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Abstract— This paper proposes a vision-based obstacle avoid-
ance strategy in a dynamic environment for a fixed-wing
unmanned aerial vehicle (UAV). In order to apply a nonlinear
model predictive control (NMPC) framework to image-based
visual servoing (IBVS), a dynamic model from UAV control
input to image features is derived. From this dynamics, a visual
information-based obstacle avoidance strategy in an unknown
environment is proposed. When a vision system is employed
on a UAV, it is easy to lose visibility of the target in the
image plane due to its maneuvering. To address this issue,
a visibility constraint is considered in the NMPC framework.
The advantage of the proposed method is that the constraints
(e.g., visibility maintaining, actuator saturation) can be modeled
and solved in a unified framework. Numerical simulations on a
UAV model show satisfactory results in reference tracking and
obstacle avoidance maneuvers with the constraints.

I. INTRODUCTION

Cameras have become ubiquitous in unmanned aerial ve-
hicle (UAV) systems. Vision allows a UAV to obtain not only
surveillance images but also qualitative information on the
surrounding environment. Therefore, many researchers have
exploited this sensor for various purposes beyond surveil-
lance. In particular, image-based visual servoing (IBVS)
has been actively studied [1], [2], [3], because the sensor
gives rich information about the environment with low-cost
compared to radar systems.

The objective of IBVS is to control the system to place the
target image features in the desired image position. To this
end, classical IBVS approaches utilize an image Jacobian
matrix which relates image plane velocity to camera body
velocity [1]. The image Jacobian matrix is parameterized
by intrinsic parameters of the camera and the depth of the
feature [4]. Due to the fact that the image Jacobian matrix is
parameterized by depth and pixel coordinates only, if some
targets move out of the camera field of view (FOV) during
the operation, the value of current features can no longer
be computed. To overcome this disadvantage, IBVS with
visibility maintenance has been proposed using nonlinear
model predictive control (NMPC) [5], [6]. The NMPC-
based IBVS allows the controller to consider visibility con-
straints naturally in the nonlinear optimization framework.
The advantage of this approach is that there is no need
to maintain control input separately for the UAV to see
a specific target. The control input is generated based on
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Fig. 1. Structure of proposed system based on NMPC

the imposed constraints and predicted states over a receding
horizon in order to track the desired trajectory.

There are a few works related to IBVS in the MPC
framework for fully-actuated robotic manipulators. In [5],
a solution to control a 6-DOF robotic manipulator to see
desired image coordinates is proposed based on NMPC.
Using a cost function based on errors in the image plane,
convergence and stability of the robot motion have been
obtained. It is shown to be robust to calibration error and
measurement noise. In [6], visual predictive control (VPC)
is used to move a robotic manipulator while maintaining
visibility constraints. They consider mechanical and visibility
constraint in the NMPC framework.

Recent studies have reported on MPC for obstacle avoid-
ance. [7] considers obstacle avoidance for an unmanned
ground vehicle (UGV) with MPC. The reference trajectories
are computed for collision avoidance, without consideration
of maintaining visibility of the target. For the UAV obstacle
avoidance, [8] and [9] present extended Kalman filter-based
target estimation method. In these papers, the reference
tracking and obstacle avoidance controls are constructed
in separate structures. Therefore, it is difficult to maintain
the optimality in both obstacle avoidance and visibility
maintenance maneuvers. As far as we know, there has been
no report to avoid obstacles while maintaining visibility
constraints of the target for UAV.

In this paper, a visual information-based obstacle avoid-
ance algorithm for a fixed-wing UAV is proposed. For
the UAV, three contraints should be considered in practical
system: input saturation, visibility maintanence and obstacle
avoidance. In order to deal with the constraints in a unified
manner, the NMPC framework is applied to the control
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Fig. 2. Information flow for visual servoing with NMPC

Fig. 3. Fixed-wing UAV used in the camera-in-the-loop simulation

system. Also, dynamics from UAV control inputs to image
feature states defined in the image frame is derived to
implement the visual information-based NMPC framework
simultaneously. To our knowledge, this is the first work on
obstacle avoidance algorithm for a UAV while considering
target visibility, obstacle constraints and input constraints.
The overall system flow is depicted in Fig. 2

This paper is organized as follows. In section II, a dynamic
model of the UAV and image are introduced and integrated
to derive UAV-to-image dynamics. In section III, IBVS with
NMPC for obstacle avoidance is presented. The results and
conclusion are presented in section IV and V.

