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Abstract— In this paper, we investigate the topology conver-
gence problem for the gossip-based Gradient overlay network.
In an overlay network where each node has a local utility
value, a Gradient overlay network is characterized by the
properties that each node has a set of neighbors containing
higher utility values, such that paths of increasing utilities
emerge in the network topology. The Gradient overlay network
is built using gossiping and a preference function that samples
from nodes using a uniform random peer sampling service.
We analyze it using tools from matrix analysis, and we prove
both the necessary and sufficient conditions for convergence
to a complete gradient structure, as well as estimating the
convergence time. Finally, we show in simulations the potential
of the Gradient overlay, by building a more efficient live-
streaming peer-to-peer (P2P) system than one built using
uniform random peer sampling.

Keywords: Overlay networks; topology convergence; gos-
siping; gradient topology

I. INTRODUCTION

Recent years have witnessed growing interest in using ran-
domized gossiping algorithms to build distributed systems, in
particular in the areas of overlay networks, sensor networks
and cloud computing storage services [1], [2]. Gossip-based,
or pair-wise exchange, algorithms have primarily been used
to implement aggregation algorithms, information dissemi-
nation, peer sampling (the uniform random sampling of a
node from the set of all nodes in a P2P system), and to
construct overlay network topologies. Much of the existing
analysis of gossip-based algorithms has focused on the
convergence properties of aggregation algorithms and peer
sampling services, for both fixed topologies [3] and regular
graphs [4], [5].

However, research in gossiping has also focused on using
the Preferential Connectivity Model [6] to construct overlay
network topologies, where nodes initially connected in a
random graph use a preferential connection function to break
the symmetry of the random graph and build a topology that
contains useful global information. Barabasi first described
how a preferential attachment function in a growing network
can build a scale-free network topology from a random graph
[7]. In particular, he showed how the power-law distribution
of links in the the World Wide Web can emerge when arriving
nodes preferentially attach to existing nodes with higher edge
degree. Information about the structure of the Web’s topology
is currently used, among other things, to build more efficient
search algorithms. Barabasi’s preferential attachment func-
tions are based on global state (the in-degree of nodes). How-
ever, in overlay networks, nodes have only a relatively small

partial view of the system, so preference functions are based
only on local state and the state of the node’s neighbors.
Examples of existing overlay networks that construct their
topologies using gossiping and preference functions include
Spotify, that preferentially connects nodes with similar music
play-lists [8], Sepidar, that preferentially connects P2P live-
streaming nodes with similar upload bandwidth capacity [9],
and T-Man, a framework that provides a generic preference
function for building such overlays [10].

To the best of our knowledge, there has been no analysis
of the convergence properties of such information-carrying
gossip-generated topologies built using preference functions.
These systems, however, do not require the growth of a net-
work to construct a new topology, as systems are constantly
updated using a peer sampling service. In this paper, we
introduce an analysis of the convergence properties for the
Gradient overlay network. The Gradient topology belongs
to this class of gossip-generated overlay networks that are
built from a random overlay by symmetry breaking using a
preference function. Formally, a Gradient topology is defined
as an overlay network where, for any two nodes p and q that
have local utility values U(p) and U(q), if U(p) ≥ U(q)
then dist(p, r) ≤ dist(q, r), where r is a (or the) node with
highest utility in the system and dist(x, y) is the shortest
path length between nodes x and y [11]. In the Gradient
overlay, nodes have two preference functions that build two
sets of neighbors: a similar view and a random view. For the
similar view, nodes prefer neighbors with closer but slightly
higher utility values, while for the random view, nodes are
selected with uniform probability. Together these preference
functions build a topology where gradient paths of increasing
utilities emerge in the system [12], see figure 1.

Our analysis of the Gradient overlay, involves proving
that the preference functions cause the system topology to
converge to a gradient structure. We also establish bounds
on the worst-case convergence rate for a given initial graph.
Finally, we show in simulations how the Gradient structure
is used to build a more efficient live-streaming system than
one built using uniform random peer sampling.

II. PROBLEM SETUP

Consider a network whose topology can be described
by a directed graph G(N , E). Each node in the network
is represented by a vertex in the graph, and each link is
represented by a directed edge (see figure 1(a)). We denote
the vertex set by N = {1, . . . , N}, where each node i is
given a utility value U(i).
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(b) The graph after converging to a gradient topology.

Fig. 1. The network is described as a directed graph. The nodes are labeled with their respective utility value, and the edges from the similar neighbor
set are shown. Solid edges are used between nodes with equal utility value, and dashed edges between nodes with different utility value.

