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Abstract— The paper presents the design of a lateral stability
controller for ground vehicles based on front steering and four
wheels independent braking. The control objective is to track
yaw rate and lateral velocity reference signals while avoiding
front and rear wheel traction force saturation. Control design is
based on an approximate piecewise–affine nonlinear dynamical
model of the vehicle. Vehicle longitudinal velocity and driver
steering input are modeled as measured disturbances taking
values in a compact set.

We use a time-optimal control strategy which ensures con-
vergence into a maximal robust control invariant set. This
paper presents the controller experimental results on a vehicle
equipped with active front steering and differential braking.
In particular, tests at high-speed on ice with aggressive driver
maneuvers show the effectiveness of the proposed scheme.

I. INTRODUCTION

In our previous work ([9],[8],[10]) we presented a sys-

tematic approach to design yaw and lateral dynamics control

using the coordination of active front steering with differen-

tial braking. We modeled the nonlinear dynamics of vehicle

as a PWA discrete–time system, whose states (yaw rate

and lateral velocity) and control variables (front turn wheel

angle and braking moment) are subject to hard constraints.

Longitudinal velocity is treated as a state–dependent mea-

sured disturbance. In [10] we introduced a controller which

guarantees constraints satisfaction at all times for all possible

disturbance realizations captured by the model. Due to the

presence of hard constraints and strict constraint satisfaction

requirements, we base our design on set–theoretic methods

(cf. [3]). In particular, we characterize and compute the

robust control invariant (RCI) set for the piecewise–affine

model of the vehicle using the results on Min–max and Max–

min reachability, introduced respectively in [12] and [13],

[1]. Such RCI set serves as a foundation for time–optimal

robust control strategy. In this work we validate the controller

introduced in [10] in an experimentally study with two main

objectives in mind. First, our goal is to verify the validity of

the simplified vehicle and disturbance models used in [10]

and based on that to infer (or disprove) the validity of the

guarantees provided by the proposed robust control design.

Secondly, we would like to evaluate the performance of the

proposed control strategy when tested in closed loop with

the driver.
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The paper is structured as follows. In Section II we present

the vehicle model. Starting from the classical nonlinear bicy-

cle model, we obtain a Piecewise Affine (PWA) realization.

In Section III, we present the controller design. Experimental

results are reported in Section IV followed by final remarks

in Section V. Sections II–III have been extracted from [9],

[8], [10].

II. A MODEL OF THE LATERAL VEHICLE DYNAMICS

In this section, starting from the standard nonlinear bicycle

model [11, Sec. 2.3] we describe the Hybrid PieceWise

Affine (HPWA) bicycle model used for robust controller

synthesis. We use the following notation: the subscripts (·)f
and (·)r denote variables associated with the front and the

rear wheel, respectively. Also, the subscript ()⋆ stands for

both (·)f and (·)r .

The bicycle model (cf. [5], [11]) is given by

mÿ = −mẋψ̇ + 2Fcf
+ 2Fcr

, (1a)

Iψ̈ = 2aFcf
− 2bFcr

+M, (1b)

where ẏ is the lateral speed, ẋ is the longitudinal velocity,

ψ̇ is the yaw rate, M is the braking moment, Fc⋆
are the

cornering tire forces, a is longitudinal distance from the

vehicle’s center of gravity (CoG) to the front axle, b is

longitudinal distance from CoG to the rear axle and I is

yaw inertia moment of vehicle around the z-axis.

For cornering tire forces we are using the well-known

Pacejka’s model ([7]), where they are defined by a static

non–linear mapping:

Fc⋆
= fc(α⋆, s⋆, µ⋆, Fz⋆

), (2)

with s⋆ slip ratios (the normalized difference between the

longitudinal slip velocity and the forward speed of the

wheel center [7, Sec. 2.2]), µ the friction coefficient, α⋆
tire slip angles and Fz⋆ normal tire forces. The dependence

of the cornering (lateral) tire force on the slip angle α,

for a fixed value of the slip ration s = 0, is depicted in

Figure 1. Most of the practical set–theoretic based control

synthesis methods rely on polytopic set representations. In

that respect, a suitable model for nonlinear system dynamics

is a piecewise-affine (PWA) model. PWA models are also

particulary amenable for approximation of cornering Pacejka

tire forces shown in Figure 1.

