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Abstract— This paper investigates the effect of noisy mea-
surements of the angular rate in a nonlinear attitude estimator
for satellites. The attitude estimator uses measurement of a
single attitude sensor such as sun, earth horizon, star tracker
or magnetometer together with a rate gyro, and guarantees
exponential convergence of the attitude estimation error to zero
under no noise condition. This paper presents stochastic and
deterministic upper bounds for the attitude estimation error
affected by the noise in gyro. A realistic simulation is presented
to illustrate the results.

I. INTRODUCTION

Measurement noise has a significant effect on performance
of any attitude estimation algorithm and can even cause
the algorithm to diverge. For example, recent proliferation
of Micro-Electro-Mechanical Systems (MEMS) components
has led to development of a range of low cost and light
weight inertial measurements units (IMU). The signal output
of low cost IMU systems, however, is characterized by low-
resolution signals subject to high noise levels [2].

The Extended Kalman Filter (EKF), which was developed
to account for nonlinearity in systems, has been applied
in a number of spacecraft attitude determination systems.
However, EKF is based on linearization of system dynamics
and can diverge due to modeling uncertainty and measure-
ment noise. Moreover, assumptions on noise characteristics
might not be satisfied in real situation. Implementation of
the EKF is also computationally complex [3], [13] and [14].
Computational burden were alleviated in [3] by integration of
the adaptive methods with the EKF by resorting to multiple
vector measurements from sun sensors, earth sensors and
magnetometers. A dual Unscented Kalman Filter (UKF) was
proposed in [7] which used the first and the second order
terms of a nonlinear system such that the resulting UKF had
superior convergence properties and improved accuracy in
presence of measurement noise grace to using two noisy vec-
tor measurements and noisy angular velocity measurement.
The left-invariant extended Kalman filter investigated in [4],
took into account the particular geometry and symmetries of
the system model on the Lie group. The measurement noise
was defined in a way to preserve the symmetries; however,
no concrete convergence properties were demonstrated.

In [5], [2] and [6] nonlinear estimators were proposed and
stability of the attitude estimation error was proven in pres-
ence of noisy measurements. However, the observers were
derived assuming that perfect attitude was already available
by batch preprocessing of multiple vector measurements. It

happens that in a realistic situation the statistical properties
of noise are not exactly known. Therefore, an alternative
approach is to specify a deterministic (hard) bound on
the measurement noise that is usually available in many
applications. In [8], an attitude estimation algorithm was
proposed that globally minimized the attitude estimation
error by assuming that the initial attitude together with
the initial angular velocity and measurement noise stayed
within some given ellipsoidal bounds. Ultimate boundedness
of the attitude attitude and the angular velocity estimation
errors within the ellipsoidal sets was shown assuming that
multiple vector measurements were available. In [1] and
[12] nonlinear observers were designed for satellite attitude
determination using a 3-axis gyro and only a single vector
measurement. Exponential and asymptotic convergence of
the estimation error to zero were respectively proven in the
absence of noise.

Therefore, noise analysis for asymptotically convergent
nonlinear observers using a single vector measurement and
gyro remains open in literature. In this paper we present
stochastic and deterministic noise analysis for the observer
of [1]. The proposed observer ensures exponential conver-
gence of the estimation error to zero in no noise condition.
In presence of noise in gyro measurements, deterministic
and stochastic upper bounds for the estimation error are
presented. Computation of the upper bounds are based on
solution of delayed integral equations. The analysis presents
also a method for optimal tuning of the observer gain that
minimizes the effect of noise in the attitude estimate. The
paper is organized as follows. Section II is devoted to
the problem formulation and definitions. In section III the
observer dynamics for the attitude estimation is presented.
The estimation error dynamics in presence of sensor noise,
is derived in section IV. Stochastic and deterministic analysis
are presented in sections V and VI, respectively. Finally,
section VII presents the simulation results.

II. DEFINITIONS

We denote the smallest and the largest singular value of
the matrix A by σ(A) and σ̄(A), respectively. Also for any
a ∈ R3, ∥a∥ denotes the euclidian norm of the vector.

