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Abstract— Race drivers employ expert techniques to exploit
the limits of the vehicle performance. In particular, rally
driving techniques involve vehicle cornering at high sideslip
angles (drifting), and hence operation of the vehicle beyond the
stable limits enforced by stability control systems. In this work
we study drifting techniques applicable to Front-Wheel-Drive
(FWD) drive-train configurations. We present data collected
during the execution of handbrake-cornering maneuvers by an
expert driver in a FWD vehicle. Consequently, we calculate
cornering equilibria using a vehicle model with driven front
wheels, and rear wheels “locked” at zero angular rate under
application of the handbrake. A controller is designed to
stabilize the vehicle with respect to the calculated equilibria,
using steering and drive/brake torque control inputs. The
controller is implemented in simulation to demonstrate the
stabilization of unstable drifting steady-states.

I. INTRODUCTION

The study of vehicle operation near the limits of its

handling capacity, that is, with the tires operating near the

adhesion limit, was initially motivated by the needs of the

motorsport industry. Lap-time simulation algorithms have

been developed, aiming to provide a low cost alternative

to track testing during vehicle development and tuning.

Casanova et al, for instance, developed nonlinear program-

ming optimization techniques, incorporating rich dynamic

models of the vehicle describing its transient behavior, to

solve the minimum time problem over closed Formula 1 type

of racing circuits [1], [2]. A similar nonlinear optimization

approach was used in the mathematical analysis of rally

driving techniques by Velenis et al. [3], [4]. Rally driving

techniques clearly involve operation of the vehicle outside

the stable operation envelope enforced by modern active

safety systems, such as the Electronic Stability Control, as

the vehicle reaches extreme sideslip angles and the tires

operate in their nonlinear region. It is envisioned that the

deeper understanding of the limit behavior of the vehicle will

contribute to improvements on the existing and future active

safety systems. The analysis in the above references provided

a significant understanding of the optimality properties of

limit driving techniques. However, the numerical optimiza-

tion approach involves intense computations, and hence in

is not implementable in real time and in the presence of

uncertainties and disturbances.

Several studies have contributed towards the characteri-

zation and stabilization of steady-state cornering near the

limit of handling. Ono et al. derived steady-state cornering

equilibria with the tires operating in their full linear and
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nonlinear range and designed a robust stabilizing steering

controller, under the assumption of negligible longitudinal

forces at the tires [5]. The stability of steady-state cornering

at high-sideslip angles (drifting) using a rich four-wheel rear-

wheel-drive (RWD) vehicle model was discussed in [6]. Sta-

bilization of drifting equilibria appeared in [7], [8], [9] and

[10]. In [7], [8] a sliding mode controller, using independent

front and rear wheel torque inputs and fixed steering angle,

was designed to stabilize a single-track vehicle model with

respect to drifting equilibria. In [9] a linear steering controller

was implemented in a RWD autonomous vehicle performing

a steady-state drifting manoeuvre. The steering controller

design in [9] considered the lateral dynamics of a single-

track model, while a separate controller was implemented to

regulate the speed of the vehicle to the desired steady-state

value. Finally, in [10] a coordinated steering and drive torque

controller was designed to stabilize a four-wheel model of a

RWD vehicle with respect to drifting cornering equilibria.

In this work we present a controller to stabilize a FWD

vehicle with respect to high sideslip equilibria, using co-

ordinated lateral (steering) and longitudinal (drive/brake

torque) control inputs. While RWD drifting is stabilized

using throttle and steering inputs [6], [10], FWD drifting is

induced using the handbrake-cornering technique. First, we

present data collected during the execution of handbrake-

cornering maneuvers by an expert driver and discuss the

correlation between driver inputs and vehicle response. We

then introduce a vehicle model and calculate the steady-state

tire friction forces and the associated drive/brake torque and

steering angle control inputs corresponding to handbrake-

cornering equilibria, i.e. with the rear wheel locked. A linear

controller is designed to stabilize the vehicle with respect

to drifting equilibria using front wheel steering angle and

wheel angular rate, with the rear wheel speed fixed at zero.

