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Abstract— In system identification, the concepts of infor-
mative data and identifiable model structures are important
for addressing the statistical properties of estimated models.
In this paper, these two concepts are generalized from the
classical LTI prediction-error identification framework to the
situation of LPV model structures and appropriate definitions
are introduced. For two particular cases (piecewise constant and
periodic scheduling trajectories) conditions are derived for the
data sets to be informative w.r.t. the LPV-ARX model structure.
Moreover, conditions are derived under which the LPV-ARX
model structure is globally identifiable.

I. INTRODUCTION

Efficient control of high-tech systems such as precision

mechatronic devices, aircrafts, and chemical plants, requires

accurate but simple models of the nonlinear and/or time-

varying behavior of these applications. For many nonlin-

ear systems, the linear parameter-varying (LPV) framework

offers a nice trade-off between accuracy and parsimony.

Moreover, it offers convex control synthesis for nonlinear

systems in a computationally attractive setting [1].

In the LPV framework, signal relations are considered

to be linear just as in the LTI case, but these relations

are assumed to be varying as a function of a measurable

signal, the so-called scheduling variable. Recently an LPV

prediction-error identification framework has been developed

in [1] providing a theoretical basis which can be used for

the estimation of LPV predictor models. In this framework

LPV-ARX, LPV-ARMAX, etc. model structures are defined

which are generalizations of the LTI model structures.

In the LTI prediction-error identification theory, it is well

known that the data set must be informative w.r.t. the

model structure in order to obtain a consistent estimate of

the dynamic relations, and that a model structure must be

identifiable in order to obtain a consistent estimate of the

parameter vector [2], [3], [4].

The concepts of informative data and identifiability are

also important in the LPV prediction-error identification

framework, however the current LTI definitions are not

directly transferable to the LPV setting. This is due to

the lack of a transfer function representation in the LPV

framework, and the inclusion of the scheduling variable.

The first half of this paper focuses on investigating and

defining informative data and identifiability for LPV systems.
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Fig. 1. LPV data generating system

In the current literature, conditions on the LPV data set

are derived such that the identification problem is well

conditioned [5], [6]. While this is related to informative

data and identifiability, neither paper defines these concepts.

Getting a clear understanding of these definitions is important

in the analysis of the LPV prediction-error framework, for

instance when determining consistency and convergence of

the estimates of the dynamic relations of the signals and the

estimates of the parameters.

In the second half of the paper the new definitions

of informative data and identifiability are used to derive

conditions on the data set with respect to the LPV-ARX

model structure. In particular conditions are derived for two

common trajectories of the scheduling variable - periodic and

piecewise constant - and, conditions are derived such that the

LPV-ARX model structure is identifiable.

In Sec. II the LPV prediction-error framework is briefly

summarized. In Sec. III and IV the concepts of identifiability

and informative data for LTI and LPV models respectively

are investigated. In Sec. V the established definitions are

applied to the LPV-ARX model structure.

II. LPV PREDICTION-ERROR FRAMEWORK

In this section the LPV prediction-error framework will be

briefly introduced. For a detailed presentation and analysis

see [1]. Throughout the remainder of the paper, let u, p, y

denote the input, scheduling, and output variables respec-

tively. In Fig. 1 the LPV data generating system is shown.

The actual process dynamics have the form:

A0(q, p, k)y̆(k) = B0(q, p, k)u(k)

where A0(q, p, k) and B0(q, p, k) are polynomials in the shift

operator q−1, where q−1u(k) = u(k − 1):

A0(·) = 1+

n0

a
∑

i=1

a0
i (p, k)q−i, B0(·) =

n0

b
∑

i=0

b0
i (p, k)q−i, (1)

with n0
a, n0

b ≥ 0 and with p-dependent coefficients a0
i and

b0
i defined as

a0
i (p, k) =

n0

α
∑

j=0

α0
i,jfj(p, k), b0

i (p, k) =

n0

β
∑

j=0

β0
i,jgj(p, k),
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fj and gj are functions that are bounded on the range of p

Remark 1: In this paper the coefficients ai and bi will

be functions of the instantaneous value of p, i.e. fj(p, k) =
fj

(

p(k)
)

and gj(p, k) = gj

(

p(k)
)

. In general however, it is

possible that they also depend on shifted values of p.

