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Abstract— An adaptive receding horizon control (RHC)
algorithm for a class of nonlinear differential difference systems
with multiple time delays is proposed. This work extends
previous research dealing with RHC of nonlinear delayed
systems in several ways: first, a rigorous proof is given for
that the RHC guarantees global, uniformly asymptotic stability
of the nonlinear delayed systems. Second, the nonlinear system
with multiple time delays is considered. Third, the procedure
of an adaptive RHC controller is presented by combining the
on-line delay value estimation. Through a simulation example,
it is demonstrated that the proposed adaptive RHC has the
guaranteed closed-loop stability for a special type of nonlinear
differential difference systems.

I. INTRODUCTION

Receding horizon control (RHC), also known as model

predictive control (MPC), has been in the limelight of signif-

icant advanced control techniques because of its unparalleled

advantages. These include: computational feasibility, ability

to handle hard constraints on the controls as well as the

system states, and good tracking performance. While the

body of work concerning delay-free systems is now exten-

sive, see [10], [13] for a comprehensive survey of previous

contributions, much fewer results pertain to delayed systems

which are common in process industry. Since time delays

may significantly degrade the system performance, further

research in receding horizon control of delayed systems is

well motivated. Recent contributions in this area include

[7],[8],[12] for linear delayed systems and [6], [9] for non-

linear delayed systems. Nevertheless, the methods pertain

above only to the cases when the exact values of the delays

are known a priori. Hence, any attempt to identify the real

time delays, in an on-line mode, will radically reduce the

conservativeness of delay uncertainties.

Several novel theoretically adaptive RHCs are introduced

in [1], [2], [4], [5]. However, non of them investigate adaptive

RHC in nonlinear delayed systems. To fill the gap, in this

paper, an extension has been made to the research in [6] and

[9] in three ways:

1) It is proved rigorously that the receding horizon strat-

egy guarantees global, uniformly asymptotic stabiliza-

tion.

2) The differential difference systems with an arbitrary

number of state delays are considered.

3) To cope with model uncertainties with respect to state

delays, an adaptive receding horizon strategy which
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combines feedback control with on-line identification

of state delays is proposed.

In this paper, the control law is obtained by minimizing a

finite horizon cost and its closed-loop stability is guaranteed

by satisfying an inequality condition on the terminal func-

tional. The delay estimation algorithm and RHC is related

through the optimal cost functional. In other words, the esti-

mation algorithm tries to generate a better delay estimate and

RHC computes the perturbation control. Then a special type

of nonlinear differential difference systems is introduced for

constructing a systematic method to find a terminal weighting

functional satisfying the proposed inequality condition. The

closed-loop stability of the proposed RHC is shown through

a simulation example.

This paper is organized as follows: the problem and no-

tation are presented in Section II. The design of an adaptive

RHC and the monotonicity of the optimal cost are stated

in Section III. In Section IV, the stability of the RHC is

investigated. In Section V, a systematic method to find a

terminal weighting functional for a special type of time

delayed systems is introduced. Finally, the efficiency of the

resulting methodology is further demonstrated in a numerical

example.

II. PROBLEM STATEMENT AND NOTATION

Receding horizon control is based on optimal control. In

order to obtain a receding horizon control, we first focus

on the optimal control problem listed below. The class

of nonlinear differential difference systems with multiple

unknown delays considered here is described by

d

dt
x(t) = f(x(t), x(t− τ1), ..., x(t− τk), u(t)) (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is a continuous and

uniformly bounded function that represents an exogenous

input, and 0 < τ1 < τ2 < ... < τk are the time delays

which are unknown. The function f (·) is assumed to be a

continuously differentiable function of its arguments and the

initial condition is stated as

x(s) = φ(s), −τk ≤ s ≤ 0 (2)

The cost functional, to be minimized, is written in the form

J(xt0 , u, t0, tf ) ,

∫ tf

t0

[q(x(s)) + r(u(s))]ds+ q0(x(tf ))

+
k
∑

i=1

∫ tf

tf−τi

qi(x(s))ds (3)
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Fig. 1: Block diagram of the adaptive RHC scheme

where t0 > 0 is an initial time, tf is a final time, q and r

are state and input cost functions, and qi, i = 0, ..., k are

functions needed in the terminal weighting functional and

xt denotes xt(θ) = x(t + θ), θ ∈ [−τk, 0]. Assume that

αL(‖x‖) ≤ q(x) ≤ αH(‖x‖), βL(‖u‖) ≤ r(u) ≤ βH(‖u‖),
and γiL‖x‖ ≤ qi(x) ≤ γ

i
H(‖x‖), i = 0, ..., k, where αL, αH ,

βL, βH , γiL, and γiH are continuous, positive-definite, strictly

increasing functions satisfying αL(0) = αH(0) = βL(0) =
βH(0) = γ

i
L(0) = γ

i
H(0) = 0, i = 0, ..., k.

