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Abstract— This paper is concerned with the synchronization
of networks of switching dynamical systems. In particular,
conditions are derived for all nodes in a network of such systems
to converge towards a common synchronous evolution. The key
assumption is for the vector field to be in a suitable form that
we call QUAD affine. Under this assumption, we show that
the network of interest synchronizes even if the vector field
is discontinuous and sliding motion is possible. The theoretical
results are complemented by numerical simulations on a testbed
example.

I. INTRODUCTION

Switching dynamical systems are commonly used in con-
trol to model systems or devices of interest and design
appropriate hybrid control laws, e.g. [1], [2]. It is therefore
of fundamental importance in applications to investigate
the emergence of coordinated motion in networked switch-
ing systems. Examples include the coordinated motion of
mechanical oscillators with friction [3], [4], [5], switching
power devices [6], [7] and all those networks whose nodes
are affected by switchings on a macroscopic timescale.

While in the case of networks of smooth dynamical
systems results on synchronizability abound in the literature
(see, for instance, [8], [9], [10], [11], [12]), when switching
node dynamics are considered, the analysis becomes much
more cumbersome and only few results are available [13],
[14]. The aim of this paper is to discuss this pressing open
problem and derive conditions that guarantee the emergence
of a synchronous evolution in networks of systems with
discontinuous vector fields. In particular, we study the case
where the nodes’ own switching dynamics can be expressed
as the sum of two terms: the first is common to each
node in the network, while the second is different from
node to node. We show that, if the coupling configuration
is appropriately selected, then the network asymptotically
achieves bounded synchronization. The analysis is based on
the use of appropriate Lyapunov functions and, as shown
in the paper, includes the case where sliding motion [15] is
present.

The rest of the paper can be outlined as follows. In Sec.
II, we introduce the concept of bounded synchronization
and give some useful definitions and lemmas. In Sec. III
we recall some important concepts related to piecewise-
smooth systems. These notions are then used in Sec. IV to
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derive a novel set of conditions guaranteeing synchronization
of a generic network of switching dynamical systems. The
theoretical results are illustrated by numerical simulations on
a network of chaotic relay systems in Sec. V. Conclusions
are drawn in Sec. VI

II. PRELIMINARIES

A generic network of diffusively coupled dynamical sys-
tems can be described by

ẋi = fi(xi, t)− c
N∑
j=1

`ijΓxj , ∀i = 1, . . . , N, (1)

where xi ∈ Rn is the state of the i-th node, fi is the (possibly
discontinuous) vector field describing the own dynamics of
the i-th node, c is the coupling gain, Γ ∈ Rn×n is the inner
coupling matrix, and `ij is the element (i, j) of the Laplacian
matrix L, defined as

`ij =


−1, if i 6= j and (i, j) ∈ E
0, if i 6= j and (i, j) /∈ E

−
N∑

k=1
k 6=i

`ik, if i = j
,

where E is the set of all the network edges. Here and in what
follows we will suppose the graph to be connected (i.e. for
every pair of nodes (i, j) there exists a path from node i to
node j.).

In the literature on complex networks (see for instance
[16], [17]), a common way of defining the synchronization
error ei = [ei1, . . . , ein]T at a generic node i is to set

ei(t) = xi(t)− x̄(t), (2)

where x̄(t) = 1
N

∑N
j=1 xi(t) is the average trajectory of the

network. According to (2), we give the following definition
of bounded synchronization:

Definition 1: Network (1) is said to be bounded synchro-
nized if one of the two following conditions hold:
(a) There exists a constant ε1 > 0 such that

lim
t→∞

||e(t)|| ≤ ε1, (3)

where e = [eT1 , . . . , e
T
N ]T .

(b) There exists a constant ε2 > 0 such that

lim
t→+∞

||xi(t)− xj(t)|| ≤ ε2, ∀ i, j = 1, . . . , N,

(4)
Furthermore, if (3) is satisfied for a given ε1 = ε, then
network (1) is said to be ε-bounded synchronized.
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Here, we report the following lemma to state the equivalence
of (a) and (b).

Lemma 1: Conditions (3) and (4) are equivalent.
Proof: (a)⇒(b). Let us consider a generic couple of

nodes (i, j). Adding and subtracting x̄(t) we can write

||xi(t)− xj(t) + x̄(t)− x̄(t)|| ≤
||xi(t)− x̄(t)||+ ||xj(t)− x̄(t)|| .

Since e is bounded by hypothesis, then its component ei is
also bounded, ∀i = 1, . . . , N . This implies the boundedness
of ||xi(t)− xj(t)||.