The actual noise dynamics have the form:

D0(q, p, k)v(k) = C0(q, p, k)e(k),

where e is a white noise process, and the p-dependent

polynomials D0 and C0 with order n0
d ≥ n0

c ≥ 0 are monic

and defined similarly to A0 with a linear parameterization in

terms of the nonlinear functions hj(·) and rj(·).
The LPV data generating system can now be defined as:

A0(q, p, k)y̆(k) = B0(q, p, k)u(k),

D0(q, p, k)v(k) = C0(q, p, k)e(k),

y(k) = y̆(k) + v(k).

(2)

A model, denoted M(θ) where θ is the parameter vector,

will be used to approximate the actual process dynamics and

noise dynamics. A model set M results when θ is assumed

to vary over a set, θ ∈ DM ⊂ Rd, where d is the number of

parameters. In this paper, the one-step-ahead prediction error

will be minimized to find the optimal parameter vector (so

called prediction-error identification).

The LPV-ARX model structure is a generalization of the

LTI-ARX model structure, i.e. let C(·) = 1 and D(·) = A(·).
From [1], the set of predictors with LPV-ARX structure

can be formulated (under the assumption that noise-free

observations of p(k), p(k − 1), . . . are available) as:

ŷ(k|θ)=B(q, p, k, θ)u(k)+
(

1−A(q, p, k, θ)
)

y(k), (3)

where A and B are defined analogously to (1) and have

‘orders’ na, nα, nb, nβ respectively, and

θ = [β0,0 · · · βnb,nβ
α1,0 · · · αna,nα

] ∈ DM ⊂ R
d.

The LPV-ARX predictor model, (3), is a function of the

data {u(k), p(k), y(k)}k=0,...,N−1, and the initial conditions

{u(k)}k=−nb,...,−1 and {y(k)}k=−na,...,−1. Denote the data

set as:

ZN =











{u(k), p(k), y(k)}k=0,...,N−1,

{u(k)}k=−nb,...,−1,

{y(k)}k=−na,...,−1.











. (4)

Throughout the paper, the predictor model will be denoted

ŷ(k|θ) or ŷ(k|ZN , θ) or ŷ(k|ZN) depending on whether

certain dependencies are to be emphasized.

One difference between the LPV prediction-error frame-

work and the LTI prediction-error framework is that in the

LPV case there is no transfer function representation - the

dynamic map between u and y is not constant over time, but

depends on the time-varying signal p [1].

III. LTI INFORMATIVE DATA AND IDENTIFIABILITY

In this section the concepts of informative data and identi-

fiability in the LTI prediction-error framework will be briefly

recalled. A predictor model in the LTI case is defined as [2]:

ŷ(k|θ) = Wu(q)u(k) + Wy(q)y(k) = W (q)z(k).

where z(k) = [u(k) y(k)]T . When studying informative data

and identifiability in the classical LTI framework u and y are

assumed to be quasistationary and the data set is assumed to

be {u(k), y(k)}k=0,...,∞ where the initial conditions become

negligible due to the infinite size of the data set.

Statement 1: The fundamental reason that conditions must

be put on the data set is to ensure that “different” models

result in “different” predicted outputs.

A data set that meets these requirements is said to be

informative w.r.t. the model structure under consideration.

The reason why different is in quotations is because it has

been used in an ambiguous manner. The following definition

formalizes model equality.

Definition 1: LTI predictor models M1,M2 ∈ M are

equal if W1(e
jω)−W2(e

jω) = 0 for almost all ω ∈ [0, π].
Using Definition 1, Statement 1 can be formalized.