With the system model (1), let the real system be repre-

sented by

d

dt
x̂(t) = f(x̂(t), x̂(t− τ̂1), ..., x̂(t− τ̂k), u(t)) (4)

with 0 < τ̂1 < τ̂2 < ... < τ̂k, and be equipped with the

same initial condition

x̂(s) = φ(s), −τ̂k ≤ s ≤ 0 (5)

Assume that the optimal control trajectory which mini-

mizes J(xt0 , u, t0, tf ) is given by

u∗(s) = u∗(s;x0, tf ), t0 ≤ s ≤ tf (6)

In the following section, an adaptive RHC scheme is de-

signed by combining on-line delay identifier and an in-

equality condition on the terminal weighting functional is

presented for the proof of stability of adaptive RHC.

III. DESIGN OF ADAPTIVE RECEDING HORIZON

CONTROLLER

In this section, the construction of an adaptive RHC algo-

rithm for a class of nonlinear differential difference systems

is described. The core concept is to combine the proposed

RHC method with an adaptive delay identifier developed in

[11]. The block diagram of the adaptive receding horizon

control is depicted in Figure 1. A fundamental RHC problem

with on-line identification is the adaptation of the identified

model to the changes in the actual process dynamics. The

predictive model will change at each sampling instant time t.

The system model provides an estimate of the system output

at the current instant of time using the current estimate of

the delays. In the predictive controller, the estimated model

is used to formulate the predictive model at t and also to

derive the control law.

A. Delay Identifier

For any given initial and input functions φ and Bu(t), let

H : τ 7→ x(·) be the operator that maps the delay parameter

vector τ = [τ1, ..., τk] into the trajectory x(t), t ∈ [0, T ] of

system (1). Then the identification problem is to find the

solution of the following nonlinear operator equation, which

assumes that x̂ is given as the measured trajectory:

F (τ, x̂)
∆
= H(τ)− x̂ = 0

where x̂ ∈ L2([0, T ],Rn), τ
∆
= [τ1, ..., τk] (7)

The solution of the equation (7) is approached by intro-

ducing the cost functional to be minimized with respect to

the unknown variable τ as follows:

Ψ(τ, x̂)
∆
= 0.5 < F (τ, x̂) | F (τ, x̂) >2= 0.5 ‖ H(τ)− x̂ ‖

2
2,

for x̂ ∈ L2([0, T ],Rn), τ ∈ Rk (8)

Suppose that the Fréchet derivative Y
∆
= ∂
∂τ
F = ∂

∂τ
H .

The above leads to a delay identification iteration:

τn+1 = τn − α(τn)Y (τn)†F (τn, x̂) (9)

where τn is the approximation to the delay parameter vector

in iteration step n. Here, α : Rk → (0,+∞) is the step size

function, Y(τ)∗ is the Hilbert adjoint of the operator Y (τ),
and

Y (τn)† , [Y (τn)∗Y (τn)]−1Y (τn)∗ (10)

Having obtained the delay estimates, the identified model

can be used to formulate the RHC at t.

B. RHC with on-line delay identification

Before the discussion of the stability of the proposed

adaptive RHC , the procedure to implement adaptive

receding horizon control is presented as follows:

Step1: Initialization: Set up initial conditions of system,

prediction horizon N , measurement frequency, step

size of numerical integration, step size α.

Step2: Model prediction: Based on the known values up

to t (past inputs and outputs), the delays are updated

by using the delay identifier algorithm.

Step3: Prediction correction: For an adopted horizon N ,

the predicted outputs y(t+ k|t), k = 1, ..., N , and

future control signals u(t + k|t), k = 0, ..., N − 1
are obtained by optimizing the given criterion.

