y(k). Using this data, a model for the linear system G(q)
can be estimated reliably in case some requirements are met.
First of all, there needs to be a sufficient number of changes
in the output y(k), such that enough information is present
to estimate the model parameters. Furthermore, the input
u(k) has to be chosen such that it persistently excites all
the dynamics of the system, which is a condition also found
when directly identifying linear systems [7]. 1

Once these conditions are met, the estimation should
ideally be done by minimizing the prediction error on the
output of the linear part of the Wiener model, by comparing
the real values of x(k) with those of the predicted x̂(k).
However, since x(k) is not measured due to a lack of
sensors, the values of the measured output y(k) have to be
compared to the predicted values of ŷ(k) instead. These can
be predicted since the non-linear static function F is known,
using the relation

ŷ(k) = F(x̂(k)). (4)

The predicted variables x̂(k) can in turn be found as

x̂(k) = Ĝ(q)u(k), (5)

with Ĝ(q) an estimated discrete-time linear model. This
model can be represented as a transfer function

Ĝ(q) =
B̂(q)
Â(q)

, (6)

with numerator B̂(q) and denominator Â(q) defined as

B̂(q) = b̂1q−1 + b̂2q−2 + . . .+ b̂nbq−nb , (7)

Â(q) = 1+ â1q−1 + â2q−2 + . . .+ âna q−na . (8)

The coefficients of B̂(q) and Â(q) are combined into θ as

θ = [b1 b2 . . . bnb a1 a2 . . .ana ], (9)

such that θ fully represents the model (6), and allows
prediction of x̂(k) for a given input and through (4) also
of ŷ(k) . The goal is then to find the parameters θ such that
the predicted outputs ŷ(k) match the measured outputs y(k)

1The requirements given have not been analytically derived, and further
work on this is planned in the future. The minimum required number of
changes in the output y(k) for example has not been investigated yet.
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Fig. 3. Function h(k) used to make the cost function continuous. On
the left, the profile of h(k) is shown for the value of the measured output
y(k) = 0 (black) and y(k) = 1 (gray). On the right, x̂(k) (gray ×) and y(k)
(black •) are shown as well as the threshold (black dotted line). For k = 2
and k = 4, x̂(k) is on the wrong side of the threshold, and for those cases
it is indicated how h(k) is calculated, while h(k) = 0 for k = 1 and k = 3 .

as closely as possible and a good approximation of the real
system is obtained. This means θ can be found by solving

min
θ

‖ y− ŷ(θ ,u) ‖2
2, (10)

where

y = [y(1) y(2) . . . y(N)]T (11)

and ŷ(θ ,u) = [ŷ(1) ŷ(2) . . . ŷ(N)]T (12)

contain the N measured and predicted outputs respectively.
Due to the discrete nature of the output variables, solving

(10) is not straightforward. A small change of θ can still
yield exactly the same predicted outputs ŷ(θ ,u) and the
same cost. On the other hand, a small change in θ can also
lead to a large change in the cost, if one of the values x̂(k)
suddenly passes the threshold. This is because the cost func-
tion is discontinuous and non-differentiable, which makes it
impossible to use standard local optimization techniques [8].
This problem can be solved by using global optimizers
that don’t impose any conditions on the cost function, like
genetic algorithms [8], [9]. It is however expected that these
techniques would require a long convergence period. Since
one of the plans for future developments is to derive a
recursive estimator to regularly update the model parameters
online, this long convergence process could becomes an
issue. It is therefore chosen to solve the problem of the
discontinuous cost function by adapting problem (10) such
that the cost becomes continuous and local optimization
techniques can be applied.

The cost function of (10) can be adapted in many different
ways. A simple adaptation that still yields good results
consists of replacing the prediction error y− ŷ(θ ,u) in (10)
by a function h : R → R defined as

h(k) =

{
0 y(k) = ŷ(k),
x̂(k)−1 otherwise. (13)

This function h(k), shown in Fig. 3, essentially sets the cost
to 0 when no prediction error is present on ŷ(k) and penalizes
the difference between the predicted value of x̂(k) and the
threshold whenever there is a prediction error. Using h(k),
the parameters θ can be found by solving

min
θ

‖ h(θ ,u) ‖2
2, (14)

where h(θ ,u) is defined as h(θ ,u) = [h(1) h(2) . . . h(N)]T.
In theory, the global solutions for problems (10) and (14)
can be different. In (10) penalties are aplied whenever the
predicted discrete value of ŷ(k) is incorrect, while in (14) a
measure is used of how large the error is on x̂(k) with respect
to the expected value. When the input signal is sufficiently
long and enough information is present in the in- and output
signals, the global solutions of (10) and (14) are however
expected to lie close to each other, as models yielding low
costs according to (10) also yield low costs according to (14)
and vice versa.