Definition 2: A data set Z∞ is informative w.r.t. an LTI

model structure M if for any M1,M2 ∈ M,

lim
N→∞

1

N

N−1
∑

k=0

E[
(

(ŷ1(k|Z
N)−ŷ2(k|Z

N)
)2

]=0 ⇒ M1=M2

where E[·] is the expected value operator, and equality of

models is defined in Definition 1.

Next, the concept of identifiability will be investigated.

Statement 2: A model structure is said to be globally

identifiable at θ1 if any model that is “different” from the

model represented by θ1 is represented by a “different”

parameter vector in DM. The map from DM to M is one

to one and onto (bijective).

Again, using Definition 1, Statement 2 can be formalized.

Definition 3: A model structure M is globally identifiable

at θ1 if, for any θ2 ∈ DM,

M(θ1) = M(θ2) =⇒ θ1 = θ2,

where equality of models is defined in Definition 1.

One last concept which will be useful later on is the

concept of persistence of excitation.

Definition 4: Let Ru(k)= lim
N→∞

1
N

∑N
i=1E[u(i)u(i−k)]. A

signal u is persistently exciting of order n if the matrix

R̄ =







Ru(0) · · · Ru(n − 1)
...

...

Ru(n − 1) · · · Ru(0)






(5)

is nonsingular [2].

Remark 2: Informativity is a property of a data set (and

dependent on a model structure), identifiability is a property

of a model structure, and persistence of excitation is a prop-

erty of a signal (and is independent of the model structure).

Informative data is important to ensure that the identifica-

tion criterion can discriminate between models. A common

identification criterion is:

VN (θ) =
1

N

N−1
∑

k=0

(

y(k) − ŷ(k|θ, ZN )
)2

. (6)

If the data set is not informative then the identification

criterion cannot discriminate between different models.
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If a model structure is not identifiable it could happen

that the minimizer of the identification criterion will be a set

of parameter vectors. It is clear that identifiability is a less

crucial property than informative data.

Next, the concepts of informative data and identifiability

will be generalized such that they can be applied to the LPV

prediction-error framework.

IV. LPV INFORMATIVE DATA AND IDENTIFIABILITY

When formulating the definitions of informative data and

identifiability in the LPV framework, the following points

will be taken into consideration:

• LPV models cannot be described by a transfer func-

tion, therefore model equality cannot be defined as in

Definition 1 and,

• the scheduling variable p is a function that is given to

the user for only a finite time period with no obvious

extension to an infinite time signal.

Due to the second reason all the results in the sequel will be

stated in a finite time framework.

The equivalence of two LPV predictor models will be

defined as follows:

Definition 5: Two models M1,M2 ∈ M are equal if

ŷ1(k|Z
N ) − ŷ2(k|Z

N ) = 0, k = 0, . . . , N − 1

for all data sets ZN of the form (4) for all N > 0.

Statement 1 can now be formalized in the LPV setting.

Definition 6: A data set ZN of the form (4) is informative

w.r.t. an LPV model structure M if for any M1,M2 ∈ M,

ŷ1(k|Z
N ) − ŷ2(k|Z

N ) = 0, k = 0, ..., N − 1 ⇒ M1 = M2

where equality of models is defined in Definition 5.

Formalizing Statement 2 in the LPV setting results in:

Definition 7: An LPV model structure M is globally

identifiable at θ1 if, for any θ2 ∈ DM,

M(θ1) = M(θ2) =⇒ θ1 = θ2,

where equality of models is defined in Definition 5.

By Definition 7, M is globally identifiable at θ1 if for any

θ2 ∈ DM, θ2 6= θ1 there exists a data set ZN such that

N−1
∑

k=0

(

ŷ(k|θ1, Z
N ) − ŷ(k|θ2, Z

N )
)2

6= 0. (7)

Thus identifiability is a property of the model structure, not

the data set (it only depends on the existence of a data set).

Remark 3: For a model structure that is identifiable, and

a data set that is informative w.r.t. the model structure the

following implication holds: if two models have the same

predicted outputs then θ1 = θ2.

The concept of persistence of excitation must also be

adapted to a finite time framework.