Step4: RHC control: Only the control u(t|t) is applied to

the process and model over the interval [t, t+ 1].
Step5: Repeat: Go to Step 2.
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C. Monotonicity of the optimal value function

As a standard approach in showing the stabilizing property

of the receding horizon control law, the ”monotonicity

property” for the receding horizon optimal value function is

shown first. In this section, an inequality condition on the

terminal weighting functional under which the optimal value

function has the non-increasing monotonicity is presented.

Before directly discussion the receding horizon control, an

open-loop optimal control problem with the cost functional

in (3) will be considered first.

The open-loop optimal control problem is to find an

optimal control that minimizes a Lipschitz continuous

optimal value function J(xt0 , u, t0, tf ) in (3). Let us denote

the value of the optimal cost by J∗(xt0 , u
∗, t0, tf ). The

following theorem is an extension of the result in the work

of Kwon et al. ([6][9]) and shows that the optimal cost

has the monotonicity property provided that an inequality

condition on the terminal weighting functional is satisfied.

Theorem 1. If there exist positive-definite functions q0(·),
q1(·), ... , qi(·) in (3) satisfying the following inequality for

all xσ:

q(x̄(σ)) + r(ū(σ)) +
k
∑

i=1

[qi(x̄(σ))− qi(x̄(σ − τi))]

+(
∂q0

∂x̄
)T f(x̄(σ), x̄(σ − τ1), ..., x̄(σ − τk), ū(σ)) ≤ 0 (11)

then the optimal cost J∗(x̄η, ū
∗, η, σ) satisfies the following

relation:

D+J(x̄η, ū
∗
[η,σ], η, σ) ≤ 0 (12)

where ū(t)∗ is the optimal control obtained from system (1)

with estimated delays at time instant t, x̄(t) is the state

trajectory derived by applying ū(t) to the real system (4),

and the right-sided Dini derivative is defined as

D+J(x̄η, ū
∗
[η,σ], η, σ)

, lim sup
△→0+

△−1 [J(x̄η, ū
∗
[η,σ+△], η, σ+ △)

−J(x̄η, ū
∗
[η,σ], η, σ)] (13)

Remark III.1. In this approach, the delay estimation algo-

rithm and RHC is related through the optimal cost functional

J(x̄η, ū
∗
[η,σ], η, σ). In other words, the estimation algorithm

tries to generate a better delay estimate and RHC computes

the perturbation control ū(t).

Proof: By definition of the cost function,

J(x̄η, ū
∗
[η,σ+△], η, σ+ △)

,

∫ σ+△

η

[q(x̄∗(s)) + r(ū∗(s))]ds+ q0(x̄
∗(σ+ △))

+
k
∑

i=1

∫ σ+△

σ+△−τi

qi(x̄
∗(s))ds (14)

where, x̄∗ stands for x̄∗[η,σ+△], to simplify notation. Consider

a sub-optimal control for J(xη, u, η, σ+ △) on [η, σ+ △],

obtained while employing the following sub-optimal control.

usub(v) ,

{

ū∗[η,σ](v) v ∈ [η, σ]

ucl(v) v ∈ [σ, σ+ △]
(15)

It is clear that the corresponding system trajectory
x̄sub(v), v ∈ [η, σ+ △], satisfies x̄sub(v) = x̄

∗
[η,σ], for

v ∈ [η, σ] and

J(x̄η, ū
∗

[η,σ+△], η, σ+ △)

≤ J(x̄η, usub, η, σ+ △)

=

∫ σ+△
η

[q(x̄sub(v)) + r(usub(v))]dv + q0(x̄sub(σ+ △))

+
k∑
i=1

∫ σ+△
σ+△−τi

qi(x̄sub(v))ds

=

∫ σ
η

[q(x̄∗(v)) + r(ū∗(v))]dv +

∫ σ+△
σ

[q(x̄sub(v))

+r(ucl(v))]dv + q0(x̄sub(σ+ △))

+
k∑
i=1

∫ σ+△
σ+△−τi

qi(x̄sub(v))ds

=

∫ σ
η

[q(x̄∗(v)) + r(u∗(v))]dv + {q0(x̄
∗(σ))

+
k∑
i=1

∫ σ
σ−τi

qi(x̄
∗(v))ds− q0(x̄

∗(σ))

