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Abstract— In this paper, we consider topology identification
of large-scale interconnected dynamical systems. The system
topology under study has the structure of a directed graph.
Each edge of the directed network graph represents a Finite
Impulse Response (FIR) filter with a possible transport delay.
Each node is a summer, whose inputs are the signals from
the incoming edges, while the output of the summer is sent to
outgoing edges. Edges of the graph can be of different unknown
orders and delays. Both the graph topology and the FIR filters
and delays that make up the edges are unknown. We aim to do
the topology identification from the smallest possible number
of node observations when there is limited data available and
for this reason, we call this problem Compressive Topology
Identification (CTI).

Inspired by Compressive Sensing (CS) which is a recent
paradigm in signal processing for sparse signal recovery, we
show that in cases where network interconnections are suitably
sparse (i.e., the network contains sufficiently few links), it
is possible to perfectly identify the network topology along
with the filter orders and delays from small numbers of
node observations, even though this leaves an apparently ill-
conditioned identification problem.

The main technical novelty of our approach is in casting
the identification problem as the recovery of a clustered-sparse
signal z ∈ RN from the measurements b = Az ∈ RM with M <
N , where the measurement matrix A is a block-concatenation of
Toeplitz matrices. To this end, we introduce a greedy algorithm
called Clustered Orthogonal Matching Pursuit (COMP) that
tackles the problem of recovering clustered-sparse signals from
few measurements. In a clustered-sparse model, in contrast
to block-sparse models, there is no prior knowledge of the
locations or the sizes of the clusters. We discuss the COMP
algorithm and support our discussions with simulations.

I. INTRODUCTION

Systems that have a large number of inputs and outputs
present a particular challenge for system identification. An
important choice for the system identification practitioner
is that of proper model structure — if the correct model
structure can be chosen, then the parameters can be identified
from data consistently. However, if the incorrect model
structure is chosen, the estimates can have excessive bias
or variance. In this paper, we focus on systems with a
large number of observable variables, where the relationships
between these variables can be described by a signal flow
graph with nodes of low maximum degree. Examples of such
systems come when modeling building thermal dynamics [1],
[2], biological systems [3], and economics [4]. The model
structure is specified by the connections that occur in the
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Fig. 1. Network model of 6 interconnected nodes. Each edge of the directed
network graph (zj,i) represents an FIR filter with possible transport delay.
Each node is a summer, whose inputs are the signals from the incoming
edges, while the output of the summer is sent to outgoing edges. Edges of
the graph can be of different unknown orders and delays.

graph, but with a large number of signals, there are a large
number of potential connections, only a small number of
which will be present. Thus, in order to proceed with system
identification, there is a need for effective “topological iden-
tification” procedures [5]–[8] which, given measurements of
the nodes of an interconnected dynamical system over a finite
time interval, determine the correct interconnection topology.

One solution for the topology identification problem
comes from Materassi and Innocenti [7] in the case that the
interconnection graph has a tree structure and enough data is
available to form reliable estimates of cross-power spectral
densities. In this paper, we consider a more general setting,
allowing arbitrary interconnections (including trees, loops,
and self-loops) between nodes in the network, but we assume
that the interconnection graph is sparse in the sense that each
node has a relatively low in-degree. Fig. 1 shows one such
example network. However, we also assume that each node
contains a measurable exogenous input signal, while in [7]
the input is an unmeasured random process. We also focus
on the case of a small number of measurements, indeed, so
small that the parameter estimation problem would not be
invertible if connections to all nodes were postulated.

In this paper, the identification problem is formulated as
the recovery of a clustered-sparse signal z ∈ RN from the
measurements b = Az ∈ RM , where the measurement
matrix A is a block-concatenation of Toeplitz matrices. A
signal z ∈ RN is clustered-sparse when it only has K non-
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zero entries (K � N ) and these non-zero elements are
contained in a number of contiguous clusters. As compared
to a block-sparse structure [9]–[11] in which the non-zero
entries appear in blocks of same size, in a clustered-sparse
structure, the clusters can be of different sizes and can
appear in arbitrary locations. We present an algorithm called
Clustered Orthogonal Matching Pursuit (COMP) that can
estimate the proper support and values for z, even when
the number of measurements is less than N . This algorithm
is inspired by the field of Compressive Sensing (CS) [12]–
[15], which is concerned with the recovery of sparse signals
from limited numbers of measurements.