Definition 8: Let RN
u (k) = 1

N

∑N−1
i=0 u(i)u(i − k). A

finite length signal {u(k)}k=0,...,N−1 is persistently exciting

of order n if the matrix

R̄N =







RN
u (0) · · · RN

u (n − 1)
...

...

RN
u (n − 1) · · · RN

u (0)






(8)

is nonsingular.

Remark 4: The definitions in Sec. IV are formulated in a

setting where only one realization of a system is known (due

to the reasons mentioned at the beginning of this section),

whereas in Sec. III they are formulated in a stochastic setting

where the probability distributions of the signals are known.

In the next section, Definitions 6, 7, 8 are applied to the

LPV-ARX model structure.

V. INFORMATIVE DATA AND IDENTIFIABLILTY OF THE

LPV-ARX MODEL STRUCTURE

Given a LPV-ARX model structure, conditions on the

data set will be derived for two specific trajectories of the

scheduling variable: periodic and piecewise constant. The

proofs of the theorems will use a notation based on the proofs

in [5] but will not be restricted to LPV-ARX models with

nα = nβ , na = nb, and fi = gi as is the case in [5]. First,

a lemma, a definition and an assumption will be presented.

Lemma 1 ([7]): Let A and B be an m×n and n×p ma-

trices. Then rank(AB) ≤ min(rank(A), rank(B)). Moreover,

if B is such that rank(B) = n, then rank(AB) = rank(A).
Definition 9 ([8]): A set of n functions {f1, . . . , fn} de-

fined on a domain Ω is called unisolvent on Ω if






f1(x1)
...

f1(xn)






, . . . ,







fn(x1)
...

fn(xn)







are linearly independent for any xi ∈ Ω, xi 6= xj , i 6= j.

Some examples of unisolvent sets of functions are: {1, x,

. . ., xn−1} on any interval [a, b]; and {1, cos(x), sin(x), . . .,

cos(nx), sin(nx)}, on interval [−π, π] [8]. An example of a

set that is not unisolvent is {1, x2} defined on [−a, a].
The noise will be characterized in the following way:

Assumption 1: Let W ∈ RN×nb be a matrix with columns

containing delayed versions of u. Let ~y−i denote a vector

containing a delayed version of y: ~yT
−i =[y(−i) . . . y(N−1−

i)]. Recall from (2) that y = y̆+v. Assume v is such that the

matrix [W ~y−1 · · · ~y−na
] has rank equal to rank(W ) + na,

i.e. the noise is such that the vectors ~y−1, . . . ~y−na
, are

linearly independent of each other and W .

Note that vectors containing samples from an independent

identically distributed random variable satisfy Assumption 1

with probability one.

Finally, before stating the main theorem of this section,

consider a representation of a signal that reveals its persis-

tence of excitation:

u(k) =

nu
∑

ℓ=1

nℓ−1
∑

m=0

ζℓ,mkmξk
ℓ , ξi, ζi ∈ C, (9)

where ζℓ,nℓ−1 6= 0, ξi 6= ξj , i 6= j. Any finite length signal

can be representation in this way, and u is persistently
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exciting of order
∑nu

ℓ=1 nℓ for sufficiently large N [9].

Consequently, the order of excitation of u can be increased

either by adding another basis function ξk
i where ξi 6= ξj , i 6=

j, or by increasing nℓ of one of the existing basis functions

(again, for sufficiently large N ).

To keep the proofs of the theorems clear, the following

sub-class of (9) will be considered in the sequel:

U : {u(k) =

nu
∑

ℓ=1

ζℓξ
k
ℓ , ξi, ζi ∈ C, ζi 6=0, ξi 6=ξj , i 6=j}. (10)

The initial conditions of u are u(−ni), . . . , u(−1). The

class U is comprised of sums of decaying exponentials and

sinusoids. For example u(k) = 0.5e−jωk + 0.5ejωk and

u(t) = ak + bk, a 6= b are in the set. The theorems of

this section could be derived completely analogously using

the class of signals (9).