−

k∑
i=1

∫ σ
σ−τi

qi(x̄
∗(v))ds}

+

∫ σ+△
σ

[q(x̄sub(v)) + r(ucl(v))]dv + q0(x̄sub(σ+ △))

+
k∑
i=1

∫ σ+△
σ+△−τi

qi(x̄sub(v))ds

= J(x̄η, u
∗

[η,σ], η, σ)− q0(x̄sub(σ))

−
k∑
i=1

∫ σ
σ−τi

qi(x̄sub(v))ds

+

∫ σ+△
σ

[q(x̄sub(v)) + r(ucl(v))]dv

+q0(x̄sub(σ+ △)) +
k∑
i=1

∫ σ+△
σ+△−τi

qi(x̄sub(v))ds

Rearranging the above and proceeding to the limit as △ → 0+,
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yields

D
+
J(x̄η, ū

∗

[η,σ], η, σ)

= lim sup
△→0+

△
−1 [J(x̄η, ū

∗

[η,σ+△], η, σ+ △)

−J(x̄η, ū
∗

[η,σ], η, σ)]

≤ lim sup
△→0+

△
−1 [

∫ σ+△
σ

[q(x̄sub(v)) + r(usub(v))]dv

−q0(x̄sub(σ))−
k∑
i=1

∫ σ
σ−τi

qi(x̄sub(v))ds

+q0(x̄sub(σ+ △)) +
k∑
i=1

∫ σ+△
σ+△−τi

qi(x̄sub(v))ds]

= q(x̄(σ)) + r(ū(σ)) +
k∑
i=1

[qi(x̄(σ))− qi(x̄(σ − τi))]

+(
∂q0

∂x
)T f(x̄(σ), x̄(σ − τ1), ..., x̄(σ − τk), u(σ))

≤ 0

Hence, (12) is valid as required.

The Theorem delivers immediately the desired monotonic-

ity of the optimal cost for the differential difference system

with unknown delays (1).

IV. STABILITY ANALYSIS

The RHC can be obtained by replacing t0 by t, tf by t+T ,

and xt0 by xt in (6) for 0 < T < ∞, where T denotes the

horizon length. Hence, the RHC is given by

u∗(t) = u∗(t;xt, t+ T ) (16)

The stability of the RHC hinges on the use of the optimal

value function as the Lyapunov function for system with

the receding horizon control law. It is first noted that the

optimal value function has the following properties.

Proposition IV.1. There exist continuous, nondecreasing

functions ũ : R+ → R
+, ṽ : R+ → R

+ with the properties

that ũ(0) = ṽ(0) = 0 and ũ(s) > 0, ṽ(s) > 0 for s > 0,
such that the optimal value function J(xt, u

∗
[t,t+T ], t, t+ T )

satisfies

ũ(‖ x(t) ‖) ≤ J(xt, u
∗
[t,t+T ], t, t+ T ) ≤ ṽ(‖ x(t) ‖)

for all t ≥ 0, xt ∈ C([t− τk, t],R
n) (17)

Additionally, there exists a continuous, nondecreasing func-

tion w̃ : R+ → R
+, with the property that w̃(s) > 0 for

s > 0, such that the right-sided derivative of the optimal

value function along the system trajectory with the receding

horizon control law satisfies

D+t J(xt, u
∗
[t,t+T ], t, t+ T ) ≤ −w(‖ x(t) ‖)

for all t > 0, xt ∈ C([t− τk, t],R
n) (18)

Proof: First, we note that αL(‖x‖) ≤ q(x) ≤ αH(‖x‖),
βL(‖u‖) ≤ r(u) ≤ βH(‖u‖), and γiL‖x‖ ≤ qi(x) ≤
γiH(‖x‖), i = 0, ..., k, where αL, αH , βL, βH , γiL, and

γiH are continuous, positive-definitive, strictly increasing

function satisfying αL(0) = αH(0) = βL(0) = 0βH(0) =
0γiL(0) = γ

i
H(0) = 0, i = 0, ..., k. Then

J(xt, u
∗
[t,t+T ], t, t+ T )

=

∫ T

t

[q(x(s)) + r(u(s))]ds+ q0(x(T ))

+

k
∑

i=1

∫ T

T−τi

qi(x(s))ds

≤

∫ T

t

[αH(‖x(s)‖) + βH(‖u(s)‖)]ds+ γ
0
H(‖x(t)‖)