II. DYNAMIC MODELS

In order to apply the NMPC framework to the IBVS for the
UAV model, the dynamics from the control input of the UAV
to the image feature must be clarified. In this section, the
dynamics of the UAV in the 3-D Cartesian coordinate frame
and the dynamics of the image features in the 2-D image
coordinate frame are introduced, briefly. Then, the integration
of both dynamics for IBVS is performed.

A. A Fixed-Wing Dynamics

A UAV model considered in this paper is shown in (1). The
parameters are based on fixed-wing UAV namely SNUACE
in laboratory as shown in Fig. 3.

ẋv = fv(xv, uv) =



V̇ = 0

γ̇ = (uγ − g cos γ) /V

ψ̇ = uψ/(V cos γ)

Ẋv = V cos γ cosψ

Ẏv = V cos γ sinψ

Żv = −V sin γ

(1)

where xv = [V γ ψ Xv Yv Zv]
T and uv = [uγ uψ]T .

Fig. 4. Axes definition of the fixed-wing UAV

V , γ and ψ denote velocity, flight path angle and heading
angle of the UAV, respectively. Xv , Yv and Zv represent
position of the UAV defined in the inertial coordinate frame.
In many fixed-wing UAV operations, the velocity of the UAV
is set to be constant [10]. Therefore, the rate of the velocity
of the UAV is considered zero as shown in the first line of
(1). Control inputs uγ and uψ denote acceleration for pitch
and yaw direction, respectively.

B. Image Dynamics

Visual servoing strategies require understanding of camera
geometry which maps the world coordinate into the image
plane. In this study, a pinhole camera model is considered
to describe the camera geometry as shown in Fig. 5.

Let [X̂I , ŶI , ẐI ]
T be the axes of the inertial coordi-

nate frame I representing the three-dimensional space, and
[X̂c, Ŷc, Ẑc]

T be the axes of the camera frame C, i.e., the
coordinate frame attached to the camera center Oc. Let
[Ûs, V̂s]

T be the coordinate axes of the image frame S,
and Os denote the principal point where the z axis of the
camera coordinate intersects the image plane. f , the distance
between Oc and Os, is the focal length of the camera.
The mapping from a point P = [Xc, Yc, Zc]

T in the three-
dimensional space to a point p = [Us, Vs]

T can be written
as (2).

p =

[
Us
Vs

]
=

f

Zc

[
Xc

Yc

]
(2)

Suppose that the camera is moving so that the point P
moves with translational velocity T = [Tx, Ty, Tz]

T and
rotational velocity Ω = [ωx, ωy, ωz]

T , with respect to the
camera frame C. The dynamics of the point P with respect
to C can be expressed as (3).

Ṗ = −Ω× P − T (3)

Let us substitute (2) into (3), and let ṙ denote the velocity
of the camera:

ṙ =

[
T
Ω

]
=
[
Tx, Ty, Tz, ωx, ωy, ωz

]T
. (4)

Then the image feature dynamics can be presented in the
following vector form :

ṗ = Jpṙ. (5)
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Fig. 5. Geometry and coordinate frames for a pinhole camera model

where

Jp =

[
− f
Zc

0 Us
Zc

UsVs
f − f

2+U2
s

f Vs

0 − f
Zc

Vs
Zc

f2+V 2
s

f −UsVsf −Us

]
(6)

is called the image Jacobian matrix Jp associated with p.
(5) describes the relationship between the camera velocity
defined in the camera frame and the image feature velocity
defined in the image frame.

C. Image and UAV Dynamics Integration

Let the camera be mounted on the nose of the UAV
looking forward. Therefore, the translational motion of the
camera along with the z-axis Tz , defined in the camera
frame, is the same as the velocity of the UAV, V . Tx and
Ty are considered as zero with the assumption of no side-
slip motion. Also, there is no rolling motion in the UAV
dynamics as given in (1), so ωz is zero. The translation and
rotational velocity of the camera ṙ can be regarded as

[Tx, Ty, Tz, ωx, ωy, ωz] = [0, 0, V, ψ̇, γ̇, 0] (7)

Then, using a combination of (1) and (7), (5) can be
written as (8):

ṗ =

[
Us
Zc
V + UsVs

f · uψ
V cos γ −

f2+U2
s

f · uγ−g cos γV

− Vs
Zc
V +

f2+V 2
s

f · uψ
V cos γ −

UsVs
f · uγ−g cos γV

]
= fs(p, u, γ) (8)

III. IMAGE-BASED VISUAL SERVOING WITH NMPC
FOR OBSTACLE AVOIDANCE

A. Problem definition

The existing obstacle avoidance approaches have been
studied about generating a set of waypoints q(1), . . . , q(n)
that allows the vehicle to avoid other objects. However, in
practice, dynamic constraints (e.g., input/output constraint)
can prohibit the vehicle from following the reference tra-
jectory xr(t) that passes waypoint q(k) at specific time tk.
Therefore the reference trajectories have to be generated
based on the vehicle dynamics, fv . It can be formulated as
follows for some control input u(t).