Remark 5: Investigate the persistency of excitation for

finite length signals u ∈ U . The matrix R̄N in Definition

8 can be factored as R̄N = R̃T
N R̃N , where:

R̃N =







u(0) . . . u(−n + 1)
...

...

u(N − 1) . . . u(N − n)







=











1 · · · 1
ξ1 · · · ξnu

...
...

ξN−1
1 · · · ξN−1

nu











Bi











1 ξ−1
1 · · · ξ−n+1

1

1 ξ−1
2 · · · ξ−n+1

2
...

...
...

1 ξ−1
nu

· · · ξ−n+1
nu











where Bi = diag(ζ1, . . . , ζnu
). There are two cases:

• (n ≤ nu ≤ N ). By Lemma 1, rank(R̃N ) = n.

• (n ≤ N ≤ nu). By Lemma 1, rank(R̃N ) ≤ n.

In the second case the rank can be less than n if ξ1, . . . , ξnu

are chosen properly. However, the probability of this re-

duction in rank is zero with ξ1, . . . , ξnu
chosen arbitrarily.

Therefore in both cases the signal u can be said to be

generically persistently exciting of order n.

In the following theorem conditions are derived such

that the data set is informative w.r.t. the LPV-ARX model

structure. The class of permissible functions in the param-

eterization of ai and bi is restricted by unisolvency; the

class of possible input signals is restricted by persistency of

excitation (in the sense of Definition 8); and the scheduling

trajectory is restricted to be piecewise constant.

Theorem 1: Consider an LPV-ARX model structure with

a parameterization in terms of the set of functions F =
{f1, . . . , fnα

} and G = {g1, . . . , gnβ
}. Let u ∈ U with the

number of initial conditions ni = nb (see (10)). Let p be

piecewise constant with ℓ levels, each of length m1, . . . , mℓ

respectively. Let mi ≥ na + nb + 1, i = 1, . . . , ℓ. Let F
and G be unisolvent on the interval [min(p), max(p)]. Then,

generically (due to Remark 5), the data set ZN is informative

if and only if

(a) nu ≥ nb + 1,

(b) ℓ ≥ max{nα + 1, nβ + 1}.

Note that conditions (a)-(b) imply that N ≥ d.

Proof: From the definition of informative data, it must

be shown that for this data set, if the predicted outputs of two

models are the same, then the models are the same. Using

(3), the difference between two LPV-ARX predictors is

ŷ(k|θ1)− ŷ(k|θ2) =
(

B(q, p(k), θ1)−B(q, p(k), θ2)
)

u(k)

−
(

A(q, p(k), θ1) − A(q, p(k), θ2)
)

y(k)

which can be grouped together into a matrix expression:

[φu φy](θ1 − θ2), where

θT
i = [βi

0,0 . . . βi
nb,0 . . . βi

0,nβ
. . . βi

nb,nβ
. . .

. . . αi
1,0 . . . αi

na,0 . . . αi
1,nα

. . . αi
na,nα

] ∈ R
d

φT
u =



























u(0)g0

(

p(0)
)

· · · u(N−1)g0

(

p(N−1)
)

...
...

u(−nb)g0

(

p(0)
)

· · · u(N−nb−1)g0

(

p(N−1)
)

...
...

u(0)gnβ

(

p(0)
)

· · · u(N−1)gnβ

(

p(N−1)
)

...
...

u(−nb)gnβ

(

p(0)
)

· · · u(N−nb−1)gnβ

(

p(N−1)
)



























where i = 1, 2, and φy is defined similarly, but with shifted

versions of y. Let φ(ZN ) = [φu φy] ∈ RN×d. For a

particular data set ZN
part to be informative, the implication

in the definition of informative data can then be written as:

φ(ZN
part)(θ1−θ2)=0N ⇒ φ(ZN )(θ1−θ2)=0 ∀ZN (11)

N ≥ d. The proof will proceed as follows. First it will be

shown that φ(ZN
part) is full rank iff the conditions listed in the

theorem hold (part 1). Then it will be shown that the data is

informative iff φ(ZN
part) is full rank (part 2).