+

k
∑

i=1

∫ T

T−τi

γiH(‖x(s)‖)ds (19)

for all t > 0, and all xt ∈ C[t−τk,t], as required. On the other

hand,

J(xt, u
∗
[t,t+T ], t, t+ T )

=

∫ T

t

[q(x(s)) + r(u(s))]ds+ q0(x(T ))

+

k
∑

i=1

∫ T

T−τi

qi(x(s))ds

≥

∫ T

t

[αL(‖x(s)‖) + βL(‖u(s)‖)]ds+ γ
0
L(‖x(t)‖)

+

k
∑

i=1

∫ T

T−τi

γiL(‖x(s)‖)ds (20)

that delivers the desired function ũ.

The right-sided Dini derivative of the optimal value function

along the trajectory of the RHC system is defined by

D+t J(xt, u
∗
[t,t+T ], t, t+ T )

, lim
σ→0+

σ−1[J(xt+σ, u
∗
[t+σ,t+σ+T ], t+ σ, t+ σ + T )

−J(xt, u
∗
[t,t+T ], t, t+ T )] (21)

Now, in view of the assumptions made and the result of

Theorem 1, there exists a right-sided neighborhood of zero

N (0) , {σ ∈ R | 0 ≤ σ < ǫ} such that

J(xt, u
∗
[t,t+T+σ], t, t+ T + σ)

≤ J(xt, u
∗
[t,t+T ], t, t+ T ) (22)

for all σ ∈ N (0), all t > 0, and all xt ∈ C([t− τk, t],Rn).
Hence, in particular, for any θ ∈ N (0), employing Bellman’s

Principle of Optimality, one obtains

J(xt, u
∗
[t,t+T ], t, t+ T )

=

∫ t+θ

t

[q(x∗(s)) + r(u∗[t,t+T ](s)]ds

+J(x∗t+θ, u
∗
[t+θ,t+T ], t+ θ, t+ T )

≥

∫ t+θ

t

[q(x∗(s)) + r(u∗[t,t+T ](s)]ds

+J(x∗t+θ, u
∗
[t+θ,t+T+θ], t+ θ, t+ T + θ) (23)
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where x∗ denotes the trajectory corresponding to the optimal

control u∗[t,t+T ], and xθ denotes the trajectory corresponding

to the optimal control u∗[t+θ,t+T+θ]. Rearranging the above

and proceeding to the limit with θ → 0+ yields

D+t J(xt, u
∗
[t,t+T ], t, t+ T )

≤ −[q(x∗(t)) + r(u∗[t,t+T ](t)]

≤ −q(x∗(t))

≤ −αL(‖x(t)‖) (24)

which holds for all t > 0, all T > 0, and all xt ∈ C([t −
τk, t],R

n). It suffices to define

w̃(‖ x(t) ‖) = αL(‖x(t)‖) (25)

which completes the proof.

The last proposition delivers immediately the desired

stabilization result.

Theorem 2. Assume that system (1) has the property spec-

ified in Theorem 1. Then, the receding horizon control law

based on this cost functional is globally and uniformly

stabilizing for system (1).

Proof: The proof is immediate in view of the result

of Proposition IV.1 and follows from a standard stability

theorem for time delayed systems; see [3], p.132.

V. A PARTICULAR TYPE OF NONLINEAR DIFFERENTIAL

DIFFERENCE SYSTEMS

A. Feasible Solution

In general, finding of the feasible qi(·), i = 0, ..., k, in

Theorem 1 for nonlinear differential difference systems (1) is

difficult. In this section, we introduce an approach proposed

in [9] for a particular type of nonlinear time delayed systems.

In this approach, the feasible qi(·), i = 0, ..., k, satisfying the

inequality condition (11) can be easily obtained by solving

an LMI problem.

The mentioned particular type of nonlinear differential

difference system is presented as:

ẋ(t) = f(x(t), x(t− τ), Bu(t))

= Ax(t) +Hp(x(t)) +A1x(t− τ)

+H1g(x(t− τ)) +Bu(t) (26)

with initial condition:

x(s) = φ(s), s ∈ [−τ, 0], p(0) = 0, g(0) = 0,

where H and H1 are constant matrices with appropriate

dimensions and the functions f, p, g : Rn → R
n. There exist

some constant matrices N ,M , N1, andM1 for the functions

p and g of (26) such that the following inequalities:

‖p(x(t))−Nx(t)‖2 ≤ ‖Mx(t)‖2, (27)

‖g(x(t))−N1x(t)‖2 ≤ ‖M1x(t)‖2 (28)

are valid. We assume that the cost penalties q(·) and r(·)
have quadratic forms:

q(x(t)) = xT (t)Qx(t), r(u(t)) = uT (t)Ru(t) (29)

where Q and R are symmetric, positive definite matrices.