A back-stepping control scheme is then employed providing

the drive torque input necessary to regulate the front wheel

speed to the value dictated by the above linear controller,

and the rear brake torque to maintain wheel lock. Finally, the

control scheme is implemented in simulation to demonstrate

the stabilization of unstable drifting equilibria.

II. HANDBRAKE-CORNERING DATA ANALYSIS

In this section we present and analyse data of driver

control inputs and corresponding vehicle response collected

during the execution of handbrake-cornering maneuvers by

an experienced rally driver. The data collection took place at

the facilities of the Bill Gwynne Rally School in Brackley,

UK, using a rally-race prepared 2006 Ford Fiesta with a

FWD transmission (Fig. 1). The Anti-Lock-Brake system
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Fig. 1. The test vehicle during data collection and vehicle trajectory data..

was deactivated and the handbrake was integrated in the

hydraulic brakes circuit, engaging the rear brakes only.

The driver executed handbrake-cornering maneuvers on a

gravel surface, negotiating a right turn of approximately

15 m of radius, followed by a tight left “hairpin” (180

deg) corner around a cone. Data of the vehicle speed V ,

sideslip angle β, yaw rate ψ̇ and path curvature k are

shown in Fig. 2. In the same figure individual wheel speeds

ωij , i = F (Front), R (Rear), j = L (Left), R (Right),
steering angle δ of the front wheels, and normalized throttle

pedal position and front and rear brake pressure are shown.

The vehicle sideslip and yaw rate are positive along the

counterclockwise direction. Positive values of the steering

angle δ correspond to turning left. In order to assess the

vehicle’s under/over-steer behavior we present the instanta-

neous kinematic path curvature and kinematic yaw rate of a

neutral-steer bicycle model [11] alongside the corresponding

data. The vehicle trajectory is shown in Fig. 1.

During 0.5 ≤ t ≤ 2 sec the vehicle accelerated under the

application of throttle, while the driver applied an increasing

steering input to the right. We observe that the vehicle

under-steered during this interval, as the yaw rate and path

curvature are both lower in magnitude than the correspond-

ing kinematic values. To remedy the vehicle under-steer,

the driver applied a handbrake command between 1.5 ≤

t ≤ 3 sec, as shown by the increase of the rear brake

pressure, while the front brake pressure remained at zero.

Consequently, the rear wheel angular rates were reduced at

a high rate, with the rear-right wheel locking. During this

interval the driver also came off the throttle and continued

to steer to the right. The resulting vehicle response during

2 ≤ t ≤ 4 sec is characterized by a decrease of vehicle

speed, and an increase of the magnitude of sideslip and yaw

rate. In particular, between 3 ≤ t ≤ 4 sec the yaw rate and

path curvature magnitudes were higher than the kinematic

ones, indicating vehicle over-steer. Hence, the handbrake-

cornering technique can be used to eliminate under-steer

during cornering. In accordance to the combined longitudinal

and lateral motion of tires [12], by applying the handbrake

and locking the rear wheels the driver achieves to drastically

decrease the cornering (lateral) forces of the rear tires. The

decrease of the stabilizing rear cornering forces result in an

increase of the resultant yaw moment, which is experienced

as an increase in the vehicle yaw rate and sideslip angle.

After releasing the handbrake, the driver counter-steered
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Fig. 2. Handbrake-Cornering data.

(steered to the opposite direction of the corner) and applied

throttle, to limit the vehicle over-steer, in accordance to the

observations in [3]. The change of sign in the kinematic yaw

rate is due to the driver counter-steering.