Definition 1: For any vector a = [a1 a2 a3]
T ∈ R3, we

define the skew operator by

S(a) =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 (1)
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The unskew operator is defined such that S−1(S(a)) = a.
Property 1: S(a)S(b) = baT − aT bI

The kinematic equation of the satellite, considered as a rigid
body, is given by

Ṙ = RS(ω) (2)

where R ∈ SO(3) denotes the attitude matrix of the satellite
which determines the rotation of the satellite body frame with
respect to the inertial frame. ω ∈ R3 is the angular velocity
of the body frame with respect to the inertial frame and
expressed in the body frame. It is assumed that the angular
velocity is measured by a 3-axis rate gyroscope whose output
is contaminated by additive noise, and is given by

ωg(t) = ω(t) + n(t) (3)

where ωg(t) denotes the gyro measurement, ω(t) is the
true satellite angular velocity and n(t) is the gyro noise.
Moreover, it is assumed that only one attitude sensor such
as magnetometer or sun sensor is available for attitude
estimation. Depending on type of the used attitude sensor,
we define a reference vector vr ∈ R3 which is expressed
in the inertial frame and depends on satellite position in
orbit [1]. Examples of such vectors are a vector with its
origin at Sun location and its end at satellite position in
case of using sun sensor, or Earth’s magnetic field vector
evaluated at the satellite position in orbit, in case of using a
magnetometer. We denote vb ∈ R3 as the representation of
the reference vector in the satellite body frame. We assume
that vb is measured by means of an attitude sensor. By virtue
of definition of R, the reference vector and the measured
vector are related by

vb = RT vr (4)

Since the magnitudes of vr and vb have no information on
satellite attitude, we assume that ∥vr∥ = ∥vb∥ = 1.

III. OBSERVER
Considering the measurement noise in gyro, the observer

of [1] is given by

˙̂
R = R̂S(ω̂) (5)
ω̂ = ωg − kωγω (6)

γω = R̂TS−1(R̂vbv
T
r − vrv

T
b R̂

T ) (7)

where R̂ denotes the estimate of the attitude matrix and kω
is the observer gain which is a constant positive scalar. The
attitude estimation error matrix is defined by

R̃ = R̂RT (8)

Evidently, R̂ converges to R if and only if R̃ converges to the
identity matrix. Note that the corresponding rotation matrix
R̃ can be represented using the Rodrigues formula[16]

R̃ = rot(θ, λ) = I + sin θS(λ) + (1− cos θ)S2(λ) (9)

where θ ∈ R, 0 ≤ θ ≤ π denotes the angle of rotation.
The vector λ ∈ R3 represents the axis of rotation such that
∥λ∥ = 1.

IV. ERROR DYNAMICS
As shown in [1], the angle-axis representation of the

estimation error is given by

θ̇ = λTR(ω̂ − ω) (10)

λ̇ =
1

2

(
I − sin θ

1− cos θ
S(λ)

)
S(λ)R(ω̂ − ω) (11)

Substituting for ω̂ from (6) into (10) and (11) leads to

θ̇ = −kω sin θλTPλ+ λTRn (12)

λ̇ = kωS
2(λ)Pλ+

1

2

(
I − sin θ

1− cos θ
S(λ)

)
S(λ)Rn (13)

where

P = tr(vrvTr )I − vrv
T
r = I − vrv

T
r (14)

Here, tr represents the trace of a matrix. The matrix P ≥ 0
was shown to be a positive semi-definite matrix with rank
two but its integral over some interval of time is a full rank
matrix.

V. STOCHASTIC ANALYSIS
Considering the Lyapunov function

W =
1

4
tr
(
(I − R̃)T (I − R̃)

)
= 1− cos θ (15)

and assuming that all the sensors are noise free, the almost
globally exponential convergence of W to zero has been
proved in [1] provided that the following condition is sat-
isfied

1

T

∫ t+T

t

P (τ)dτ ≥ βI (16)

where I ∈ R3×3 is the identity matrix and β, T are
constant scalars. Note that the convergence of W to zero
is equivalent to convergence of R̃ to I , i.e. , R̂ converges to
R, exponentially.

Remark 1: A practical way to compute T and β satisfying
the inequality (16), is to compute β as a function of T by

β(T ) = min
0≤t≤T0

σ
( 1
T

∫ t+T

t

P (τ)dτ
)

(17)

where T0 is the period of signal vr. �
In this section we assume that the gyro measurement contains
additive noise n(t) with the following stochastic properties

E[n(t)] = n̄ = 0 (18)

var[n(t)] = E[(n(t)− n̄)T (n(t)− n̄)] = σ2
n (19)

where E[.] denotes the statistical expectation. Note that by
(15), E[W (t)] is closely related to variance of the attitude
estimation error.