(Part 1 sufficiency). Assume the conditions hold. It must

be shown that φ(ZN
part) is full rank. The matrix φ(ZN

part) will

be factored which will allow for analysis of its rank.

By assumption, p has ℓ unique levels, which are each

m1, . . . , mℓ samples long. Within the sequence p, it is

possible to find ℓ sequences such that:

p1 = p(k1) = · · · = p(k1 + m1 − 1)
...

pℓ = p(kℓ) = · · · = p(kℓ + mℓ − 1)

where pi 6= pj , i 6= j, 0 = k1 < k2 < · · · < kℓ. Using this

notation, it is possible to factor φ(ZN
part) such that:







U1 Y1

. . .
. . .

Uℓ Yℓ







[

G ⊗ Inb+1

F ⊗ Ina

]

=







W1

. . .

Wℓ






P

[

G ⊗ Inb+1

F ⊗ Ina

]

= WPH ∈ R
N×d (12)

where

G =







g0(p1) · · · gnβ
(p1)

...
...

g0(pℓ) · · · gnβ
(pℓ)






, F =







f0(p1) · · · fnα
(p1)

...
...

f0(pℓ) · · · fnα
(pℓ)






,
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Ui =







u(ki) · · · u(ki − nb)
...

...

u(ki + mi − 1) · · · u(ki + mi − nb − 1)






,

Yi =







y(ki − 1) · · · y(ki − na)
...

...

y(ki + mi − 2) · · · y(ki + mi − na − 1)






,

P is a permutation matrix, Wi = [Ui Yi] ∈ Rmi×(na+nb+1),

and
∑ℓ

i=1 mi = N . Note that the initial conditions of u

appear in U1. Since u ∈ U , each matrix Ui can be written

as

Ui =











1 · · · 1
ξ1 · · · ξnu

...
...

ξmi−1
1 · · · ξmi−1

nu











Bi











1 ξ−1
1 · · · ξ−nb

1

1 ξ−1
2 · · · ξ−nb

2
...

...
...

1 ξ−1
nu

· · · ξ−nb
nu











= U1,iBiU2,i (13)

where Bi = diag(ζ1ξ
ki

1 , . . . , ζnu
ξki
nu

).
To conclude this section of the proof, Lemma 1 will be

used to show φ(ZN
part) is full rank. Generically,

rank(W ) = ℓ(na + nb + 1)

by Assumption 1 and Remark 5. And,

rank(H) = (nb + 1)rank(G) + narank(F ) = d

by unisolvency of F and G. Moreover,

dim(W ) = N × ℓ(na + nb + 1), N ≥ ℓ(na + nb + 1)

dim(H) = ℓ(na + nb + 1) × d, ℓ(na + nb + 1) ≥ d

where the inequalities hold by condition (b). Then by Lemma

1, rank(WPH) = d, i.e. φ(ZN
part) is full rank.

(Part 1 necessity). Assume that φ(ZN
part) is full rank. It

must be shown that the conditions (a) and (b) hold.

(a). Proof by contradiction. Suppose nu < nb + 1. Then

rank(U2,i) = min{nu, nb + 1} = nu,

and by Lemma 1, rank(Ui) = min{mi, nu} < nb +1. Since

the dim(Ui) = mi × (nb + 1), at least one column can be

reduced to zeros by elementary column operations, i.e. there

exists a permutation matrix Pu such that UiPu = [Ũi 0].
Since each U2,i is the same for every i, the same Pu will

put a column of zeros at the end of every Ui. This means

that there exists a permutation matrix such that:

φu(ZN
part) =







g0(p1)U1 · · · gnβ
(p1)U1

g0(p2)U2 · · · gnβ
(p2)U2

...
...













Pu

Pu

. . .







=







g0(p1)[Ũ1 0] · · · gnβ
(p1)[Ũ1 0]

g0(p2)[Ũ2 0] · · · gnβ
(p2)[Ũ2 0]

...
...







which is clearly not full rank since it has columns of

zeros. This is a contradiction to the original assumption that

φ(ZN
part) is full rank, so conclude that nu ≥ (nb + 1).