The connection between CS and network topology iden-
tification was first noted in [6], which provided a greedy
algorithm in the case that the nodal inputs are unmeasured
random sequences, and the data set is not necessarily as-
sumed to be limited. We have previously discussed the
limited-data network identification problem in [8], which
also contained an analysis of the recovery algorithm Block
Orthogonal Matching Pursuit (BOMP) [9]–[11]. The present
work documents a new algorithm with improved recovery
performance. A recent work [16] also considers a network
model similar to [8] but derives conditions under which
the Group Lasso (gLasso) procedure consistently estimates
sparse network structure.

II. NOTATION

In this section, we establish our notation. Denote the set
of real numbers by R. All signals are discrete time, defined
over a finite non-negative time interval, and represented
equivalently as either the function of integer time a(t) or
grouped into vector form using the boldface a. Given a finite
sequence a, define the mapping to a Toeplitz matrix for i ≥ j
as

T (a)ji :=



a(0) 0 . . . 0

a(1)
. . .

...
...

. . . . . . 0

a(i− j)
. . . a(0)

...
. . . a(1)

. . .
...

a(i− 1) . . . a(i− j)


,

where zeros are applied if the index goes outside the defined
range of a. A matrix with the same entries along all its
diagonals is called Toeplitz.

III. PROBLEM SETUP

A. Network Model

Fig. 1 shows an example of an interconnected network.
Any types of interconnections between nodes such as trees,
loops, and self-loops are allowed in the network topology. As
compared to the previous paper [8], the edges of the network
graph include unknown delays and unknown FIR filters of
different order.

q−d3,iy3,i(t)

q−d7,iy7,i(t)

q−d9,iy9,i(t)

+
ai(t)

ei(t)

Fig. 2. Single node model. Each node is a summer, whose inputs are the
signals from the incoming edges, while the output of the summer is sent to
outgoing edges. In this illustration, node i sums the signals from nodes 3,
7, and 9 plus a node specific input term ei.

Given an interconnected network of P nodes, let the time
series ai(t), t = 1, 2, . . . ,M , denote the output of node i. An
edge in the graph, labeled zj,i, represents a dynamic system
that filters the output of node j (that is, aj(t)) and passes the
result (which we call yj,i(t)) through an unknown transport
delay q−dj,i . The overall result, which is q−dj,iyj,i(t), will
be an input to node i.

Let Ni denote the set of nodes whose outputs are pro-
cessed and fed to node i. As shown in Fig. 2, we assume
that each node i simply sums the signals that terminate upon
it
{
q−dj,iyj,i

}
j∈Ni

and adds a node-specific input term ei(t)
that may or may not be known. In other words, the output
of node i for t = 1, 2, · · · ,M , is given by

ai(t) =
∑
j∈Ni

q−dj,iyj,i(t) + ei(t). (1)

The filter in each edge zj,i is modeled as a causal FIR filter
with impulse response xj,i ∈ Rnj,i , so that yj,i = aj ∗xj,i.
Assuming that aj(t) = 0 for t ≤ 0, the convolution can be
written as

yj,i(t) =

nj,i−1∑
s=0

xj,i(s)aj(t− s), (2)

for t = 1, 2, · · · ,M . Note that we have assumed no
feedthrough term, so xj,i(0) = 0 and therefore, yj,i(1) = 0.

We can further incorporate the delay term as part of
the filter coefficients. Assuming a maximum length of m
(including the delay term) for all of the links in the graph,
we define zj,i ∈ Rm as

zj,i = [0 · · · 0︸ ︷︷ ︸
dj,i

xT
j,i 0 · · · 0]T (3)

where (nj,i + dj,i) ≤ m,∀j, i. In (3), the first dj,i zeros
represent the delay term q−dj,i . Combining (1) with (3), the
output of each node ai ∈ RM can be written as

ai =
∑
j∈Ni

Ajzj,i + ei, i = 1, 2, · · · , P, (4)

where Aj = T (aj)
m
M is an M ×m Toeplitz matrix, zj,i ∈

Rm and ei ∈ RM . Note that in (4) the only knowledge is
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on the maximum length m while the filter order nj,i and
transport delay dj,i are unknown.

Setting zj,i = 0 for j /∈ Ni, (4) can be rewritten as

ai =

P∑
j=1

Ajzj,i + ei, i = 1, 2, · · · , P. (5)

Equation (5) can be expanded as

ai =
[
A1 · · · Aj · · · AP

]︸ ︷︷ ︸
A


z1,i

...
zj,i

...
zP,i


︸ ︷︷ ︸

zi

+ ei, (6)

or equivalently as

ai = Azi + ei, i = 1, 2, · · · , P, (7)

where ai ∈ RM , zi ∈ RPm, and A ∈ RM×Pm is a matrix
formed by the concatenation of P Toeplitz matrices.