(b)⇒(a) Since (4) holds, then ∀ε̄ > ε2 there exists a
positive scalar t̄ such that ||xi(t)− xj(t)|| < ε̄ for all
t > t̄. Now, let us introduce the ball Bε̄(xi(t)) = {z ∈
Rn : ||z − xi(t)|| ≤ ε̄} and the set U(t) = Bε̄(x1(t)) ∪
Bε̄(x2(t)) ∪ · · · ∪ Bε̄(xN (t)), t > t̄. Clearly, as (4) holds,
then Bε̄(xi(t)) ∩ Bε̄(xj(t)) 6= ∅, for all (i, j) ∈ E . Since
x̄(t) ∈ U(t), then we can conclude that

lim
t→∞

||xi(t)− x̄(t)|| < 2Nε̄,

for all (i, j) ∈ E .
Definition 2: Similarly to what stated in [18], [19], we say

that a vector field f : Rn ×R+ 7→ Rn is QUAD if and only
if, for any x, y ∈ Rn, t ∈ R+:

(x− y)T [f(x, t)− f(y, t)] ≤ (x− y)TW (x− y),

where W = diag{w1, . . . , wn} is an arbitrary diagonal
matrix of order n.
Note that this property is also known as one-sided Lipschitz
condition when W = wIn [20]. Furthermore, the QUAD
condition is also related to some other relevant properties of
a given vector field, such as contraction and the classical
Lipschitz condition (see [19] and references therein for
further details).

Lemma 2: [21]
1) The Laplacian matrix L in a connected undirected

network is positive semi-definite. Moreover, it has a
simple eigenvalue at 0 and all the other eigenvalues are
positive.

2) the smallest nonzero eigenvalue λ2(L) of the Laplacian
matrix satisfies

λ2(L) = min
zT 1N ,z 6=0

zTLz

zT z
.

III. PIECEWISE-SMOOTH DYNAMICAL SYSTEMS

Following [1] p.73, we now give the definition of a
piecewise-smooth dynamical system.

Definition 3: Given a finite collection of disjoint, open
and non empty sets S1, . . .Sp such that D =

⋃p
i=1 S̄k ⊆ Rn

is a connected set, a dynamical system ẋ = f(x, t) is called
a piecewise-smooth dynamical system (PWS system) when
it is defined by a finite set of vector fields, i.e.

f(x, t) = Fk(x, t), x ∈ Sk. (5)

The intersection Σkh := S̄k∩S̄h is either a lower dimensional
manifold or it is the empty set. Each vector field Fk(x, t) is

smooth in both the state x and time t, for any x ∈ Sk.
Furthermore, it is continuously extended on the boundary
∂Sk.

For a PWS sytem defined as above, many different solu-
tions can be considered (see [20] and references therein). In
this paper we focus on so called Filippov solutions [15]. Such
solutions are absolutely continuous curves x(t) : R 7→ Rn
that satisfy the differential inclusion:

ẋ(t) ∈ F [f ](x, t), (6)

where F [f ](x, t) is the Filippov set-valued function F [f ] :
Rn × R 7→ P(Rn), with P(Rn) being the collection of all
subsets in Rn, defined as

F [f ](x, t) =
⋂
δ>0

⋂
m(S)=0

c̄o {f(Bδ(x)\S, t)} ,

where S is any set of zero Lebesgue measure m(·) and Bδ
is a ball of radius δ.

As reported in [20], computing the Filippov set-valued
function can be a daunting task. We now report two useful
rules we will apply in what follows:

Consistency: If f : Rn×R 7→ Rn is continuous at x ∈ Rn,
then

F [f ](x, t) = {f(x, t)} .

Sum: If h, g : Rn × R 7→ Rn are locally bounded at
x ∈ Rn, then

F [h+ g](x, t) ⊆ F [h](x, t) + F [g](x, t).

Moreover, if either h or g is continuous at x, then
equality holds.

IV. NETWORK OF PWS SYSTEMS

We now study the problem of giving conditions to guaran-
tee bounded synchronization of a network of PWS systems.
To this aim, we firstly introduce the following class of
dynamical systems.

Definition 4: A PWS system is said to be QUAD affine if
its vector field can be written in the form:

f(x, t) = h(x, t) + g(x, t), (7)

where:
1) h(x, t) is a QUAD function continuous in both the

arguments.
2) g(x, t) is a PWS function that can be expressed as

g(x, t) = Gk(x, t) if x ∈ Sk, k ∈ {1, . . . , p}. g(x, t) is
such that there exist positive scalars Mk < +∞ such
that

||Gk(x, t)|| < Mk, ∀x ∈ Rn,∀t > 0,

for all k ∈ {1, . . . , p}.
Notice that QUAD affine systems can exhibit sliding mode

and chaotic solutions.
Applying the consistency and sum rules reported in

Sec.III, it is easy to check that the differential inclusion (6)
describing a QUAD affine system can be written in the form:

ẋ = h(x, t) + ξ, (8)
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with ξ ∈ F [g](x, t). Furthermore, notice that

||ξ|| < M, ∀x ∈ Rn, t > 0,

where M = maxkMk.
Now, we are ready to state the following result.
Theorem 1: Given a connected network of identical

QUAD affine systems of the form

ẋi = f(xi, t)− c
N∑
j=1

`ijΓxj , xi ∈ Rn,∀i = 1, . . . , N,

(9)
if the inner coupling matrix Γ ∈ Rn×n is positive definite,
then there exists a constant c̄ < +∞ such that for any
coupling gain c > c̄ the network achieves ε-bounded syn-
chronization. Furthermore,

1) An upper bound for the critical value of the coupling
gain c̄ is given by

ĉ =
λmax(W )

λ2(L ⊗ Γ)
. (10)

2) For any c ≥ ĉ, an upper bound on ε can be given as:

ε̂ ≤
√
NM

cλ2(L ⊗ Γ)− λmax(W )
. (11)

Proof: To study the stability of a network of QUAD
affine nodes, we need to rewrite the network model (9) in
terms of the synchronization error defined in (2):

ėi = f(xi, t)−
1

N

N∑
j=1

f(xj , t)− c
N∑
j=1

`ijΓej , (12)

for all i = 1, . . . , N .
Now, let us consider

V (e) =
1

2

N∑
i=1

eTi ei (13)

as a candidate Lyapunov function for the error system.
The derivative of V along the trajectory of the error system

(12), namely V̇ (e) =
∑N
i=1 e

T
i ėi, can be written as

V̇ =

N∑
i=1

eTi

f(xi, t)−
1

N

N∑
j=1

f(xj , t)− c
N∑
j=1

`ijΓej

 .

(14)
From (8) and summing and subtracting

∑N
i=1 e

T
i h(x̄, t), we

then have

V̇ =

N∑
i=1

eTi (h(x, t)− h(x̄, t)) +

+

N∑
i=1

eTi

h(x̄, t)− 1

N

N∑
j=1

[h(xj , t) + ξj ]

+

+

N∑
i=1

eTi ξi − c
N∑
i=1

N∑
j=1

eTi `ijΓej .

From (2), follows that
∑N
i=1 e

T
i = 0, and therefore we

have
∑N
i=1 e

T
i

[(
h(x̄, t)− 1

N

∑N
j=1[h(xj , t) + ξj ]

)]
= 0.

Hence, the time derivative of the Lyapunov function along
the trajectory of the error can be rewritten in compact form
as:

V̇ = eTΦ(x) + eTΞ− ceT (L ⊗ Γ)e, (15)

where Φ(x, t) = [(h(x1, t) − h(x̄, t))T , . . . , (h(xN , t) −
h(x̄, t))T ]T and Ξ = [ξT1 , . . . , ξ

T
N ]T .

Considering that, from Definition 4, the function h is
QUAD, we have

V̇ ≤ eT [IN ⊗W − cL ⊗ Γ] e+
√
N ‖e‖M. (16)

Let us rewrite the synchronization error as e = aê, with
ê = e

‖e‖ . Then, we have

V̇ ≤ a2êT [IN ⊗W − cL ⊗ Γ]ê+ a
√
NM (17)

Considering Lemma 2, simple algebraic manipulations yield

V̇ ≤ [λmax(W )− cλ2(Π)]a2 + a
√
NM, (18)

where Π = L⊗Γ, λ2(Π) is the smallest nonzero eigenvalue
of matrix Π and λmax(W ) is the maximum eigenvalue of
matrix W . Notice that, being λ2(Π) positive, we can choose
c > λmax(W )/λ2(Π) such that λmax(W ) − cλ2(Π) < 0.
Then, we have that a >

√
NM/ [cλ2(Π)− λmax(W )] im-

plies V̇ < 0. Hence, network (9) is ε-bounded synchronized.
The upper bounds (10) and (11) on c̄ and ε, respectively,

follow trivially from (18).
Remark 1: Notice that, if the coupling strenght c is a

control parameter, then it can be used to make the bound
(11) arbitrarily small.

A simple class of piecewise-smooth dynamical systems
are bounded switching systems, defined below.

Definition 5: Let us consider a switching dynamical sys-
tem

ẋ = g(x, t). (19)

where the PWS function g(x, t) = Gk(x, t) if x ∈ Sk. We
say that (19) is a bounded switching system (BSS) if and
only if the PWS function g is such that there exists a finite
positive scalar such that

||Gk(x, t)|| ≤Mk ∀x ∈ RN , ∀t ≥ 0,
for all k ∈ {1, . . . , p}.

It is worth noting that a straightforward corollary for
bounded synchronization of networks of BSSs can be derived
from Theorem 1.