(b). Proof by contradiction. Suppose ℓ<max{nα+1, nβ+
1}. By assumption, and by Lemma 1

d = rank(φ(ZN
part)) ≤ min{rank(W ), rank(H)}

so rank(H) must be at least d. However,

rank(H) = min{ℓ, nβ}(nb + 1) + min{ℓ, nα + 1}na < d

Which is a contradiction; conclude ℓ ≥ max{nα+1, nβ+1}.

Finally, it will be shown that the data is informative iff

φ(ZN
part) is full rank.

(Part 2 sufficiency). Assume φ(ZN
part) is full rank. It must

be shown that implication (11) holds. Since φ(ZN
part) is full

rank, the left hand side equation implies that θ1 − θ2 = 0.

If θ1 − θ2 = 0, then the right hand side equation will also

equal zero, which means the implication holds.

(Part 2 necessity). Assume implication (11) holds. It must

be shown that φ(ZN
part) is full rank. Proof by contradiction:

suppose φ(ZN
part) is not full rank. Let θ1, θ2 be such that

θ1 6= θ2, and φ(ZN
part)(θ1 − θ2) = 0. Since F and G are

unisolvent, and the noise is non zero, then by Part 1 of the

proof, there exists a ZN such that φ(ZN ) is full rank so that

φ(ZN )(θ1 − θ2) 6= 0. Therefore the implication does not

hold which is a contradiction. Conclude that φ(ZN
part) must

be full rank.

Theorem 2: Consider an LPV-ARX model structure with

a parameterization in terms of the set of functions F =
{f1, . . . , fnα

} and G = {g1, . . . , gnbeta
}. Let u ∈ U with

the number of initial conditions ni = nb (see (10)). Let p be

periodic with period Tp, ℓ unique values per period, and m

periods. Let m ≥ na + nb + 1. Let F and G be unisolvent

on the interval [min(p), max(p)]. Then, generically (due to

Remark 5) the data set ZN is informative if and only if

(a) nn ≥ nb + 1,

(b) ℓ ≥ max{nα + 1, nβ + 1}.

with the exception of the special case that if nu = nb + 1,

then u cannot contain a sinusoid of the same period as p.

Proof: The proof is the same as the proof of Theorem

1 except for a few small changes. Compared to the proof of

sufficiency of Part 1 of Theorem 1 the elements of Ui and

Yi in this case are different. Since p is periodic with period

Tp, with m periods in the data set, and ℓ unique values per

period, p1, . . . , pℓ are defined as:

p1 = p(0) = · · · = p((m − 1)Tp)
...

pℓ = p(ℓ − 1) = · · · = p(ℓ − 1 + (m − 1)Tp)

where pi 6= pj , i 6= j. Using this notation, φ(ZN
part) can be

factored in the form (12), where G, F , H , W and P are

defined the same as in Theorem 1, but

UT
i =







u(i) u(i + Tp) ··· u(i + mTp)
...

...
...

u(i − nb) u(i + Tp − nb) ··· u(i + mTp − nb)







Y T
i =







y(i − 1) y(i + Tp − 1) ··· y(i + mTp − 1)
...

...
...

y(i − na) y(i + Tp − na) ··· y
(

i + mTp − na)






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TABLE I

DATA SETS

Data Set Input Period of p

ZN

1
u(k) = 0.9k + (−0.8)k [1 2 3]
u(−1) = 0.9−1

− 0.8−1 p(−1) = 3
ZN

2
u(k) = 0.9k + (−0.8)k [1 2 2]
u(−1) = 0.9−1

− 0.8−1 p(−1) = 2
ZN

3
u(k) = 0.9k [1 2 3]