We introduce the following assumption.

Assumption 1: The friction coefficient µ is known, con-

stant and equal for both wheels of the bicycle model. Normal

tire forces Fz⋆ are assumed to be constant, known and the

same for both wheels.
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Fig. 1. Lateral tire force.

Under the above assumptions, it is reasonable to consider

Fc⋆ in their pure cornering condition (s⋆ = 0) and depending

only on the slip angles α⋆. The dependence of forces Fc⋆
on the states ẏ, ψ̇ is derived as follows. First, we consider,

under small angles approximation, the linear state–input

combination to describe front and rear tire slip angle αf
and αr:

αf =
aψ̇ + ẏ

ẋ
− δf , αr =

bψ̇ − ẏ

ẋ
. (3)

From equations (3) it is possible model the lateral force as

the piecewise affine function

g⋆(α⋆) =











csα⋆ + (cl + cs)α
•
⋆, if − π

6 ≤ α⋆ ≤ −α•
⋆,

−clα⋆, if − α•
⋆ ≤ α⋆ ≤ α•

⋆,

csα⋆ − (cl + cs)α
•
⋆, if α•

⋆ ≤ α⋆ ≤
π
6 ,

(4)

where the interval [−α•
⋆, α

•
⋆] is the linear region, the interval

[−π/6,−α•
⋆] is the region of force negative saturation and

the interval [α•
⋆, π/6] is the region of force positive satura-

tion.

For the longitudinal velocity, we assume the following:

Assumption 2: The longitudinal velocity of the vehicle vx
is bounded within the interval [vmin

x , vmax
x ] and is known

(measured) at every discrete–time instant.

Substituting equations (4) into (1), we obtain the hybrid

(PWA) bicycle model of the vehicle:

ξ̇ =

[

a11 a12

a21 a22

]

i

ξ

vx
+

[

0 −v2
x

0 0

]

ξ

vx
+Biu+ fi. (5)

where ξ = [ẏ, ψ̇]T , u = [δf ,M ]T and vx = ẋ. We define:

Āi :=

[

a11 a12

a21 a22

]

i

, z :=
ξ

vx
(6)

w1 := −v2
xz2, B̄i := Bi =

[

b11 0
b21 b22

]

i

,

f̄i := fi

to obtain the compact representation of system (5)

ξ̇ = Āiz +

[

1
0

]

w1 + B̄iu+ f̄i. (7)

S 1 z1 ≥ 0 z2 ≥ 0

wz1
≥ vxmax

z1 − Tsv2
xmin

z2

wz1
≤ vxmin

z1 − Tsv2
xmax

z2

z1 ≤ z1max

z2 ≤ z2max

S 2 z1 ≤ 0 z2 ≥ 0

wz1
≥ vxmin

z1 − Tsv2
xmin

z2

wz1
≤ vxmax

z1 − Tsv2
xmax

z2

z1 ≥ z1min

z2 ≤ z2max

S 3 z1 ≥ 0 z2 ≤ 0

wz1
≥ vxmin

z1 − Tsv2
xmin

z2

wz1
≤ vxmax

z1 − Tsv2
xmax

z2

z1 ≤ z1min

z2 ≥ z2max

S 4 z1 ≤ 0 z2 ≤ 0

wz1
≤ vxmin

z1 − Tsv2
xmax

z2

wz1
≥ vxmax

z1 − Tsv2
xmin

z2

z1 ≥ z1min

z2 ≥ z2min

TABLE I

Using Euler’s method we can discretize the model (6)–(7)

ξ(k + 1) =Âiz(k) + B̂iu(k) + f̂i + wz(k), (8)

where wz(k) := Ts

[

1
0

]

w1(k) + ξ(k). In model (8) the

evolution of the state vector ξ is defined by the linear

expression in z = ξ/vx, whose value is known at each time

instant.