Theorem 1: Under the condition (16), E[W (t)] satisfies
the delayed integral inequality given by

E[W (t+ T )] ≤

(1− kωβT

1 + k2ωT
2
)E[W (t)] +

8kωβT + kωT
3k2ψσ

2
n

4(1 + k2ωT
2)

+ σn

∫ t+T

t

√
2E[W (τ)]− E[W (τ)]2dτ (20)
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where k2ψ = 4
√
2 is calculated in Appendix IX-B. �

Remark 2: The delayed integral inequality (20) when
transformed into an equality can be solved numerically
provided that an initial condition E[W (t0)] is known. The
resulting solution, denoted by Ē(t), is an upper bound for
any solution of the integral inequality. �

Remark 3: In practical situations, it is important to in-
vestigate the steady state effect of noise on the estimation
error. The steady state value of Ē(t), denoted by Ess =
limt→∞ Ē(t), satisfies the following algebraic equality

Ess = (1− kωβT

1 + k2ωT
2
)Ess +

8kwβT + kωT
3k2ψσ

2
n

4(1 + k2ωT
2)

+ σnT
√
2Ess − E2

ss (21)

Note that Ess depends on β and T that are themselves related
to the properties of reference vector vr, the observer gain
kw and variance of measurement noise, σn. Therefore, for a
given reference signal vr and in light of (16)-(17), an optimal
estimator can be defined as a one that minimizes Ess(kω, T )
by

CE = min
kω,T

Ess(kω, T )

�
Proof of Theorem 1: Differentiating W with respect to time
and substituting from (12), yields

Ẇ = −kω sin2 θλTPλ+ sin θλTRn (22)

Now, taking the expectation from both sides of (22), yields

E[Ẇ ] = −kωE[sin2 θλTPλ] + E[sin θλTRn] (23)

According to the Cauchy-Schwartz inequality [10], we have

E[XTY ] ≤
√
E[XTX]

√
E[Y TY ]

Choosing X = sin θRTλ and Y = n, yields

E[sin θλTRn] ≤
√
E[sin2 θ]

√
E[nTn] (24)

where

sin2 θ = 1− cos2 θ = 2W −W 2 (25)

Therefore, (24) simplifies to

E[sin θλTRn] ≤
√
E[2W −W 2]σn (26)

Combining (23) and (26) leads to

E[Ẇ ] ≤ −kωE[sin2 θλTPλ] +
√
E[2W −W 2]σn (27)

Integrating both sides of (27) in the interval [t, t+T ], yields

E[W (t+ T )]− E[W (t)] ≤

− kωE
[∫
t

t+T

sin2 θ(τ)λ(τ)TP (τ)λ(τ)dτ
]

+ σn

∫
t

t+T√
E
[
2W (τ)−W 2(τ)

]
dτ (28)

Next, we find an upper bound for the first term in the RHS
of (28) in terms of E[W (t)]. Similar to [1], we can write∫

t

t+T

sin2 θ(τ)λ(τ)TP (τ)λ(τ) ≥

1

2

∫
t

t+T

sin2 θ(t)λ(t)TP (τ)λ(t)dτ

−
∫
t

t+T [
sin θ(τ)λ(τ)T − sin θ(t)λ(t)T

]
P (τ)×[

sin θ(τ)λ(τ)− sin θ(t)λ(t)
]
dτ (29)

A lower bound for the first term in RHS of (29) can be found
by left multiplying (16) by sin θ(t)λ(t) and right multiplying
it by sin θ(t)λ(t)T and substituting from (25) as follows:∫

t

t+T

sin2 θ(t)λ(t)TP (τ)λ(t)dτ ≥ βT
(
2W (t)−W (t)2

)
(30)

Also, the second term in the RHS of (29) can be bounded
by the use of the next Lemma.