The neighbor set Ni(t) of node i at time t consists of two
parts, the similar set Ns

i (t) and the random set Nr
i (t). Nodes

in the similar set are supposed to be the neighbors whose
utility values are close to U(i), while nodes in the random
set are a random sample of the nodes in the network.

Each node i defines a preference function >i over its
neighbors, where node i is said to prefer node a over node
b (a >i b) if

U(a) ≥ U(i) > U(b) or if
|U(a)− U(i)| < |U(b)− U(i)|

when U(a), U(b) > U(i) or U(a), U(b) < U(i). Further,
minNs

i denotes node i’s least preferred neighbor in its
similar neighbor set.

For any given initial graph, each node i at each time t
updates its neighbor set Ni(t) independently of the other
nodes according to Algorithm 1.

Algorithm 1: Topology Dynamics

for t = 1, 2, 3, . . . do
// Choose a random node j ∈ N with

uniform probability pt, 0 < Npt < 1
Nr

i (t) = {j}
if Nr

i (t) 6= ∅ then
if j /∈ Ns

i (t− 1) and j >i minNs
i (t− 1) then

Ns
i (t) = Ns

i (t− 1) ∪ {j}\{minNs
i (t− 1)}

end
end

end

In summary, if the random node is preferred over the least
preferred node in the similar set, then those two nodes are
exchanged. Notice that the probabilities pt are time varying,
and that the random neighbor set Nr

i (t) is empty with
probability 1−Npt.

Remark 2.1: The node degree di(t) = |Ns
i (t)| = di stays

constant throughout the algorithm.

This paper considers the problem of whether the system
topology will converge to a gradient structure with the
proposed algorithm, and the convergence rate for a given
initial graph.

Let Λi denote the set of optimal similar neighbor sets for
node i, i.e., ∀N̂ ∈ Λi there are no j ∈ N̂ and k ∈ N\N̂
such that k >i j.

For every node i ∈ N , we define

X
(i)
t = di − max

N̂∈Λi

∣∣∣Ns
i (t) ∩ N̂

∣∣∣
Thus, X(i)

t counts the number non-optimal neighbors in
i’s similar neighbor set. Notice that X(i)

t is monotonically
decreasing since an optimal neighbor will never be removed
from the similar neighbor set Ns

i (t).
Let G(t) be the graphs generated by Algorithm 1. Then we

give the definition of gradient convergence as follows (see
also figure 1).

Definition 2.1: G(t) is said to converge to a gradient
topology if limt→∞X

(i)
t = 0 for all i ∈ N .

III. CONVERGENCE ANALYSIS

In this section, we propose a convergence analysis of
Algorithm 1 to a gradient topology. Since each node updates
its neighbor set independently, the analysis on respective
X

(i)
t can be carried out separately. Therefore, to simplify the

notations, we let Xt represents X(i)
t , i ∈ N , in the following

discussion.
Denote the maximum degree D = maxi{di}, then it is

not hard to see that X0 = D is the worst initial condition.
Furthermore, Xt decreases whenever the random node is
a new optimal neighbor, and the probability of this event
occurring is minimal when the optimal solution is unique,
and then equal to

P [Xt+1 = k − 1 | Xt = k] = kpt, (1)

where k are the number of non-optimal neighbors.
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A. Almost Sure Convergence

We propose a both necessary and sufficient condition on
the probabilities pt for the convergence of Algorithm 1.

Theorem 3.1: The graph generated by Algorithm 1 con-
verges to a gradient topology (Xt = 0) with probability 1 if
and only if

lim
T→∞

T∏
t=0

(1− pt) = 0. (2)

Before proving Theorem 3.1, let us take a closer look at
Algorithm 1, and notice especially that the stochastic process
(1) for Xt has the Markov property, hence we can describe
it as a Markov chain.

Xt = D Xt = D-1 … Xt = 1 Xt = 0

Dpt (D-1)pt 2pt pt

1 - Dpt 1 - (D-1)pt 1 - pt 1

Let π(t) denote the (row vector) probability distribution
for the states Xt, i.e.,

πi(t) = P [Xt = i] . (3)

The evolution of π(t) can be written in matrix form as

π(t+ 1) = π(t)Pt, (4)

where Pt is the transition matrix at time t,

Pt =



1−Dpt Dpt 0 ··· 0 0

0 1−(D−1)pt (D−1)pt ··· 0 0

0 0 1−(D−2)pt ··· 0 0

...
...

...
. . . . . . 0

0 0 0 ··· 1−pt pt

0 0 0 ··· 0 1


.