The driver applied a handbrake command during 9.5 ≤

t ≤ 11 sec, while negotiating the left “hairpin” turn. The re-

sult was, once again, an increase in vehicle sideslip and yaw

rate. The path curvature reached an instantaneous magnitude

of approximately 1m−1, which corresponds to an instanta-

neous cornering radius of 1 m. In low speeds the test vehicle

can achieve a minimum turning radius of 4.5 m under the

application of full-lock of the steering wheel (30 deg). Hence,

the handbrake-cornering technique can be used to further

decrease the cornering radius. We observe, that during the

“hairpin” corner, the driver did not counter-steer, following

the release of the handbrake. Instead, he applied throttle and

progressively reduced the steering command to bring the

vehicle back to a straight line acceleration.

In the next sections, we extend the approach of [8], [10]

to explore the existence of steady-state handbrake equilibria.

We enforce FWD drive-train configuration and rear wheel

lock during cornering, to emulate the cornering maneuvers

described above.
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III. VEHICLE MODEL

The equations of motion of the single-track model (Fig. 3)

are as follows [7]:

xI

yI

C.M.

β

yB

V

fRy fRx

ℓR

ℓF

fFx

fFy
δ

ψ

xB

TR

TF

Fig. 3. Single-track vehicle model.

mV̇ = fFx cos(δ − β) − fFy sin(δ − β)

+ fRx cosβ + fRy sinβ, (1)

β̇ = 1/(mV ) [fFx sin(δ − β) + fFy cos(δ − β)

− fRx sinβ + fRy cosβ] − ψ̇, (2)

Izψ̈ = (fFy cos δ + fFx sin δ) ℓF − fRyℓR, (3)

Iwiω̇i = Ti − fixri, i = F,R (4)

In the above equations m is the vehicle’s mass, Iz is the polar

moment of inertia of the vehicle, ri is the radius of each of

the front and rear wheels, Iwi is the moment of inertia of

each wheel, and ℓF , ℓR is the distance of the center of mass

(C.M.) from the front and rear axles respectively. V is the

vehicle velocity, ψ is the yaw angle of the vehicle, β is the

sideslip angle at the C.M. By fij (i = F,R and j = x, y)

we denote the longitudinal and lateral tire friction forces at

the front and rear wheels, respectively. Ti is the drive/brake

torque at each of the wheels, and δ is the steering angle of

the front wheel.

In [12] the theoretical longitudinal and lateral slip quanti-

ties are defined, respectively, as:

six =
Vix − ωiri
ωiri

, siy =
Viy

ωiri
= (1 + six) tanαi. (5)

The tire frame components of the vehicle body velocity

vector at the front and rear axles are Vij , (i = F,R, i =
x, y) and given by:

VFx = V cos(β − δ) + ψ̇ℓf sin δ, VRx = V cos(β),

VFy = V sin(β − δ) + ψ̇ℓf cos δ, VRy = V sin(β) − ψ̇ℓR.

The slip angle at each wheel is given by tanαi = Viy/Vix.

The resultant slip at each tire is defined by si =
√

s2ix + s2iy .

Assuming linear dependence of the tire friction forces on

the tire vertical force, we obtain

µi = fi/fiz, µij = fij/fiz, i = F,R, j = x, y, (6)

where fi =
√

f2
ix + f2

iy is the resultant friction force at

each tire, µi is the resultant friction coefficient, µij are the

longitudinal and lateral friction coefficients, and fiz are the

vertical forces at the front and rear tires.

We calculate the resultant friction coefficient using Pace-

jka’s “magic formula” (MF) [12] as follows:

µi(si) = MF(si) = D sin(C atan(B si)). (7)

Assuming symmetric tire characteristics, with respect to the

longitudinal and lateral directions, the resultant friction force

for each tire lies within the so-called friction circle:

µij = −(sij/si)µ(si). (8)

Neglecting the suspension dynamics the front and rear axle

normal forces are given by:

fFz =
ℓRmg − hmgµRx

L+ h (µFx cos δ − µFy sin δ − µRx)
, (9)

fRz = mg − fFz. (10)

where h is the height of C.M. from the road surface, and L
is the wheelbase of the vehicle.