Lemma 1: For any t > 0 we have∫
t

t+T [
sin θ(τ)λ(τ)T − sin θ(t)λ(t)T

]
P (τ)×[

sin θ(τ)λ(τ)− sin θ(t)λ(t)
]
dτ

≤ kω
2T 2

∫
t

t+T

sin2 θ(τ)λ(τ)TP (τ)λ(τ)dτ

+
T 2k2ψ
4

∫
t

t+T

n(τ)Tn(τ)dτ (31)

Proof : See Appendix IX-A.
Introducing (30) and (31) into (29), yields∫ t+T

t

sin2 θ(τ)λ(τ)TP (τ)λ(τ)dτ ≥ βT

2(1 + k2ωT
2)
×

(
2W (t)−W (t)2

)
−

T 2k2ψ
4(1 + k2ωT

2)

∫ t+T

t

n(τ)Tn(τ)dτ

(32)

Taking the expectation from both sides of (32), implies

E
[ ∫ t+T

t

sin2 θ(τ)λ(τ)TP (τ)λ(τ)dτ
]
≥

βT

2(1 + k2ωT
2)

(
2E[W (t)]− E[W (t)2]

)
−

T 3k2ψ
4(1 + k2ωT

2)
σ2
n

(33)

Applying (33), we can rewrite (28) by

E[W (t+ T )] ≤ (1− kωβT

1 + k2ωT
2
)E[W (t)]

+
kwβT

2(1 + k2ωT
2)
E[W (t)2] +

kωT
3k2ψσ

2
n

4(1 + k2ωT
2)

+σn

∫ t+T

t

√
2E[W (τ)]− E[W (τ)2]dτ (34)

By Jensen’s inequality [10], if φ : R → R is a convex
function such that the random variables X and φ(X) have
finite expectations, then

φ[E(X)] ≤ E[φ(X)] (35)
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Choosing φ(W ) =W 2 implies

E[W 2] ≥ E[W ]2

Therefore,√
2E[W ]− E[W 2] ≤

√
2E[W ]− E[W ]2 (36)

It is evident that E[W (t)2] ≤ 4 due to the fact that W (t) =
1 − cos θ ≤ 2. Considering this fact and (36), (20) will be
concluded from (34). �

VI. DETERMINISTIC ANALYSIS

Assume that a deterministic upper bound for noise is
known as

sup
t≥0

∥n(t)∥ ≤ nmax

We aim to compute an upper bound for the estimation error,
W (t).

Theorem 2: Under condition (16), the estimation error
W (t) satisfies the following difference inequality

W (t+ T ) ≤(1− kωβT

1 + k2ωT
2
)W (t) +

kωβT

2(1 + k2ωT
2)
W (t)2

+
T 3k2ψkω

4(1 + k2ωT
2)
n2max + Tnmax (37)

Proof : First integrate (22) and substitute from (32).

W (t+ T ) ≤(1− kωβT

1 + k2ωT
2
)W (t) +

kωβT

2(1 + k2ωT
2)
W (t)2

+
T 2k2ψkω

4(1 + k2ωT
2)

∫ t+T

t

n(τ)Tn(τ)dτ

+

∫ t+T

t

sin θ(τ)λ(τ)TR(τ)n(τ)dτ (38)

According to inner product definition of two vectors, we have

< X,Y >= XTY ≤ ∥X∥∥Y ∥ (39)

where < X,Y > denotes the inner product of X and Y .
Choosing X = sin θRTλ, Y = n and using (39), yields

sin θ(τ)λ(τ)TR(τ)n(τ) ≤ | sin θ|nmax ≤ nmax (40)

Also, note that

n(τ)Tn(τ) = ∥n(τ)∥2 ≤ n2max (41)

Applying (40) and (41) to (38), the inequality (37) results.
�

Remark 4: By knowing W (t0), (37) can be solved nu-
merically in the equality case. The obtained solution is an
upper bound for all solutions of (37). �
The RHS of (37) is a second order polynomial with respect
to W (t). The roots of this polynomial are

Wmin = 1−
√
1− cγ−1, Wmax = 1 +

√
1− cγ−1 (42)

where

c =
T 3k2ψkω

4(1 + k2ωT
2)
n2max + Tnmax, γ =

kωβT

2(1 + k2ωT
2)

Since the RHS of (37) is negative for Wmin < W (t) <
Wmax and positive elsewhere, the following results can be
inferred

• if W (0) > Wmax then W (∞) < 2.
• if W (0) < Wmax then W (∞) ≤Wmin.