The optimization problem (14) is solved using the Gauss-
Newton algorithm, which is a type of sequential quadratic
programming (SQP) [10]. In this method, h(θ ,u) is lin-
earized around the latest estimate of θi, such that

h(θ ,u)≈ h(θi,u)+ϕ(θ −θi) = h(θi,u)+ϕδθ , (15)

where ϕ is the N × (nb + na) Jacobian matrix containing
the first order derivatives of the components of h(θ ,u) with
respect to the parameters θ , calculated at the current estimate
θi. The optimization criterion then becomes

‖ h(θ ,u) ‖2
2 = h(θ ,u)Th(θ ,u) (16)

≈ (h(θi,u)+ϕδθ)T(h(θi,u)+ϕδθ) (17)

≈ h(θi,u)Th(θi,u)+2δθ TϕTh(θi,u)
+ δθ TϕTϕδθ (18)

After derivation, this yields the optimal solution as

δθ = −(ϕTϕ)−1ϕTh(θi,u), (19)

which can be used to update the model parameters and find
θi+1. At the new estimate, h(θ ,u) is linearized again and the
entire process is repeated. Convergence of this algorithm to
a local minimizer can be guaranteed [10] if an appropriate
line search method is introduced, such that θi+1 is found as

θi+1 = θi + tδθ . (20)

The factor t needs to be included to ensure a sufficient
decrease of the cost function, and its value can be found
using a backtracking algorithm [10]. This line search method
is also used to include constraints on the allowed variation
of the model parameters, by setting an upper bound for t.

While the optimization problem (14) is continuous, it is
not differentiable such that the SQP can struggle to find the
true optimum but ends up near it. Subgradient methods can
then be applied to overcome this [11]. Another option is to
reformulate the functions on the left of 3 in a similar manner
as the reformulation of L1 minimization [12], resulting in a
continuous problem by adding help variables and constraints.
Since both solutions increase the required calculations, the
SQP can be used first to quickly get close to the optimum,
followed by a few iterations of the slower methods.

Only convergence to a local minimum can be guaranteed,
so attention must be paid to the initialization of the model
parameters. When possible, a good first estimate should be
used, close to the optimal solution, obtained for example
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from physical insight. Alternatively, the algorithm can be
started from several different initial estimates, each converg-
ing to a local minimum after which the best one is selected.

B. Estimation based on a sequence of measurements

The estimation algorithm needs to be adapted if there is
no single measurement with many changes in the output, but
instead a sequence of shorter measurements is available. For
many applications, data of this type can easily be obtained
or is already available. A further restriction is that each
measurement contains only a single change in the output.
This can be the case when no reliable information about
the state is known after the first change of the output, for
example when a flawed detection procedure only allows
to detect a switch from 0 to 1 but not from 1 to 0.
Using data from a single measurement would not allow a
consistent identification, so the information of M of these
measurements has to be combined. There is thus a sequence
of M measurements available, each with Ni samples and a
single change of y(k) at the last sample of each measurement.
Some additional requirements need to be fulfilled in order to
perform a consistent identification. First, the input signals for
the different measurements have to persistently excite all the
dynamics. In addition, it is required that there is sufficient
variation between the inputs of the different measurements
to avoid trivial solutions.

The parameters θ are found by solving an optimization
problem with a cost function that is found in a similar
manner as in II-A. It is possible however to exploit the
knowledge that each measurement contains exactly 1 change,
and that it occurs at the last sample. To do so, the difference
between x̂(k) and the threshold around the transition is used
to calculate some criterium, and θ is found by minimzing
the sum of these criteria evaluated for the different measure-
ments. This criterium only considers the last two samples
of each measurement, and is given by a continuous function
g : RN → R defined as

g =

{
h(Ni) ŷi(Ni) 6= yi(Ni),
h(Ni−1) otherwise, (21)

with h(k) as defined in section II-A This function g(θ ,ui,yi)
is illustrated in Fig. 4. If the output at the last sample ŷ(Ni)
is predicted incorrectly, the difference between x̂(Ni) and the
threshold is penalized as h(Ni). Otherwise, if the last sample
is predicted correctly, the cost is found by comparing x̂(Ni−
1) to the threshold, using h(Ni−1). t By defining

g = [g(θ ,u1,y1) g(θ ,u2,y2) . . . g(θ ,uM,yM)]T, (22)

the optimization problem to find the model parameters θ
becomes

min
θ

‖ g(θ ,ui,yi) ‖2
2, (23)

which can be solved in a similar manner as (14) in II-A.