(Solve) xr(t) (9)
such that xr(tk) = q(k) k = 1, . . . , n (10)

and ẋr(t) = fv(xr(t), u(t)) (11)

After solving xr(t), the control input u(t) should be
computed that allows state x(t) to follow xr(t) as the
following formulation:

(Design) u(t) (12)
such that ‖x(t)− xr(t)‖ ≤ ε (13)

and g(x(t), u(t)) ≤ 0 (14)

where u(t) is the input, ε is a small positive real number and
g(·) ≤ 0 are the set of constraints.

Using the visual information from a camera and a range
sensor, it is difficult to generate a followable trajectory for
a UAV in an unknown environment. With the single camera
and range sensor information, determining the position of
the multiple dynamic obstacles requires heavy computational
load, and sometimes causes inaccuracy. The image-based vi-
sual servoing is applied to implement the obstacle avoidance
maneuver because it does not require 3-D reconstruction.
However, during the maneuver, the image feature must be
kept in the image plane, otherwise there is no information
with which to compute the reference trajectory. To maintain
the visibility, the UAV-to-image dynamics and line-of-sight
constraints should be considered simultaneously. To fulfill
this requirements, the following constraints are considered
in this paper.

(Design) u(t) (15)
such that ‖lo‖ − lsat ≤ 0 (16)

‖u(t)‖ − usat ≤ 0 (17)
1/‖Pv − Po‖ ≤ ε (18)

and g(x(t), u(t)) ≤ 0 (19)

where lo is line-of-sight (LOS) angle of an object, ε is a small
positive real number, lsat and usat are saturation values of
the LOS and the control input, respectively. Pv and Po are
the position of vehicle and position of the obstacle in frame
I respectively.

The LOS can be computed from the image feature of
an object. Assuming zero angle of attack and zero side-slip
angle, recalling (2) we can compute[

llon
llat

]
=

arctan
(
Yc
f

)
arctan

(
Yc
f

) . (20)

where llon and llat denote the longitudinal and lateral LOS,
respectively.

B. System model

For NMPC, the overall system equations (1) and (8) are
discretized using the Euler method as follows:

xk+1 ≡ fd(xk, uk). (21)

and we use xk instead of xv and p at time step k for
notational convenience.

At time instant k, the output sequence {yk}t+Nk=t is com-
puted using the control input sequence {uk}t+Nk=t for a time
horizon {t, t+1, · · · , N} and the initial state of the system
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xk. From the control input and output sequences, an optimal
control input u∗ is optimized by minimizing the following
cost function:

{u∗k}t+Nk=t = arg min
{uk}t+Nk=t

J
(
{xk}t+Nk=t , {yk}

t+N
k=t , {uk}

t+N
k=t

)
(22)

From the optimal input sequence {uk}t+Nk=t , the optimal
input {uk}k=t is applied to the given system. Then a next
optimal control input is computed using a next time horizon
{t+ 1, . . . , t+N + 1} (See Fig.1).

C. Constraints embedding

The goal of this research is to control the UAV for tracking
the reference LOS in dynamic unknown environment while
keeping the following requirements.
• Control input should not exceed umax
• During the avoidance maneuvering, the destination im-

age feature should remain in certain LOS, lsat (visibility
maintenance)

• The LOS of each obstacle should larger than lth when
the distance between the UAV and the obstacle is
smaller than zth.

In order to generate trajectories to satisfy the above
requirements, an additional cost term must be added. Note
that the obstacles are detected by the camera and range
sensors, LOS and depth information are used to define the
obstacle cost.