Based on the previous discussions it is desirable to have the
smallest Wmin and the largest Wmax. Given β, T satisfying
(16), it can be shown that the optimizing value of the
observer gain is k∗ω = 1

T

VII. SIMULATION
In this section simulation results for the deterministic

approach is presented. We consider a satellite equipped with
a 3-axis gyro and a magnetometer, and moving in a circu-
lar sun-synchronous orbit with the inclination 98.7◦, right
ascension of ascending node equal to 200◦ and altitude of
800 Km, yielding an orbital period of 100 minutes. Rotation
dynamics of the satellite is given by Isω̇+ω×Isω = τ , where
Is ∈ R3×3 is the moment of inertia matrix of the satellite and
τ is the external torque exerted to satellite. We assume that
the satellite is equipped with a gravity boom and no other
external torque except the gravitational torque is exerted to
the satellite. Similar to the Purdue Imaging Satellite (PI-
SAT), the constant moment of inertia matrix of the satellite
is given by Is = diag([13.654, 13.555, 0.765])Kgm2 (with
the extended gravity boom) and the length and the tip mass
of the gravity boom are considered as lboom = 3m and
mboom = 1Kg, respectively [1]. The gravitational torque is
expressed by τ = 3

√
µe/R3

oS(c3)Isc3 [17] where µe is the
Earth gravitational constant, Ro is the radius of the orbit
and c3 is the third column of the rotation matrix from the
orbit frame to satellite body frame which is denoted by Rbo.
Computation of Rio is based on the Keplerian elements of
the satellite orbit and using the Kepler’s laws [1]. To obtain
the reference vector vr for the magnetometer, we used an
orbit estimator to obtain Rio and then used the International
Geomagnetic Reference Field (IGRF) model [15] to compute
the magnetic field vector of the earth in the position of the
satellite. The maximum amplitude of noise is assumed to be
nmax = 0.0034 deg

hour . In order to preserve the evolution of
the estimated matrix R̂ on the SO(3), the observer has been
implemented in discrete time by the method proposed in [9].
As discussed in the previous section, for a fixed T , the
maximum value of W2(kω, T ) and the minimum value of
W1(kω, T ) are achieved by choosing k∗ω = 1

T . Subsequently,
it is also possible to find T that minimizes W1(k

∗
ω, T ) and

maximizes W2(k
∗
ω, T ). For T ∗ = 45, the final optimized val-

ues are given by W1(k
∗
ω, T

∗) = 0.0017 and W2(k
∗
ω, T

∗) =
1.9983.
For optimal values of T ∗ = 45 and k∗ω = 0.023, (37) is
simulated in equality case and the resultant upper bound for
W (t) is depicted in Fig. 1.

To see how the optimal choice of observer gain affects
the true estimation error, which is evaluated by (15), W(t)
is compared for the optimal gain (k∗ω = 0.023) and non-
optimal gain (kω = 0.08) in Fig. 2. Also, the velocity error
(ω̃ = ω̂−ω) in the optimal and non-optimal case are shown
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Fig. 1. Upper bound for the true attitude estimation error in optimal case
(for the solid curve in Fig. 2), kω = 0.023. One orbit equals 100 mins.
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Fig. 2. Comparison between the true attitude estimation error in optimal
(solid) and non-optimal (dash) case. One orbit equals 100mins.

in Fig. 3 illustrating the impact of optimal tuning of observer
gain in noise reduction.

VIII. CONCLUSIONS

The observer (5)-(7) guarantees exponential convergence
of the estimation error to zero under no-noise condition.
In presence of noise in gyro measurements, stochastic and
deterministic upper bounds for the estimation error are
presented. Computation of the upper bounds are based on
solution of some delayed integral equations. Computation of
the upper bounds in steady-state period amounts to solving
algebraic equations.

IX. APPENDIX

A. Proof of Lemma 1

It is evident that

sin θ(τ)λ(τ)− sin θ(t)λ(t) =

∫ τ

t

d

dδ

{
sinθ(δ)λ(δ)

}
dδ

(43)
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Fig. 3. Comparison between the error in estimation of angular velocity
(ω̃) in optimal (solid) and non-optimal case (dash).

Using (12) and (13), yields

d

dδ

{
sin θ(δ)λ(δ)

}
= cos θ(δ)θ̇(δ)λ(δ) + sin θ(δ)λ̇(δ)

= −kω sin θ
(
I − (1− cos θ)λλT

)
Pλ+ cos θλTRnλ

+
1

2
sin θ

(
I − sin θ

1− cos θ
S(λ)

)
S(λ)Rn

Substituting S2(λ) = λλT − I and sin2 θ = 1 − cos2 θ
together with straightforward algebraic manipulations, gives

d

dδ

{
sin θ(δ)λ(δ)

}
= −kω sin θ

(
I − (1− cos θ)λλT

)
Pλ

+
1

2

(
(1 + cos θ)I + sin θS(λ)− (1− cos θ)λλT

)
Rn

Let define

q(δ) = sin θ(δ)λ(δ)