Using the definition of z in (6), we can rewrite the

equation (3) as follows:

αf = az2 + z1 − δf , αr = bz2 − z1. (9)

The constraints on z given by (4) and (9) are polygonal

sets. Table I reports the bounds on the first component of

the disturbance wz1 , while wz2 satisfies the following linear

inequalities:

zmin
2 ≤ z2, ≤ zmax

2 , vmax
x z2 − wz2 ≤ 0. (10)

The reader can find the details construction of bounds in

Table I and (10) in [8] and [10]. The equations (4), (8) and

(9) provide a hybrid dynamical system with nine modes. In

each mode the system dynamics is affine. The mode selection

depends on the side slip angles α⋆ according to (4). By

using the equations (9), the hybrid bicycle model (8) can

be compactly written as

ξ+ =Âiz + B̂iu+ f̂i + wz,

(z, u) ∈ Qi, wz ∈ Wz(z) i ∈ {1, . . . , 9}, (11)

where z = [ ẏ
vx

; ψ̇
vx

]T , {Qi}
9
i=1 is a collection of polyhedral

regions in R
4 defining the regions for each dynamic behavior

and constraints on the scaled state and control variables,

and Wz(·) is a set-valued mapping. In addition to the speed

uncertainty captured by wz , in this paper we also consider an

uncertainty in the actuation by extending the hybrid bicycle

model (11) with an uncertainty term wu. The resulting model

is

ξ+ =Âiz + B̂iu+ f̂i + wz + wu,

(z, u) ∈ Qi, wz ∈ Wz(z), wu ∈ Wu(u) (12)
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where Wu(·) is a set-valued mapping. Differently from wz ,

at every sampling time the value of the uncertainty wu is not

known to the controller. The controller, however, is aware of

the bounds on wu and assumes that w can take an arbitrary

value within the set W(u).
In this work we assume that each of the control inputs,

the steering δf and the braking moment M , is affected by

±10% uncertainty in its value.

III. ROBUST CONTROL COMPUTATION

In this section we describe the robust control strategy for

all possible variations of the longitudinal velocity vx and for

all possible realizations of the input uncertainties wu. The

controller design aims primarily at inducing the “nominal”

behavior of the vehicle, i.e., dynamic behavior obtained when

neither front nor rear tires are saturated and, at the same time,

tracking the given reference vector r as close as possible.

We formalize these notions via robust control invariance

and constrained controllability for the considered system

class affected by input–dependent uncertainties. We provide

only very limited discussion on these topics. For supplemen-

tary details the reader is referred to [12], [13], [1], [10].

Rewrite system (12) compactly as:

ξ+ = fpwa(z, u, wz, wu), (13a)

(z, u) ∈ Czu, wz ∈ Wz(z), wu ∈ Wu(u) (13b)

and consider the one–step robust backwards–reachable set

given by the following mapping:

Preξ(X ) :=
{

ξ : ∀wz ∈ Wz(z) ∃u such that (z, u) ∈ Czu

and fpwa(
ξ

vx
, u, wz, wu) ∈ X , ∀wu ∈ Wu(u)

}

.

The set Preξ(X ) can be computed as follows. First the one–

step robust backwards–reachable set Prez(X ) is computed

for the system

z+ = fpwa(z, u, wz, wu), (14a)

(z, u) ∈ Czu, wz ∈ Wz(z), wu ∈ Wu(u), (14b)

using the combinations of algorithms introduced in [12] and

[13], [1] and subsequently applied in [10]. Then, we compute

the set Preξ(X ) as

Preξ(X ) = Ωξ\Projξ

({

Ωξvx
\

q
⋃

i=1

Pξvx

i

})

, (15)

where Ωξ := Projξ (Cξu), Ωξvx
:= Ωξ×Vx and the sets Cξu

and Vx are the constraint sets as specified in (12). Again, for

details of the algorithms and the expression (15) interested

reader is referred to [10] and references therein.