Guk(uk) =

{
1
2 (|uk| − usat)2, if |uk| − usat > 0

0, else
(23)

Glosk =

{
1
2 (|lk| − lsat)2, if |lk| − lsat > 0

0, else
(24)

Jobsk,j =
µobs

(|ljo|+ ε)(zjo + ε)
Gobsk,j (25)

where ljo is a LOS of the j-th obstacle, ε � 1 is adopted
to avoid singularity, zjo is the positive depth value from the
UAV to j-th obstacle and Gobsk,j is

Gobsk,j =

{
1, if |ljo| < lth and 0 < zjo < zth
0, else (26)

D. Optimization process

The optimal control input {u∗(t)}t+Nt is computed from
the following optimization in the NMPC setting [11].

arg min
{uk}N−1

k=0

J ≡ φN +

N−1∑
k=0

L(xk, uk)

(subject to) xk+1 = fd(xk, uk) (27)

where

φN ,
1

2
x̃TNPx̃N (28)

L(xk, uk) ,
1

2
x̃TkQx̃k +

1

2
ũTkRũk (29)

x̃ , xd − x, and P and Q are constant positive definite
weighting matrices to penalize the deviation from the refer-
ence LOS. R is a constant positive definite weighting matrix
to penalize the control input magnitude.

The above cost function can be rewritten as

Ja ≡ φN +

N−1∑
k=0

L(xk, uk) + λTk+1 [fd(xk, uk)− xk+1]

+Gk (30)

where Gk = µuG
u
k+µlosG

los
k +µobs

∑m
j=1 J

obs
k,j . Here, µobs,

µlos and µobs denote weighting parameters for control input,
LOS and obstacle threat, respectively, and m is a number of
obstacles.

Let the Hamiltonian function be

Hk = L(xk, uk) + λTk+1fd(xk, uk) +Gk. (31)

Since we want to choose {u∗(t)}t+Nt that minimizes Ja, we
take a look at

∂Ja
∂(xk, uk)

=

(
∂φ

∂xN
− λTN

)
+
∂H0

∂x0
+
∂H0

∂u0

+

N−1∑
k=1

((
∂Hk

∂xk
− λTk

)
+
∂Hk

∂uk

)
(32)

By choosing the Lagrange multiplier vector as below to make
the derivative of Ja zero,

λTN =
∂φ

∂xN
(33)

λTk =
∂Hk

∂xk
(34)

(32) becomes

∂Ja
∂(xk, uk)

=

N−1∑
k=0

(
∂Hk

∂uk

)
+ λT0 (35)

The gradient of the Hamiltonian with respect to control
inputs is

∂Hk

∂uk

T

= uTkR+ λTk+1

∂fd(xk, uk)

∂uk
+
∂Gk
∂uk

(36)

Then the optimal control u∗ can be computed using gradient
descent optimization [11].

IV. RESULTS

Guidance systems that utilize LOS information are widely
employed for fixed-wing airplanes. Examples include VHF
omni-directional range (VOR) guidance systems at airports,
and net landing systems for automatic recovery of UAVs
[10]. During the reference LOS tracking operation, the
UAV may be required to perform an autonomous obstacle
avoidance maneuver. In this section, reference LOS tracking
performance while avoiding static and moving obstacles and
maintaining visibility is evaluated using vision-integrated
camera-in-the-loop simulation (CILS) as shown in Fig. 6.
In the CILS setup, the image features of the destination and
obstacles are displayed based on their locations and the state
variables of UAV. The camera obtains visual information
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TABLE I
LIST OF CONSTRAINTS USED IN THIS PAPER

Constraint Equation Description

Terminal cost φN = 1
2
x̃TNP x̃N x̃N = xk − xr,N and P is a positive definite weighting

matrix

Tracking performance 1
2
x̃TkQx̃k x̃k = xk−xr,k and Q is positive definite weighting matrix.

It ensures the vehicle to track desired states xr,k .

Control effort minimization 1
2
uTkRuk This ensures that the computed control input is kept as small

as possible. R is positive definite weighting matrix.

Input saturation µuGuk

{
1
2
(|uk| − usat)2, if |uk| − usat > 0

0 , else

Visibility maintenance µlosG
los
k

{
1
2
(|lk| − lsat)2, if |lk| − lsat > 0

0 , else

Obstacle avoidance
∑m
j=1 J

obs
k,j =

∑m
j=1

µobs
(|ljo|+ε)(z

j
o+ε)

Gobsk,j Gobsk,j =

{
1, if |ljo| < lsat and 0 < zjobs < zsat
0, else

The m is the number of obstacles, ljo is a LOS of the j-
th obstacle, ε is included to avoid singularity and zjo is the
positive depth value from the UAV to j-th obstacle.