IV. STEADY-STATE HANDBRAKE-CORNERING

Steady-state cornering is characterized by a trajectory of

constant radius, negotiated at a constant speed, and constant

yaw rate and slip angle:

R = Rss, V = V ss, ψ̇ = ψ̇ss =
V ss

Rss
, β = βss.

Under steady-state conditions the wheel angular rates, tire

longitudinal and lateral slip quantities and forces, and steer-

ing and drive/brake torque inputs are also constant

ωi = ωss
i , sij = sssij , fij = f ss

ij , δ = δss, Ti = T ss
i .

During handbrake-cornering the rear wheels of the vehicle

are locked, hence we enforce

ωss
R = 0, (11)

which implies

sssRx = limωR→0(sRx) = +∞, sssR = limωR→0(sR) = +∞.

The resultant steady-state rear wheel tire force coefficient is

then given by

µss
R = limωR→0MF(sR) = D sin(Cπ/2). (12)

With ψ̇ss = V ss/Rss, the steady-state slip angle at the rear

wheel can be expressed as

tanαss
R = V ss

Ry/V
ss
Rx = V sstanβss

−
ℓR

Rss cosβss
. (13)

It can be shown that with sssRx → +∞, the rear tire lateral

force coefficient is given by

µss
Ry = −

tanαss
R

√

1 + tan2αss
R

µss
R. (14)

The results from [7], [8] can now be applied to complete

the calculation of the equilibrium states and control inputs.

In particular, under steady-state conditions, the following
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expressions for the steady-state normal forces and rear lateral

force were derived:

f ss
Rz =

mgℓF −mh(V ss)2 sinβss/Rss

ℓF + ℓR
, (15)

f ss
Fz =

mgℓR +mh(V ss)2 sinβss/Rss

ℓF + ℓR
, (16)

f ss
Ry = µss

Ry f
ss
Rz =

m(V ss)2

Rss
cosβss ℓF

ℓF + ℓR
. (17)

Substituting µss
Ry from (14), f ss

Rz from (15), tanαss
R from

(13) and µss
R from (12) into (17), one can numerically solve

equation (17) to find the steady-state vehicle velocity V ss for

a given pair (Rss, βss). Consequently, all of the rear wheel

steady-state slip quantities sRx, sRy, and forces fRx, fRy

and fRz can be calculated for a given pair (Rss, βss).
As demonstrated in [7], [8] the resultant front axle friction

force under steady-state conditions is given by:

f ss
F =

(

m2(V ss)4

(Rss)2
+ (f ss

Rx)2 + (f ss
Ry)2+

+ 2
m(V ss)2

Rss

(

f ss
Rx sinβss

− f ss
Ry cosβss

)

)

1

2

,

whereas the front axle normal load from (16). Hence the

front wheel resultant force coefficient µF and resultant slip

sF are given by equations (6) and (7) respectively. Applying

the friction circle equation (8) and the friction coefficient

definition (6) at the front axle forces in equations (1)-(2),

under steady-state conditions, results in:

(V ss)2

Rss
=

(f ss
F /s

ss
F )(sssFx cos δss − sssFy sin δss) − f ss

Rx

m sinβss
. (18)

Recalling the definitions of front lateral slip and resultant

front slip

sssFy

1 + sssFx

=
V ss sin(βss − δss) + V ssℓF cos δss/Rss

V ss cos(βss − δss) + V ssℓF sin δss/Rss
, (19)

sssF =
√

(sssFx)2 + (sssFy)2, (20)

we can numerically solve the system of equations (18), (19)

and (20) for the front tire slip quantities sFx, sFy and

steering angle δ. The steady-state front tire forces fFx and

fFy are calculated from (7) and (8).

Finally, the steady-state wheel angular rates ωss
F and ωss

R

are calculated using the definition of the longitudinal slip in

(5), whereas the torque inputs T ss
F and T ss

R can be obtained

from (4) under steady-state conditions.