Since Pt is a triangular matrix, the eigenvalues are given by
the diagonal elements, i.e., the eigenvalues of Pt are λi(t) =
1 − (D − i)pt, i = 0, . . . , D. Notice that λD(t) = 1, and
all other eigenvalues are strictly less than one. Furthermore,
all eigenvalues are distinct, hence the eigenvectors form a
basis for RD. In the following lemma, we characterize the
eigenvectors.

Lemma 3.1: The eigenvector ξi(t) corresponding to
eigenvalue λi(t) is independent of pt 6= 0, i = 0, . . . , D.

Proof: The (left-)eigenvectors of Pt satisfy λi(t)ξi(t) =
ξi(t)Pt. Let ξij(t) denote the j:th component of ξi(t), then

(1− (D − i)pt) ξi0(t) = (1−Dpt) ξi0(t)

(1− (D − i)pt) ξij(t) = (1− (D − j)pt) ξij(t) +

(D − j + 1)ptξ
i
j−1(t) j = 1, . . . , D

⇓{
iξi0(t) = 0

(i− j)ξij(t) = (D − j + 1)ξij−1(t) j = 1, . . . , D

⇓{
ξij(t) = 0 if j < i

ξij(t)
i−j

D−j+1 = ξij−1(t) if j > i
(5)

while ξii(t) can be chosen as an arbitrary non-zero value.
Lemma 3.1 implies especially that all Pt are simultane-

ously diagonalizable, hence we can drop the parameter t from
ξi.

Let us now return to the initial probability distribution
π(0), and let us express it in the eigenvector basis as

π(0) =

D∑
i=0

αiξ
i, (6)

for some real numbers αi.
Lemma 3.2: αDξ

D = eD, where ei is the Cartesian unit
vector [0, . . . , 0, 1, 0, . . . , 0]T with 1 in position i.

Proof: Let us consider ξi1 for i = 0, . . . , D − 1. By
equation (5),

ξi1 =

D∑
j=0

ξij =

D∑
j=i

ξij =

D−i∑
j=0

ξii+j

We will show by induction that

k∑
j=0

ξii+j =
D − i− k
D − i

ξii+k. (7)

The case when k = 0 is clearly true, thus, assume (7) holds
for k and consider k + 1,

k+1∑
j=0

ξii+j =

k∑
j=0

ξii+j + ξii+k+1 =
D − i− k
D − i

ξii+k + ξii+k+1

=
D − i− k
D − i

−(k + 1)

D − i− k
ξii+k+1 + ξii+k+1

=
D − i− (k + 1)

D − i
ξii+k+1

Using (7) implies that ξi1 = 0, i = 0, . . . , D−1, and further,
π(0)1 = αDξ

D1. Since π(0) is a probability distribution,
we know that π(0)1 = 1, but (5) tells us that only the last
component of ξD is non-zero, hence the lemma follows.
We are now ready to prove the main theorem.

Proof: (Theorem 3.1) The convergence condition is
equivalent to limT→∞ π(T ) = eD. Using (4) and (6) gives
us

π(T ) = π(0)

T−1∏
t=0

Pt =

D∑
i=0

αiξ
i
T−1∏
t=0

Pt =

D∑
i=0

αiξ
i
T−1∏
t=0

λi(t) =

D−1∑
i=0

αiξ
i
T−1∏
t=0

λi(t) + eD (8)

Consider the limit limT→∞ π(T ),

lim
T→∞

|π(T )− eD| = lim
T→∞

∣∣∣∣∣
D−1∑
i=0

αiξ
i
T−1∏
t=0

λi(t)

∣∣∣∣∣ ≤
D−1∑
i=0

∣∣αiξ
i
∣∣ · lim

T→∞

T−1∏
t=0

(1− pt).

Clearly, this converges to zero if limT→∞
∏T

t=0(1−pt) = 0.
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Fig. 2. Convergence rate simulations. The neighbor set measurement Xt, for each node in the network, is shown as a function of the iteration number t.

Also, the set of initial probability distributions spawns RD,
thus, there exists an initial probability distribution π(0) such
that αD−1 6= 0. Assume limT→∞

∏T
t=0(1 − pt) = c > 0

(the limit exists, since it is a monotone bounded sequence),
then

lim
T→∞

|π(T )− eD| =∣∣∣∣∣
D−2∑
i=0

αiξ
i

(
lim

T→∞

T−1∏
t=0

λi(t)

)
+ cαD−1ξ

D−1

∣∣∣∣∣ (9)

Since the eigenvectors are linearly independent, the RHS of
(9) is non-zero. Thus, we have proved the theorem.