Operations on sets required to perform computations in

(15) for polygonal constraints and target set X have been

performed by using the MPT Toolbox (cf. [6]). Thus the

mapping Preξ(·) for the case of polygonal argument sets

and constraints can be readily implemented and used for the

computation of the robust max–min controller, as discussed

next.

The primary task of the Robust ESC (RESC) controller we

are going to design next is to preserve “nominal” behavior of

the car for all possible values wz considered in the design.

Let us enumerate the polyhedral regions Qi of our PWA

model (12) so that the vehicle is in the linear mode at

time k if (zk, uk) ∈ Q1. For this reason we refer to the

linear regime of the tires as “mode 1”. In our discrete–

time setting, the desired control action uk at any time

instant k must satisfy (zk, uk) ∈ Q1 and at the same time

ξk+1/vx(k+1) ∈ Projz (Q1) for all possible vx(k+1), i.e.

for all vx(k + 1) ∈ Vx. Let

Projz (Q1) =
{

z : H1z ≤ k1
}

,

and define P1 as follows:

P1 = {ξ : H1ξ ≤ k1vmin
x } ∩ {ξ : H1ξ ≤ k1vmax

x }. (16)

We formalize the notion of robustness to velocity variations

by defining mode 1 robust control invariant (RCI) set:

Definition 1: A set R ⊆ P1 is called mode 1 RCI set

for the dynamical system (12) if for every ξ ∈ R and each

(vx, wz) ∈ Vx×Wz(ξ/vx) there exists a control u such that

(ξ/vx, u) ∈ Q1 and Â1ξ/vx+ B̂1u+ f̂1 +wz +wz ∈ R for

all wu ∈ Wu(u).

For our purposes it is desirable to characterize the maximal

mode 1 RCI set R1
∞ which contains all other mode 1 RCI

sets and can be obtain using the standard iterative procedure

given by Algorithm introduced in [2]. In the Algorithm we

perform computations of backwards–reachable sets only for

the constraints and the dynamics associated to the mode 1.

In particular, the mapping Pre1ξ(·) is given by:

Pre1z(X ) := {z : ∀wz ∈ Wz(z) ∃u such that (z, u) ∈ Q1

and Â1z + B̂1u+ f̂1 + wz + wz ∈ X

∀ wu ∈ Wu(u)}

Pre1ξ(X ) :=

{

ξ :
ξ

vx
∈ Pre1z(X ), ∀vx ∈ Vx

}

.

If Algorithm [2] terminates in finitely many iterations it,
then the set R1

∞ = Xit .

To the set R1
∞ we associate the control mapping U1

∞(·)
non–empty for all ξ ∈ R1

∞ and all vx ∈ Vx:

U1
∞(z, wz) = {u : (z, u) ∈ Q1 and ∀ wu ∈ Wu(u)

Â1z + B̂1u+ f̂1 + wz + wu ∈ R1
∞

}

.
(17)

For a given scaled state vector z, any control input selected

from the set U1
∞(z) results in the successor state ξ+ being

inside the set R1
∞.

The maximal mode 1 RCI set is robust to the modeled

uncertainties wz and wu. The Robust ESC controller can

keep the state trajectory within the set R1
∞ using braking

and steering wheel angle for all admissible values of wz and

wu. Also, the RESC may be activated by the driver at the

moment when the state ξ /∈ R1
∞, e.g. when the vehicle is

over-steering or under-steering. In such situations the RESC
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scheme should bring the state back to the set R1
∞. For that

purpose we compute the k–step controllable sets Xk, k ≤ 2:

Xk = Preξ(Xk−1), k = 1, . . . , N, (18)

with X0 = R1
∞. Note that in (18) the control horizon N is

chosen by the user trading off the size of the controllable set

and the controller computational load. To each controllable

set Xk, k = 1, . . . , N , we associate the control mapping:

Uk(z, wz) = {u : (z, u) ∈ Czu and

fpwa(z, u, wz, wu) ∈ Xk−1 ∀ wu ∈ Wu(u)} .
(19)