Fig. 6. Camera-in-the-loop simulation

from the screen to compute LOS of each object. Using LOS
and other state variables, the NMPC controller optimizes a
control input. The performance of the proposed algorithm
is validated compared with classic visual information-based
obstacle avoidance algorithm. The classic approach uses PID
control for obstacle avoidance instead of NMPC.

The mission of the UAV is to follow the reference LOS
derived from the image feature of the destination. As de-
picted in Fig. 7, the initial position and attitude of the UAV
are [x0, y0, z0, φ0, θ0, ψ0] = [−600,−40, 70, 0, 0, 0]. The
position of the destination is [xdes, ydes, zdes] = [0, 0, 100].
The static obstacle is located at [−450,−30, 77], and the
dynamic obstacle is moving from [−50, 225, 80] with the
velocity of [−3.6,−4.4, 0]. The units of position, attitude and
velocity state variables are meter, degree and meter/second,
respectively. Thick and thin solid lines represent UAV tra-
jectories using NMPC and PID, respectively.

Table II presents the values of the parameters used in the
numerical simulation. If an object other than the destination
is placed within the threshold values of LOS and depth
Z, the object is considered as an obstacle. As shown in
Fig. 8, collision with the static and moving obstacles is
avoided around [−500,−30, 75] and [−300,−20, 80] for

both controllers (NMPC and PID). However, the NMPC
controller generates more efficient trajectory for obstacle
avoidance maneuver as given in Fig. 10.

Using the constraints in the NMPC framework, the image
feature of the destination can be maintained in the valid area
(±15 deg), while the image feature leaves the valid area in
the PID framework as shown in Fig. 9. Also, the NMPC
controller generates the control inputs for longitudinal and
lateral acceleration within their saturation values, while the
excessive control inputs of the PID controller are cut off
at the saturation value. Overall, the NMPC controller uses
more efficient input than the PID controller while satisfying
the visibility constraints. The total magnitude of control input
for the NMPC controller is 53.34% that of the PID controller.

V. CONCLUSIONS

This paper describes an image-based obstacle avoidance
algorithm using NMPC framework for a fixed-wing UAV.
With a camera and range sensor, the proposed algorithm
generates an optimal input to avoid the collision with static
and dynamic obstacles while keeping the visibility of the
destination image feature. Constraints for the visibility, UAV
dynamics and the input saturation are considered in the
NMPC framework. In order to implement the image-based

TABLE II
PARAMETER SETTINGS

Parameter Value
Sampling Time, (4τ ) 0.05 s
Horizon Length (N ) 20

Focal Length of The Camera (f ) 695
Gravity (g) 9.81 m/s2

Velocity of the UAV (V ) 5 m/s
Valid Control Inputs (uψ) −0.2 < uψ < 0.2 m/s2

Valid Control Inputs (uγ ) 9.61 < uγ < 10.1 m/s2
Saturation of LOS (lsat) ±10 deg
Threshold of LOS (lth) ±20 deg

Threshold of Depth (zth) 200 m
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Fig. 7. (a): Simulation configuration, (b): Resulting trajectories of UAV
under NMPC and PID

−600 −500 −400 −300 −200 −100 0
−40

−20

0

20

40

y
 (

m
et

er
)

x (meter)

 

 

NMPC

PID

−600 −500 −400 −300 −200 −100 0
60

80

100

120

z 
(m

et
er

)

x (meter)

 

 

NMPC

PID

Moving ObstacleStatic Obstacle

Fig. 8. 2-D trajectories of UAV in x − y and x − z plane. Each citcle
represents location of the moving obstacle at each time instant.

0 20 40 60 80 100 120
−15

−10

−5

0

5

10

15

L
O
S
la

t

 

 

NMPC

PID

0 20 40 60 80 100 120
−15

−10

−5

0

5

10

15

time (s)

L
O
S
lo
n
g

 

 

NMPC

PID

Fig. 9. Lateral and longitudinal flight path angles under NMPC and PID

0 20 40 60 80 100 120
9.5

9.6

9.7

9.8

9.9

10

u
γ

 

 

NMPC

PID

0 20 40 60 80 100 120

−0.2

−0.1

0

0.1

0.2

0.3

time (s)

u
ψ

 

 

NMPC

PID

Fig. 10. The input histories under NMPC and PID

obstacle avoidance using NMPC, UAV and image dynamics
are integrated so that the proposed algorithm successfully
predicts the image states for a receding horizon. Vision-
integrated HILS is performed to validate the presented algo-
rithm. Performance requirements are satisfied with the given
constraints in the unknown dynamic environment.
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