Corollary 3.1: The graph generated by Algorithm 1 con-
verges to a gradient topology with probability 1 if and only
if

lim
T→∞

T∑
t=0

pt =∞. (10)

Proof: This follows from Theorem 3.1, and the relation

lim
T→∞

T∏
t=0

(1− pt) = 0⇔ lim
T→∞

T∑
t=0

pt =∞

for 0 < pt < 1.

B. Convergence Rate Estimation

In this subsection, we investigate the convergence rate of
Xt, with a constant sampling probability pt = p. Define

Ti = inf
t

[Xt = 0 | X0 = i]

as the first time when Xt reaches 0, when starting with
X0 = i. Further, let Mi = E[Ti] denote the expected time
of convergence. Clearly M0 = 0, and for i = 1, . . . , D we
have

Mi = 1 + P[Xt+1 = i− 1 | Xt = i] ·Mi−1

+ P[Xt+1 = i | Xt = i] ·Mi

= 1 + ipMi−1 + (1− ip)Mi

⇒

Mi =
1 + ipMi−1

ip
=

1

ip
+Mi−1

Continuing by induction yields

Mi =
1

p

i∑
n=1

1

n
.

The worst initial case is when X0 = D, where the
expected convergence time is

MD =
1

p

D∑
n=1

1

n
≤ 1 + ln(D)

p
. (11)

Remark 3.1: Notice that MD is the expected time for an
individual node to converge, and not the expected time for all
the nodes in the network to converge to a gradient topology.

IV. CONVERGENCE SIMULATION

In this section, we examine the convergence of Algo-
rithm 1 with numerical examples. In the first two simulation
(figure 2(a) and figure 2(b)) the degree of each node is
di = 10 and the total number of nodes in the network is
N = 100. For the third simulation (figure 2(c)) the degree
is di = 50, and the total number of nodes in the network is
N = 500.

The similar view Ns
i (0) is initialized with di nodes

uniformly chosen among all nodes in the network. In the
first and third simulation the sampling probability pt is held
at a constant value of 1

2N . Hence, for each node, and at each
iteration of the algorithm, the random view is empty with
probability 1

2 . Theorem 3.1 guarantees the convergence of the
algorithm for these examples, which is also confirmed by the
simulations. These two simulations should also be compared
to the expected convergence rate given by equation (11), 566
and 4479 iterations respectively.

In the second simulation (figure 2(b)), we also analyze
a decaying probability pt = 1

N
1

(1+t/100)2 . Notice that∑∞
t=0Npt < 101, hence, by Corollary 3.1, there is a positive

probability that the algorithm does not converge to a gradient
topology. This is also confirmed by the simulation, in which
the gradient topology is missing.
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V. LIVE-STREAMING USING THE GRADIENT -
EXPERIMENTS

Here, we evaluate the effect of sampling nodes from the
Gradient overlay compared to a random overlay when build-
ing a P2P live-streaming application called GLive. GLive
is based on nodes cooperating to share a media stream
supplied by a source node. GLive uses an approximate
auction algorithm to match nodes that are willing and able
to share the stream with one another. GLive extends our
previous work on tree-based live-streaming, gradienTv [13]
and Sepidar [9], to mesh-based live-streaming.

Nodes want to establish connections to other nodes that are
as close as possible to the source. They bid for connections
to the best neighbors using their own upload bandwidth, and
nodes share their bounded number of connections with nodes
who bid the highest (contribute the most upload bandwidth).
Auctions are continuous and restarted on failures or free-
riding. The desired affect of our auction algorithm is that
the source will upload to nodes who contribute the most
upload bandwidth, who will, in turn, upload to nodes who
contribute the next highest amount of bandwidth, and so on
until the topology is fully constructed. More details on our
approximate assignment algorithm can be found in [9].

One of the main problems with the lack of global informa-
tion about nodes’ upload bandwidths is that it affects the rate
of convergence of the auction algorithm. Nodes would ideally
like to bid for connections to other nodes who they can
afford to connect to, rather than win a connection to a better
node and later be removed because a better bid was received.
The traditional way to discover nodes (to bid on) is using a
uniform random peer-sampling service [5]. Instead, we use
the Gradient overlay to sample nodes, where a node’s utility
value is the upload bandwidth it contributes to the system.
As such, the Gradient should provide other nodes with refer-
ences to nodes who have well-matched upload bandwidths.
In [9], we showed that using the Gradient overlay reduced
the rate of parent switching for tree-based live-streaming by
20% compared to random peer sampling. Here, we show
for GLive the effect of sampling neighbors using random
peer sampling (GLive/Random) versus sampling from the
Gradient overlay (GLive/Gradient).