The value of the mapping Uk(·) is non–empty for all ξ ∈ Xk
and for all vx ∈ Vx. Figure 2 shows the outcome of the

developed control design algorithm for the proposed vehicle

model with tire–road friction coefficient µ = 0.3 and the

longitudinal velocity range Vx = [40, 50] [km/h] and the

k–step controllable sets Xk for k ≤ 2. All the computations

−3 −2 −1 0 1 2 3
−0.8
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0
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0.4

0.6

0.8

 dy/dt [m/s]

 d
ψ

/d
t 

[r
ad

/s
]

R1

∞

P1

X1

X2

Ωξ

Fig. 2. Robust Control Invariant (RCI) set and 2–step controllable sets Xk

for µ = 0.3 and 40 ≤ vx ≤ 50 [km/h].

briefly outlined above are performed using Multi–Parametric

Toolbox for Matlab [6].

A. Implementation Details

The control scheme used in experimental test is a modifi-

cation of the classical ESC scheme. The “Vehicle” through

its sensors transmits the information on its dynamics to

“Reference Generator”. The controller “RESC” generates

appropriate steering and braking control values in order to

track the references provided by the “Reference generator”

block; while keeping the state trajectory within the set R1
∞

or driving it into R1
∞. The control input u∗ of the “RESC”

is computed as:

u∗ = arg min
u∈U♯(z,wz)

(ξ+ − r)TQ(ξ+ − r) + uTRu, (20)

where Q and R are suitably chosen matrices. The actual

set of admissible control inputs U♯(z, wz) = Uk(z, wz) is

defined by the mappings (17) and (19); if the state ξ belongs

to R1
∞, then U♯(z, wz) = U1

∞(z, wz), otherwise U♯(z, wz) =
Uk̄(z, wz) with k̄ being the smallest k for which Uk(z, wz)
is non-empty. As the PWA state–update mapping as well as

the set–valued mapping Wz(z) in (12) are continuous and all

constraint sets are compact, the mappings U1
∞(·) and Uk(·)

are compact–valued.

In the proposed setup, U1
∞(·) and Uk(·), k = 1, . . . , N

are the union of several polytopes. At every sampling time

computing u∗ amounts to solve a number of optimal control

problems. First, we determine the number of polytopes

(among U1
∞(·) or Uk̄(z, wz) ) containing the measured couple

(z, wz), and then we solve an equal number of optimal

problems to compute the u∗ with associated minimum cost.

The optimal control solution u∗ has two components: the

steering wheel angle u∗(1) and the braking moment u∗(2).
Both components have to be transformed into front wheel

angle command and wheel braking torques, respectively. The

total road turn wheel angle δRoad is δRoad = δAFS + δDriver.

The designed control strategy computes the optimal road turn

wheel angle, therefore

δAFS = u∗(1) − δDriver. (21)

We remark that in this study the AFS dynamics (which can

be noticed for high values of desired δAFS) have not been

modeled. The wheel braking torques have been computed

from u∗(2) by using the algorithm presented in [4].

B. Experimental Setup

We tested the RESC controller on a prototype Jaguar S. In

particular, body frame information (lateral and longitudinal

velocity, and yaw rate) is measured by the Oxford Technical

Solution (OTS) RT3002 sensing system while the actuators

are the Active Front Steering (AFS) and a differential brak-

ing systems. The computing system is a dSPACE c©Rapid

Prototyping (RP).

IV. EXPERIMENTAL RESULTS

In this section, the proposed control strategy is validated

through two experiments.

The first experiment shows that the control strategy is ro-

bust to longitudinal velocity variation vx ∈ [vmin
x , vmax

x ] and

to input dependent disturbances wu ∈ W(u). We performed

a manoeuvre where the car is moving on an icy asphalt (µ =
0.3) and the driver imposes a “smooth” sinusoidal steering

profile changing the position of accelerator pedal, such that

the car is subject to both decelerations and accelerations as

shown in Figure 3.