Corollary 1: Consider a connected network of BSSs of
the form

ẋi = g(xi, t)− c
N∑
j=1

`ijΓxj , xi ∈ Rn,∀i = 1, . . . , N,

(20)
If the inner coupling matrix Γ ∈ Rn×n is positive definite,
then there exists a constant c̄ < +∞ such that for any
coupling gain c > c̄ the network achieves ε-bounded syn-
chronization. Furthermore, increasing c, the bound ε can be
made arbitrarily small.

Proof: Since each vector field gi(xi, t) can be written
as fi(xi, t) = f(xi, t) + gi(xi, t), with f(xi, t) = 0 being
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the trivial QUAD component, from Theorem 1 follows the
thesis.

V. NUMERICAL EXAMPLES

Several examples of discontinuous dynamical systems
satisfying the assumptions of Theorem 1 can be made. In
particular, any QUAD system with a discontinuous feedback
nonlinearity such relay, saturation and hysteresis is also
a QUAD affine system. Here, we consider a network of
five classical relay systems, e.g. [22], whose dynamics are
described by:

ẋi = Axi +Bri + ui, yi = Cxi, ri = −sgn(yi),

where

A =

 1.35 1 0
−99.93 0 1
−5 0 0

 ,
B = [1,−2, 1]

T
, C = [1, 0, 0] ,

where u is the coupling protocol, namely:

u = −c
N∑
j=1

`ijΓxj .

As shown in [1], [23], with this choice of parameter
values each relay exhibits both sliding motion and chaotic
behaviour.

The Laplacian matrix describing the network topology is

L =


3 −1 0 −1 −1
−1 4 −1 −1 −1
0 −1 2 −1 0
−1 −1 −1 4 −1
−1 −1 0 −1 3

 ,
while the inner coupling matrix is Γ = I3, that is, the nodes
are coupled through all state variables. In our simulation, we
set the coupling gain c = 50, while the initial conditions are
chosen randomly.

As illustrated in Figs. 1, 2, 3, we compare the behavior of
the coupled network with the case of disconnected nodes. In
particular, Figs. 1, 2 show the time evolution of the second
component of the synchronization error for each node, for
both the uncoupled and coupled case, while Fig. 3 shows the
evolution in the state space.

Despite the presence of sliding motion, we observe the
coupling to be effective in causing all nodes to synchronize.

Notice that this numerical result is consistent with Theo-
rem 1. In fact, the node dynamics can be expressed in terms
of (7), where h(x, t) = Ax is the QUAD term and where
g(x, t) = Br is the bounded switching term. Hence, we can
use Theorem 1 to get an upper bound on the minimum cou-
pling gain guaranteeing ε-bounded synchronization. Notice
that

(x− y)
T

(h(x)− h(y)) = (x− y)
T
A (x− y) =

(x− y)
T
Asym (x− y) ≤ λmax (Asym) (x− y)

T
(x− y) ,

where Asym = 1
2 (A+AT ). For the considered example, we

have λmax(Asym) = 50, while λ2(Π) = λ2(L ⊗ I) = 2.

Therefore, from (10), the lower bound ĉ is 25. Since we
selected c = 50 > ĉ, we can use Theorem 1 to derive a
conservative estimate of the bound ε. To this aim, we need
to compute the bound M on the affine term. Notice that it
can be easily evaluated by computing the Euclidean norm
of the vector [BT , BT , ..., BT ]T . In our example, we have
M = 5.5. Therefore, using (11), we can conclude that an
upper bound for the norm of the stack error vector e is ε̂ ≤
0.25. This result is consistent with what is observed in Fig.
1(b).

0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

15

20

t

(a)

0 0.02 0.04 0.06 0.08 0.1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t
(b)

Fig. 1. Time evolution of error components e
(2)
i (t) for the network of

chaotic relays: (a) uncoupled case; (b) coupled case.

VI. CONCLUSIONS

In this paper, we have derived sufficient conditions for
ε-bounded synchronization of networked piecewise-smooth
systems. In particular, we have shown that a class of
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Fig. 2. Zoom of the evolution of the synchronization error for t > 0.055s
showing bounded convergence.

piecewise-smooth systems, that we called QUAD affine,
can achieve ε-bounded synchronization. The vector field
characterizing this class of systems is characterized by two
additive terms: a QUAD continuous function and a bounded
piecewise-smooth function.

Furthermore, we have given a conservative estimation on
the minimum coupling gain guaranteeing ε-bounded syn-
chronization, and an upper bound for ε. Analytical results
are complemented by numerical simulations on a network
of chaotic relay systems. The proposed example shows how
bounded synchronization can be achieved even in presence
of sliding motion and chaotic behaviour of the network.

We wish to emphasize that, despite the simplicity of our
approach which assumes boundedness of the PWS term,
no other generic result is currently available on networks
of PWS systems exhibiting sliding. Thus, we believe our
approach can offer a simple yet powerful alternative to
give conditions for the synchronization of networks of PWS
systems.
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