B. Topology Identification

Given an interconnected graph of P nodes, the topology
identification problem can be viewed as recovering the set of
interconnected links (Ni) for each node i in the graph. The
links include unknown FIR filters of different orders followed
by unknown different transport delays. The only knowledge
is on the total number of nodes in the network (P ) and on the
maximum length (m) of each link. By the formulation given
in the previous section, the topology identification problem
is equivalent to recovering {zi}Pi=1 given observations. We
assume the inputs are decomposed into ei = êi + ẽi,
where êi is known and ẽi is unknown. We also assume
that ẽi is an independent and identically-distributed (i.i.d.)
Gaussian sequence. Therefore, the measurements available to
us consist of all outputs {ai}Pi=1 and the known components
{êi}Pi=1 of the inputs. Our goal is to estimate the ẑj,i that
best match these observations data in an appropriate sense;
we then determine that a link exists whenever ‖ẑj,i‖ exceeds
some threshold (we set the threshold to zero when striving
for perfect recovery of all ẑj,i).

In order to solve this problem, we will utilize the following
minimization problem:

min
{zi}Pi=1

P∑
i=1

‖Azi − (ai − êi)‖22. (8)

Equivalently, the objective function in (8) can be minimized
by solving

min
zi

‖Azi − (ai − êi)‖22 (9)

separately for each node i in the network. We note that the
same matrix A is used for recovery of all zi. For simplicity
and without loss of generality, we will suppose henceforth
that ai− êi = b and zi = z for each specific node and solve
the optimization problem

min
z

‖Az − b‖22, (10)

where by letting N = Pm, we have b ∈ RM , z ∈ RN , and
A ∈ RM×N is a matrix consisting of a concatenation of P
Toeplitz matrices.

IV. COMPRESSIVE TOPOLOGY IDENTIFICATION

The optimization problem (10) has a unique solution if
we collect M ≥ N measurements and if the matrix A is full
rank. Then from standard linear algebra, we know that exact
recovery of z when ẽi = 0 is possible from

z? = A†b, (11)

where A† = (ATA)−1AT is the Moore-Penrose pseudoin-
verse of A. However, as N linearly depends on the num-
ber of nodes in the network, for large-scale interconnected
networks, the number of measurements required for exact
topology identification scales linearly with the number of
nodes in the network. This requires a large data set for
topology identification.

In this paper, we aim to do exact topology identification
from the smallest possible number of node observations (M ).
This is inspired by the field of CS and for this reason, we call
it Compressive Topology Identification (CTI). We show that
under the assumption of sparsity of the node interconnections
(that is, assuming only a few nodes contribute to the output of
each node), there will be a distinct structure to the solutions
z that we are searching for. In particular, a typical vector z
under our model assumptions will have very few non-zero
entries, and these non-zero entries will be clustered in few
locations. The number of clusters corresponds to the number
of links that contribute to the output of the current node
of interest (i.e., the cardinality of the set Ni for node i),
while the size of each cluster depends on the order of the
corresponding FIR filter connected to node i. From tools
in CS and for signals obeying such structures, it is known
that we can recover z ∈ RN exactly from measurements
b = Az ∈ RM even when M � N .

In the previous work [8], all links were assumed to be of
the same order without considering any unknown link delays
in the interconnections. Therefore, the non-zero entries of
z appeared in locations with same length. In the field
of CS, such a structure is known as block-sparsity [9]–
[11]. However, in this paper the links are allowed to have
different orders and different unknown link delays. Thus,
the vector z will no longer have a block-sparse structure.
In fact, the vector z has a clustered-sparse structure [17].
In the following sections, we will discuss block-sparse and
clustered-sparse structures more formally. For simplicity, we
assume that ẽi = 0, but it is possible to extend our arguments
from exact recovery in noise-free settings to robust recovery
in noisy settings.