u(−1) = 0.9−1 p(−1) = 3
ZN

4
u(k) = sin(2πk/6) [1 2 3]
u(−1) = sin(−π/3) p(−1) = 3

ZN

val u(k) = white noise 0.5[1 2 3 4 5 6]
u(−1) = 0 p(−1) = 3

Each matrix Ui can be factored the same way as in (13) but

with ξk replaced by ξ
Tp

k and Bi = diag(ζ1ξ
i
1, . . . , ζnu

ξi
nu

).
The Vandermonde matrices will be full rank as long as ξi 6=
ξj , i 6= j, with one exception. If ξk = eiπ/Tp and ξℓ =

e−iπ/Tp , then ξ
Tp

k = ξ
Tp

ℓ = 1. This corresponds to u having a

sinusoidal component with the same period as the scheduling

parameter. Therefore if this is the case, nu must be equal to

at least nb + 2 to ensure that Ui has rank nb + 1.

The rest of the proof is analogous to Theorem 1.

Theorem 3: The LPV-ARX model structure is globally

identifiable at any θ ∈ DM, if and only if the non-linear

functions {fj}, j = 1, . . . , nα are linearly independent and

the functions {gj}, j = 1, . . . , nβ are linearly independent.

Proof: By Definition 7 it must be shown that for any

θ2 ∈ DM, θ2 6= θ1, there exists a data set such that the

predicted outputs are different. Using the same notation as

Theorem 1, the difference of two predicted outputs can be

written as a matrix expression, φ(ZN )(θ1 − θ2). Therefore,

the LPV-ARX model structure is identifiable iff there exists

a data set Z̃N such that φ(Z̃N ) is full rank.

(Necessary). If gi can be written as a linear combination

of the other nonlinear functions gj , j 6= i, then the rows

of φT
u (see notation in Theorem 1) that are functions of gi

can written as a linear combination of the other nonlinear

functions gj, j 6= i, and so the matrix φT
u will have less than

full row rank for all Z̃N . The same argument holds for φy .

(Sufficient). Since the functions {f1,. . . ,fnα
} and {g1,. . . ,

gnβ
} are linearly independent, there always exists a schedul-

ing variable trajectory such that the sets F and G are

unisolvent. Then by Theorem 1 a data set Z̃N exists such

that φ is full rank.

Example 1: Choose an LPV-ARX model structure with

na = nb = 1 and nα = nβ = 2, and fj(x) = gj(x) = xj .

Let N =90, with SNR of 45dB. Four different data sets (as

shown in Table I) were used to estimate the actual parameter

vector by minimizing (6). Only ZN
1 is informative.

The actual and estimated parameter vectors are tabulated

in Table II. Noise free simulations of the estimated systems

using a validation data set ZN
val are plotted in Fig. 2. From

Table II and Fig. 2 it can be seen that the models estimated

using non-informative data are quite inaccurate, whereas the

prediction of the output y using the model estimated via ZN
1

is barely distinguishable from the true system.

TABLE II

ESTIMATED PARAMETER VECTORS

True Parameter Vector

[0.20 0.40 0.30 0.50 0.60 0.60 0.20 − 0.60 0.20]

Data Set Estimated Parameter Vector

ZN

1
[0.20 0.41 0.29 0.47 0.62 0.59 0.21 − 0.61 0.20]

ZN

2
[0.46 0.00 0.43 0.89 0.00 0.80 − 0.20 0.00 0.00]

ZN

3
[0.00 0.00 0.00 0.72 0.90 0.89 0.21 − 0.62 0.20]

ZN

4
[0.00 0.00 0.46 0.61 0.00 0.76 − 0.64 0.71 − 0.16]
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Fig. 2. Plots of the noise-free outputs of the 4 estimated systems

VI. CONCLUSION

The notions of informative data and identifiability were

investigated for LPV models. Specific conditions were de-

rived to ensure informative data and to ensure identifiability

for the LPV-ARX model structure. It was assumed that ai

and bi depended on instantaneous values of p, however the

theorems can be extended to include dynamic dependencies.

The definitions presented give a framework within which it

is possible to investigate informative data and identifiability

for LPV-ARMAX, LPV-OE, and LPV-BJ model structures.
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