In Fig. 4 we present cornering equilibria for steady-state

path radius of 1 m and 5 m, considering the vehicle and

tire model parameters of Table I. In particular, we have

plotted the steady-state velocity V ss and the steering angle

δss, for a range of steady-state vehicle sideslip angles βss.

In both cases the higher velocity steady-states occur at the

highest values of sideslip angle. In the Rss = 1 m case

the steering angle is along the direction of the corner, and

it decreases in magnitude as the magnitude of the sideslip

angle increases. In the Rss = 5 m case, steady-states are

found along a wider range of sideslip angle compared to

the Rss = 1 m case. In addition, the Rss = 5 m steady-

states with βss < −12 deg require the application of opposite

steering angle with respect to the direction of the corner

(counter-steering). The stability of the calculated steady-

states is determined by linearising the equations of motion

(1)-(4) with respect to each equilibrium point. The points

marked by ‘x’ correspond to stable equilibria, and the ones

marked by ‘o’ are unstable. Interestingly, while the majority

of the calculated steady-states are unstable, the equilibria in

the Rss = 1 m case corresponding to βss < −47 deg and

the highest steady-state velocities are found to be stable.

The above brief stability analysis of the equilibria cannot

be used to make general conclusions about the stability

of handbrake-cornering, as the calculation was performed

for a fixed set of vehicle parameters and only a subset of

all possible equilibria. Extensive stability analysis of high-

sideslip equilibria (for RWD vehicles) appeared in [6] and

[9]. In the following we focus on the development of a

control architecture to stabilize unstable handbrake-cornering

steady-states.

TABLE I

Vehicle Parameters.

m (kg) 1300 rF rR (m) 0.28

Iz (kgm2) 2000 IwF IwR (kgm2) 1.8

ℓf (m) 0.96 B 7

ℓr (m) 1.53 C 1.8

h (m) 0.5 D 0.8
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Fig. 4. Handbrake-cornering equilibria along Rss = 1 m and Rss = 5 m.

V. STABILIZATION OF STEADY-STATE

HANDBRAKE-CORNERING

A control scheme to stabilize a FWD vehicle with re-

spect to handbrake equilibria, using control inputs directly

correlating to driver commands, is presented next. The pro-

posed architecture consists of a linear controller providing

stabilizing front wheel steering angle (corresponding to the

driver’s steering command), and front wheel angular rate

inputs, assuming locked rear wheels under the application of

handbrake. In addition, a backstepping controller calculates

the front drive torque (corresponding to the driver’s throttle
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command) and rear brake torque (corresponding to the

driver’s handbrake command) necessary to achieve the wheel

angular rates dictated by the previous linear controller.

Neglecting the dynamics of each individual wheel rotation

(4), the equations of motion of the full-car model (1)-(3),

are expressed as a system driven by the steering angle input

δ and the reference front wheel angular rate ω̂F , enforcing

ωR = 0:

V̇ = f1(V, β, ψ̇, ω̂F , δ), (21)

β̇ = f2(V, β, ψ̇, ω̂F , δ), (22)

ψ̈ = f3(V, β, ψ̇, ω̂F , δ). (23)

The equilibrium states (V ss, βss, ψ̇ss) and inputs (ωss
F , δ

ss)
are calculated as in Section IV. Equations (21)-(23) are

linearized as follows

ẋ = Assx + Bssu (24)

y = Cssx, (25)

where Ass and Bss are the Jacobian matrices, computed at

the equilibrium point, and

x =





V − V ss

β − βss

ψ̇ − ψ̇ss



 , u =

[

ω̂F − ωss
F

δ − δss

]

, Css = I
3×3.

A linear quadratic regulator is designed

u = −Kx, (26)

to stabilize the system (24) with respect to the equilibrium

x = 0, using steering angle and front wheel speed inputs.

Next, we design a backstepping controller using the front

drive torque TF and rear brake torque TR to regulate the

rotational speeds of the wheels to the values generated by

the control law (26).