C. Effects of model structure mismatch and noise

It has been observed that the estimation becomes more
difficult when the model structure is chosen incorrectly.

Ni k

h(Ni)

y(k)
x̂(k)

1

0 Ni k

h(Ni −1)y(k)
x̂(k)

1

0

Fig. 4. Behavior of function g(k) used to make the cost function for
multiple runs continuous, determined by the values of x̂(k) (gray ×) and
y(k) (black •) with respect to the threshold (black dotted). On the left, the
last sample is incorrectly predicted such that the cost is calculated as h(Ni),
comparing x̂(Ni) to the theshold. On the right, the last sample is predicted
correctly, such that the cost is given by h(Ni−1), by comparing x̂(Ni−1)
to the theshold at the but last sample.

When the orders are too low such that there are insuffi-
cient degrees of freedom, many local minima are typically
obtained with poor model quality since perfect prediction
becomes impossible. When the orders are too high the correct
model can still be generated but there are too many degrees
of freedom. In this situation it is often possible to get good
prediction in some of the minima, but there are typically a
large amount of suboptimal local minima as well. In both
situations the choice of the initial θ becomes essential in
order to find a good local minimum with good prediction
quality. As stated before in section II-A, this problem can be
solved by starting with a good initial estimate or by trying
several different initial estimates.

Measurement noise on the output y(k) does not have to
be considered since this is a signal with 2 discrete levels.
There can however be many sources of noise entering the
system, all leading to some variation on x(k) and thus also
affecting the output y(k). Unless these sources are known
and they can be included in the model, not much can be
done other than to make sure the estimation is robust. One
simple robustifying alteration is to adapt h(k) to include a
deadband [12]. This way h(k) only differs from 0 if the
amplitude of the difference between x̂(k) and the threshold
is larger than a given value ε . Hence, small prediction errors
< ε on x̂(k) that can occur due to noise are not penalized.

III. SIMULATION RESULTS

Now the methods derived in section II are validated by
estimating the model parameters of a simulated system,
considered unknown to the estimation procedures. Like in II,
this is first done for a single long measurement and then for
a sequence of shorter measurements, always selecting the
input such that the binary output data is informative. Also
like in II, it is first assumed that no noise is present, and
afterwards the effects of adding noise are investigated. The
case of model structure mismatch is omitted, as this can be
solved by a thorough model selection procedure or by trying
several structures.

To validate the estimation algorithm derived in section II-
A, it is used to estimate the parameters of a discrete-time
linear model with the sampling time set at Ts = 0.001s.
The frequency response functions (FRF) of this simultion
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Fig. 5. Frequency response functions of the simulation model (black), as
well as the model used to initialize the estimation procedures (gray dashed)
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the discrete output y(k) (black dashed) and the predicted x̂(k) (gray 4).

model is shown in Fig. 5, and the parameters of its transfer
functions G(q) are given in the first row of table I. In order
to estimate these parameters, an input of length 5s (N=5000
samples) is applied. It is made up of random noise with an
additional DC component to ensure the output varies around
the threshold, as illustrated in Fig. 6, where a part of the input
and its corresponding output are shown. The input u(k) and
the outputs y(k) are then used to estimate the parameters,
starting from the initial set of model parameters indicated
by the dashed line in Fig. 5. The middle row in table I
gives the resulting parameters, obtained after 50 iterations
of the estimation procedure. A good correspondence can be
observed between the estimated and the real parameters.

To illustrate the convergence process, the estimation is
investigated in some more detail. Fig. 7 shows the evolution

TABLE I
COMPARISON OF SIMULATION MODEL PARAMETERS AND ESTIMATED

VALUES, EVALUATED AFTER 50 ITERATIONS.