The tuning parameters are: N = 3; sampling time Ts =
50ms; the control weight matrix for the states variable

ξ, when the car is inside R1
∞, is a diagonal matrix

diag [100, 100]; while when it is outside is diag [0.1, 0.1],
the control weight matrix R, when the car is inside R1

∞, is

diag
[

5 · 10−2, 5 · 10−3
]

while outside it is diag [5, 5 · 10].
The vehicle response is shown in Figures 4–5. Tracking per-

formance can be seen in Figure 4 which shows the evolution

of the yaw rate and lateral velocity in respect to the generated

references. A satisfactory tracking performance is achieved

even in the presence of significant lateral speed variations

(Figure 4, bottom). The controller is able to produce control

inputs, such that both front and rear side slip angles remain
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Fig. 3. From the top: driver turn wheel angle δd in [deg] and vehicle
longitudinal velocity in [km/h]

within their bounds of linear region. State trajectories remain

confined within the RCI set R1
∞ as it is depicted in Figure

5. Since the proposed controller is always active, it is also
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Fig. 4. Experiment 1: From the top: a) reference yaw rate (dashed line)
and vehicle yaw rate (solid line); b) reference lateral speed (dashed line)
and vehicle lateral speed [km/h] .

important to investigate the interaction between the driver

and the controller, i.e. the sensation the controller induces,

through braking and steering correction, on the driver. In

Figure 6 the turn wheel angle imposed by the driver and

the real turn wheel angle after the controller correction are

illustrated in the top plot. It is evident that in the beginning

(command driver under 5 [deg]) the controller does not

intervene by leaving the control to the driver. When the

driver performs a sudden turn, the controller creates both

the steering and braking correction (Figure 6) in order to

preserve tracking of the reference signals while keeping the

state trajectories within the set R1
∞.

In the second experiment we tested the robustness of

the control strategy for more aggressive driver manoeuvres

which violate the disturbance bounds accounted for in our

design. In this case, the driver imposes a similar sinusoidal

steering profile of experiment one on an icy asphalt (µ = 0.3)
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Fig. 5. State Trajectory depicted on R1
∞

and 2–step controllable sets X2

for µ = 0.3 and 40 ≤ vx ≤ 50 [km/h] and vehicle lateral speed [km/h].
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Fig. 6. From the top: a) driver turn wheel angle (dashed line) and
real car turn wheel angle; b) AFS Motor command and its experimental
measurement; c) Braking Moment command.

with frequency higher than in previous trials and with higher

longitudinal acceleration as shown in Figure 7. The response
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Fig. 7. From the top: driver turn wheel angle δd in [deg] and vehicle
longitudinal velocity in [km/h]

of the vehicle in this scenario is shown in Figures 8–9.

One can see from Figure 8 that the tracking performance

is severely impaired. This is due to the excursion of the

state trajectory in the region outside the set R1
∞ where the
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controller’s primary objective is not accurate tracking but it is

to bring the state vector back to the set R1
∞. The state-space

plot is shown in Figure 9. In Figure 10 one can see high

activity in braking and steering correction as the controller

tries to keep the vehicle in the “linear regime” without tire

saturations. When the external disturbance eventually drive

the state into controllable sets outside R1
∞, the controller

imposes a large countersteering and braking and restores

the stability of the vehicle. The penalty to obtain stability

it is an undesired overshoot in yaw rate profile that might

be smoothed with a better tuning or including dynamics and

constraints of AFS system in the control strategy. This aspect

it is confirmed also in Figure 10 where it is evident that the

controller is asking for a large steering correction. In some

cases this correction cannot be implemented by the AFS

(as shown by the difference between the command “motor

command” and “measured AFS Motor” signals).
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V. CONCLUSION

In this paper, a vehicle lateral dynamic control approach

has been presented utilizing differential braking and active
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Fig. 10. From the top: a) driver turn wheel angle (dashed line) and
real car turn wheel angle; b) AFS Motor command and its experimental
measurement; c) Braking Moment command.

front steering. The experimental results prove that the de-

signed controller is able to guarantee constraint satisfaction

for longitudinal speed variations. This paper, including other

works presented by the same authors ([9], [8], [10]) represent

a attempt to address hard constraints and uncertainties in the

vehicle stability control system, in a systematic and rigorous

way through a robust constrained control design.
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