The variable zF is defined as the difference between the

actual wheel angular rate ωF and the reference value ω̂F (x):

zF = ωF − ω̂F (x), (27)

and hence,

żF = ω̇F −
∂ω̂F (x)

∂x
ẋ. (28)

We propose the following backstepping controller, which

generates the front wheel torque

TF = T eq
F + IwvF , (29)

where

T eq
F = fFxr + Iw

(

∂ω̂F

∂V
f1 +

∂ω̂F

∂β
f2 +

∂ω̂F

∂ψ̇
f3

)

.(30)

Taking TF = T eq
F results in żF = 0. Equations (28)-(30)

yield

żF = vF . (31)

Finally, we take

vF = −kF zF , kF > 0, (32)

which stabilizes (31).

Similarly, we employ a brake torque controller to maintain

the rear wheel locked during handbrake-cornering:

TB = fRxr + IwvR, vR = −kRωR, kR > 0. (33)

VI. SIMULATION RESULTS

In the following we demonstrate the implementation of

the control architecture presented in the previous section in

the stabilization of unstable handbrake-cornering equilibria.

We consider two unstable steady-states: Rss = 5 m, βss =
−42 deg, V ss = 2.05 m/sec, and Rss = 1 m, βss = −45 deg,

V ss = 4.02 m/sec. In both cases, we consider an initial

condition of straight line travel (β = 0, ψ̇ = 0) at speed

V = 1.1V ss, and apply the control law (26), (29) and

(33). The steering angle input is saturated to a magnitude

of 30 deg.

The control inputs during stabilization of the Rss =
5 m equilibrium and the corresponding vehicle response are

shown in Fig. 5. The dashed lines show the corresponding

steady-state values of the vehicle states and control inputs.

Figure 7 shows the trajectory of the vehicle during stabi-

lization. We observe that the rear wheel is locked instan-

taneously, and that the steering angle is initially saturated.

The vehicle states are successfully stabilized to their steady-

state values after 5 sec. The vehicle states and control inputs

during stabilization of the Rss = 1 m equilibrium are shown

in Fig. 6, and the corresponding trajectory in Fig. 7. The

steering angle is saturated during the first 2 sec and remains

towards the direction of the corner throughout the stabiliza-

tion of the equilibrium. We may recall that the data presented

in Section II also showed no counter-steering during the tight

“hairpin” corner. The controller successfully stabilizes the

vehicle to the Rss = 1 m steady-state after 4 sec.

VII. CONCLUSIONS

In this work we studied high-sideslip cornering control

for FWD vehicles using the handbrake-cornering technique.

Data were collected during the execution of handbrake-

cornering maneuvers by an expert race driver and revealed

that the technique is used to eliminate vehicle under-steer,

as well as to achieve cornering radii considerably lower than

the kinematic turning radius. Consequently we examined the

existence of high-sideslip cornering equilibria enforcing a

FWD configuration of the vehicle model and locked rear

wheels under the application of a handbrake control input.

The steady-state handbrake-cornering vehicle states and con-

trol inputs were computed numerically using a simple single-

track vehicle model. The computations revealed that higher

cornering velocities are achieved for higher values of sideslip

angles. We also observed that the lower radii equilibria may

be achieved with a steering command towards the direction

of the corner, while higher radii steady-states require counter-

steering. The stability of the handbrake-cornering equilibria

was assessed via linearization of the equations of motion and

a stabilizing backstepping control scheme was developed.

The controller designed in this work uses coordinated steer-

ing angle and drive/brake torque inputs. Considering that one
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Fig. 5. Control inputs and vehicle states during stabilization of the Rss =
5 m handbrake-cornering equilibrium.

of the main assumptions in this work is knowledge of the tire

force characteristics, the following step of this research will

be to implement the control architecture in conjunction with

a tire force estimation scheme (for instance [13]). In addition,

we plan to extend the control architecture presented herein

towards the execution of aggressive transient cornering ma-

neuvers, for instance, negotiating a sequence of corners.
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