Then the following theorem for a terminal weighting

functional provides a systematic method to obtain a

receding horizon control law which stabilizes the nonlinear

differential difference system (26):

Theorem 3. ([9]) If there exist a symmetric, positive definite
matrix X > 0, as well as some matrices Y, Z, and scalars
ε, δ such that








W VZ X X Y T XMT 0

ZV T −Z 0 0 0 0 ZMT
1

X 0 −Z 0 0 0 0

X 0 0 −Q−1 0 0 0

Y 0 0 0 −R−1 0 0

MX 0 0 0 0 −εI 0

0 M1Z 0 0 0 0 −δI









< 0 (30)

where

W , (AX +BY ) + (AX +BY )T + εHHT + δH1H
T
1

+HNX +XNTHT

V , (A1 +H1N1)

then the inequality condition (11) is satisfied with the control

u(xt) , K(x(t)) (31)

using q0(x(t)) = x
T (t)Px(t), q1(x(t)) = x

T (t)Sx(t),
where P and S are symmetric positive definite matrices, and

P, S, and K can be obtained by letting

P = X−1, S = Z−1, K = Y X−1

In next section, a simulation example is demonstrated by

using the algorithm proposed in this section.

VI. NUMERICAL EXAMPLE

A. RHC for a special type of time delayed system

Consider the nonlinear time delayed system

ẋ(t) = x(t) sin(x(t)) + x(t− 1) + u(t), 0 ≤ t ≤ 2

with initial condition

φ(s) = 10, −1 ≤ s ≤ 0

This system belongs to the class considered in Section V.
Note that, for this system, we have

A = Lf = g = 0, Hf =Mf = A1 = B = 1, f(x) = x sin(x)

Applying Theorem 3 with Q = 1 and R = 1, we obtain

P = 7.17, S = 2.944, K = −7.5865

For RH implementation, state measurement is taken at the

sample time of 0.05 and horizon length T is 1. Figure 2

compares the state trajectories for RHC with those for a

constant state feedback u(t) = Kx(t). With the above K

value, Figure 3 compares the control trajectories. Integrated

costs are given as follows:

JRHC = 34.8201, JKX = 39.8288

where JRHC is the cost for the RHC and JKX is the cost for

a constant state-feedback controller. Note that JRHC is less

than JKX by about 15%. This result is obvious, since RHC

has more degree of freedom than a constant state-feedback

in minimizing the cost. From this numerical example, it is

seen that the proposed RHC is stabilizing in closed loop.
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B. Adaptive RHC of time delayed systems

Here we assume the delay is unknown and the nonlinear

time delayed system is addressed as

ẋ(t) = x(t) sin(x(t)) + x(t− τ) + u(t), 0 ≤ t ≤ 2

with initial condition

φ(s) = 10, −τ ≤ s ≤ 0

In this example, the actual delay is τ̂ = 1 and the initial guess

delay is taken to be τ = 0.1. In simulation, with the on-line

estimation of delay shown in Section III-B, the prediction

horizon is T = 1, the state measurement is taken with a

sample rate of 0.05. The RHC closed-loop state trajectories

of the actual and estimated models are presented in Figure

4.

VII. CONCLUSIONS

This research has first presented a stablizing adaptive RHC

for nonlinear differential difference systems with multiple

time delays. An inequality condition on the terminal weight-

ing functional was developed to insure the nonincreasing
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Fig. 4: RHC closed-loop state trajectories of actual and

estimated models

monotonicity of the optimal cost. The delay estimation algo-

rithm and RHC is related through the optimal cost functional

J(x̄η, ū
∗
[η,σ], η, σ) which plays a vital role for the stability of

the proposed adaptive RHC. The closed-loop stability of the

proposed RHC is shown through a simulation example, and

the effectiveness of the RHC with on-line delay estimation

is confirmed.
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