We implemented GLive using Kompics’ discrete event
simulator that provides different bandwidth, latency and
churn models. In our experimental setup, we set the stream-
ing rate to 512Kbps, which is divided into blocks of 16Kb.
Nodes start playing the media after buffering it for 5 seconds.
The size of similar-view in GLive is 15 nodes. In the auction
algorithm, nodes have 8 download connections. To model
upload bandwidth, we assume that each upload connection
has available bandwidth of 64Kbps and that the number
of upload connections for nodes is set to 2i, where i
is picked randomly from the range 1 to 10. This means
that nodes have upload bandwidth between 128Kbps and
1.25Mbps. As the average upload bandwidth of 704Kbps
is not much higher than the streaming rate of 512Kbps,
nodes have to find good matches as parents to achieve good

streaming performance. The media source is a single node
with 40 upload connections, providing five times the upload
bandwidth of the stream rate. We assume 11 utility levels,
such that nodes contributing the same amount of upload
bandwidth are located at the same utility level. Latencies
between nodes are modeled using a latency map based on
the King data-set [14]. We assume the size of sliding window
for downloading is 32 blocks, such that the first 16 blocks
are considered as the in-order set and the next 16 blocks are
the blocks in the rare set. A block is chosen for download
from the in-order set with 90% probability, and from the rare
set with 10% probability. In the experiments, we measure the
following metrics:

1) Playback continuity: the percentage of blocks that a
node received before their playback time. We consider
the case where nodes have a playback continuity of
greater than 99%;

2) Playback latency: the difference in seconds between
the playback point of a node and the playback point
at the media source.

We compare the playback continuity and playback latency
of GLive/Gradient and GLive/Random in the following sce-
narios:

1) Churn: 500 nodes join the system following a Poisson
distribution with an average inter-arrival time of 100
milliseconds, and then until the end of the simulations
nodes join and fail continuously following the same
distribution with an average inter-arrival time of 1000
milliseconds;

2) Flash crowd: first, 100 nodes join the system following
a Poisson distribution with an average inter-arrival time
of 100 milliseconds. Then, 1000 nodes join following
the same distribution with a shortened average inter-
arrival time of 10 milliseconds;

3) Catastrophic failure: 1000 nodes join the system fol-
lowing a Poisson distribution with an average inter-
arrival time of 100 milliseconds. Then, 500 existing
nodes fail following a Poisson distribution with an
average inter-arrival time 10 milliseconds;

Figures 3 shows the percentage of the nodes that have
playback continuity of at least 99%. We see that all the nodes
in GLive/Gradient receive at least 99% of all the blocks very
quickly in all scenarios, while it takes slightly more time
for GLive/Random. That is because nodes in GLive/Random
randomly sample nodes to run the auction algorithm against,
while GLive/Gradient runs the auction algorithm against
nodes that contribute similar amounts of upload bandwidth.
Random sampling takes longer time to find good matches for
delivering the stream. One point to note is that the 5 seconds
of buffering cause the spike in playback continuity at the
start, which then drops off as nodes are joining the system.
To summarize, using the Gradient overlay instead of random
sampling produces better performance when the system is
undergoing large changes - such as large numbers of nodes
joining or failing over a short period of time. Figure 4 shows
the playback latency of the systems in the different scenarios.
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Fig. 3. Playback continuity of the systems in different scenarios.
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Fig. 4. Playback latency of the Gradient versus Random sampling in different scenarios.

As we can see, although there is only a small difference
between the systems, GLive/Gradient consistently maintains
relatively shorter playback latency than GLive/Random for
all experiments. The playback latency includes both the 5
seconds buffering time and the time required to pull the
blocks over the live-streaming overlay constructed using the
auction algorithm.

VI. CONCLUSIONS

In this paper, we introduced the topology convergence
problem for the gossip-generated Gradient overlay network.
We showed the necessary and sufficient conditions for con-
vergence to a complete gradient structure, and we also
characterized the expected convergence time. Our exper-
iments show the potential advantages of topologies built
using preference functions. We showed how nodes can use
implicit information captured in the Gradient topology to
more efficiently find suitable neighbors compared to random
sampling. As such, our work on proving convergence prop-
erties of the Gradient topology should have significance for
other future information-carrying topologies. In future work,
we will examine modifications to the topology construction
algorithm that improve convergence time, as well as further
applications of the topology in building P2P applications.
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