Parameters
b1 b2 b3 a1 a2 a3

Sim. model 0.042 0.16 0.037 -2.69 2.48 -0.78
Est. (σ = 0) 0.042 0.16 0.037 -2.69 2.48 -0.78

Est. (σ = 0.05) 0.041 0.16 0.037 -2.69 2.49 -0.78
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Fig. 7. Evolution of the estimated model parameters b̂i (×) and âi (◦) with
respect to the true parameters (solid lines), as a function of the iterations.
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Fig. 8. Evolution of the number of correctly predicted values ŷ(k), as a
function of the iterations, with 5000 the total number of samples.

of the estimated parameters as a function of the iterations. All
variables converge towards the true values of the simulation
model. As a result, prediction of the unmeasured values
x(k) becomes possible. Fig. 6 illustrates this, showing a
close match between the predicted values x̂(k) (gray 4)
and the real outputs x(k) (black solid), despite the lack of
measurements for this variable. Since x(k) can be predicted
accurately, the same holds for y(k). Fig. 8 illustrates this,
showing the evolution of the number of correctly predicted
outputs as a function of the iterations. Initially, just over half
the samples are predicted correctly, which is to be expected
even from a random guess. After the first few iterations this
number quickly increases and after 50 iterations all but 3
samples are predicted correctly.

To evaluate the performance in the presence of process
noise zero-mean Gaussian noise with a standard deviation of
σ = 0.05 is added to the output x(k), leading to a different
sequence of observed outputs y(k). The same estimation
procedure is then repeated, starting from the same initial
model parameters. Due to the noise, the number of correctly
predicted outputs y(k) is lower, with 208 samples predicted
incorrectly after 50 iterations and this number not decreasing
any further. This is to be expected however as imperfect
prediction would be obtained even when the true system
parameters are used. The more important result is that the
model parameters do converge to their true targets or values
very close to them, as indicated in the bottom row of table I.

To validate the algorithm derived in section II-B for a
sequence of short measurements, the same simulation model
is used and the same initial conditions are selected. The
input signal of 5s is however replaced by a sequence of
100 short measurements. Fig. 9 shows the inputs and the
corresponding outputs for two examples of such measure-
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TABLE II
COMPARISON OF SIMULATION MODEL PARAMETERS AND VALUES

ESTIMATED USING M = 100 SHORT MEASUREMENTS, EVALUATED AFTER

50 ITERATIONS.

Parameters
b1 b2 b3 a1 a2 a3

Sim. model 0.042 0.16 0.037 -2.69 2.48 -0.78
Est. (σ = 0) 0.042 0.16 0.037 -2.69 2.48 -0.78

Est. (σ = 0.05) 0.042 0.16 0.037 -2.69 2.47 -0.77

ments. These inputs signals are obtained as Gaussian noise
with the addition of some random ramps and steps to ensure
the output eventually passes the threshold. Since only the
data up to the first measured change in yi(k) is considered,
each input signal leads to a switch in yi(k) at the last sample
Ni, which can be different for each measurement. These 100
inputs u(k) and outputs y(k) are then used to perfrom the
estimation. Table II gives the estimated parameters after 50
iterations, showing convergence of the parameters to their
true values. As another indicator of the performance, Fig. 9
also shows the predicted values of x̂(k) (gray 4), which lie
very close to the real values of x(k) (black solid).

In a final test the same type of noise is added to the
output x(k) of the 100 measurements, and the estimation
is started with the same initial parameters. The estimated
model parameters after 50 iterations are given at the bottom
of table II, once again showing convergence to the true
parameters or values close to them.

IV. CONCLUSIONS

A method is proposed for estimating the linear model
parameters of Wiener systems with known non-invertible
discrete static non-linearities. These methods can be used
whenever sensors are lacking but discrete information like
the passing of a threshold can be obtained. Two algorithms
are derived to estimate the model parameters by minimizing
the difference between the measured discrete outputs and the
predicted outputs. The first can be used when a long measure-
ment is available, with many changes in the discrete output.

The second can be used when many short measurements
are available, with only one change in the discrete output
per measurement, as is often the case in practical situations.
Both methods are illustrated using a simulation example,
yielding good performance with the parameters converging
to the correct values and a high prediction accuracy, even for
the unmeasured outputs of the Wiener system’s linear part.

V. OUTLOOK

One aspect that will be investigated in the future is
the design of the input signals used to excite the system.
Open questions are what types of excitation signals provide
the best results and what the minimum requirements are
to get consistent models. Another planned development is
the derivation of a recursive algorithm. Starting from the
algorithm for a sequence of measurements, the goal is to
obtain an algorithm that can run online and update the model
parameters every time a new measurement is available.
Finally, it is our goal to perform an experimental validation
of the developed estimation techniques in the near future.
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