M(δ) = I − (1− cos θ)λλT

ψ(δ) = (1 + cos θ)I + sin θS(λ)− (1− cos θ)λλT (44)

Then, (43) can be rewritten as

q(τ)− q(t) =

∫ τ

t

[1
2
ψ(δ)R(δ)n(δ)− kωM(δ)P (δ)q(δ)

]
dδ

Therefore,∫ t+T

t

[
q(τ)T − q(t)T

]
P (τ)

[
q(τ)− q(t)

]
dτ =∫ t+T

t

[ ∫ τ

t

(1
2
n(δ)TR(δ)Tψ(δ)T−

kωq(δ)
TP (δ)TM(δ)T

)
dδ

]
P (δ)×[ ∫ τ

t

(1
2
ψ(δ)R(δ)n(δ)− kωM(δ)P (δ)q(δ)

)
dδ

]
dτ

(45)

By the Fact 1 in [1] we have σ̄(P (τ)) = 1. Applying this fact
and Fact 2 in [1] for a = t, b = τ and x = 1

2ψ(δ)R(δ)n(δ)−
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kωM(δ)P (δ)q(δ) into (45), we have∫ t+T

t

[
q(τ)T − q(t)T

]
P (τ)

[
q(τ)− q(t)

]
dτ ≤∫ t+T

t

∫ τ

t

(τ − t)×∥∥1
2
ψ(δ)R(δ)n(δ)− kωM(δ)P (δ)q(δ)

∥∥2dδdτ
(46)

According to Parallelogram law in inner product space [11],
we have

∥X + Y ∥2 ≤ 2∥X∥2 + 2∥Y ∥2 (47)

Hence, (47) can be rewritten as∫ t+T

t

[
q(τ)T − q(t)T

]
P (τ)

[
q(τ)− q(t)

]
dτ ≤∫ t+T

t

∫ τ

t

(τ − t)
(
2
∥∥1
2
ψ(δ)R(δ)n(δ)

∥∥2+
2
∥∥kωM(δ)P (δ)q(δ)

∥∥2)dδdτ (48)

Noting that 0 < 1− cos θ < 2, by the Fact 1 in [1] we can
find that σ̄(M(δ)) = 1. Also, noting that PTP = P and
changing the sequence of integration we have∫ t+T

t

[
q(τ)T − q(t)T

]
P (τ)

[
q(τ)− q(t)

]
dτ ≤∫ t+T

t

(1
2

∥∥ψ(δ)R(δ)n(δ)∥∥2 + 2k2ω
∥∥M(δ)P (δ)q(δ)

∥∥2)×∫ t+T

δ

(τ − t)dτdδ ≤∫ t+T

t

(1
2

∥∥ψ(δ)R(δ)n(δ)∥∥2+
2k2ω

∥∥M(δ)P (δ)q(δ)
∥∥2){T 2 − (δ − t)2

2

}
dδ ≤

k2ωT
2

∫ t+T

t

q(δ)TP (δ)q(δ)dδ+

T 2

4

∫ t+T

t

∥∥ψ(δ)R(δ)n(δ)∥∥2dδ (49)

Note that ∥∥ψ(δ)R(δ)n(δ)∥∥2 ≤ k2ψn(t)
Tn(t) (50)

where k2ψ = 4
√
2 is the upper bound for ψTψ calculated in

Appendix IX-B. Then, (49) can be rewritten by∫ t+T

t

[
q(τ)T − q(t)T

]
P (τ)

[
q(τ)− q(t)

]
dτ ≤

k2ωT
2

∫ t+T

t

q(δ)TP (δ)q(δ)dδ +
T 2k2ψ
4

∫ t+T

t

n(δ)Tn(δ)dδ

(51)

Finally, equation (31) will be proven by replacing q(t) with
sin θλ in (51). �

B. Calculation of the upper bound kψ for ψ(t):

According to (44) and by some straightforward algebraic
operations, we have

ψ(δ)Tψ(δ) = 2(1 + cos θ)(I − λλT ) + 4 cos2 θλλT (52)

Note that the first and the second terms on the RHS of (52)
are perpendicular and the maximum value for both of them
is 4. Also, ∥λ∥ = 1. Therefore,

ψ(δ)Tψ(δ) ≤
√
16 + 16I = 4

√
2I (53)

which implies k2ψ = 4
√
2.
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