V. CS BACKGROUND

First introduced by Candès, Romberg and Tao [12]–[14],
and Donoho [15], CS is a paradigm which enables the
recovery of an unknown signal from its underdetermined
set of measurements under the assumption of sparsity of
the signal and under certain conditions on the measurement
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Algorithm 1 The BOMP – block-sparse recovery
Require: matrix A, measurements b, block size n, stopping

criteria
Ensure: r0 = b, z0 = 0, Λ0 = ∅, l = 0

repeat
1. match: hi = AT

i r
l, i = 1, 2, · · · , P

2. identify support: λ = arg maxi ‖hi‖2
3. update the support: Λl+1 = Λl ∪ λ
4. update signal estimate:

zl+1 = arg mins:supp(s)⊆Λl+1 ‖b−As‖2,
where supp(s) indicates the blocks
on which s may be non-zero

5. update residual estimate: rl+1 = b−Azl+1

6. increase index l by 1
until stopping criteria true
output: ẑ = zl = arg mins:supp(s)⊆Λl ‖b−As‖2

matrix A. The CS recovery problem can be viewed as
recovery of a K-sparse signal z ∈ RN from its observations
b = Az ∈ RM where A ∈ RM×N is the measurement
matrix with M < N (in many cases M � N ). A K-
sparse signal z ∈ RN is a signal of length N with K
non-zero entries where K < N . Since the null space of A
is non-trivial, there are infinitely many candidate solutions
to the equation b = Az; however, CS recovery algorithms
exploit the fact that, under certain conditions on A, only one
candidate solution is suitably sparse. The Restricted Isometry
Property (RIP) [12], [18], the Exact Recovery Condition
(ERC) [19], and mutual coherence [20], [21] are among the
most important conditions on A that have been proposed in
the CS literature.

There exist several CS recovery algorithms that exploit
the sparsity of the signal to be recovered. In general, these
recovery algorithms can be classified into two main types:
1) greedy algorithms such as Orthogonal Matching Pursuit
(OMP) [21] and Compressive Sampling Matching Pursuit
(CoSaMP) [22], and 2) convex optimization algorithms such
as Basis Pursuit (BP) [23].

There also exist several extensions of the standard CS
recovery algorithms to account for additional structure in
the sparse signal to be recovered [11], [24]. Among these,
the BOMP algorithm [9]–[11] is designed to exploit block
sparsity. In previous work [8], the BOMP algorithm was
considered for the topology identification problem due to
its ease of implementation and its flexibility in recovering
block-sparse signals of different sparsity levels.

Definition 1 (Block-Sparse Signal [11]): Consider z ∈
RN as a concatenation of P vector-blocks zi ∈ Rn of the
same length where N = Pn, i.e.,

z = [zT
1 · · · zT

i · · · zT
P ]T . (12)

A signal z ∈ RN is called block K-sparse if it has K < P
non-zero blocks.
Also consider a matrix A ∈ RM×N as a concatenation of P

matrix-blocks Ai ∈ RM×n as

A = [A1 · · ·Ai · · ·AP ]. (13)

To find a block sparse solution to the equation b = Az,
the formal steps of BOMP are listed in Algorithm 1. The
basic intuition behind BOMP is as follows. Due to the
block sparsity of z, the vector of observations b can be
written as a succinct linear combination of the columns of
A, with the selections of columns occurring in clusters due
to the block structure of the sparsity pattern in z. BOMP
attempts to identify the participating indices by correlating
the measurements b against the columns of A and comparing
the correlation statistics among different blocks. Once a
significant block has been identified, its influence is removed
from the measurements b via an orthogonal projection, and
the correlation statistics are recomputed for the remaining
blocks. This process repeats until the residual equals zero.

Eldar et al. [11] proposed a sufficient condition for BOMP
to recover any sufficiently concise block-sparse signal z
from compressive measurements. This condition depends on
the properties of A, specifically on two coherence metrics,
block and sub-block coherence of matrix A. For a detailed
description of these metrics see [11].

VI. CLUSTERED ORTHOGONAL MATCHING PURSUIT

In a block-sparse structure as mentioned in Definition 1,
the non-zero coefficients appear in blocks of the same length
n. The BOMP algorithm is designed for recovering such
block-sparse signals. As mentioned in Algorithm 1, the block
size n is assumed to be known as one of the inputs to
the algorithm. However, in this paper we are interested in
recovering signals whose non-zero entries appear in clusters
of different sizes. The only assumption is on the maximum
cluster length. In the context of CS, such signals are called
clustered-sparse.

Definition 2 (Clustered-Sparse Signal [17]): A signal
z ∈ RN is called (K,C)-clustered sparse if it contains a
total of K nonzero coefficients, spread among C disjoint
clusters of arbitrary sizes and locations.

Fig. 3 shows a comparison between a block-sparse signal
(Fig. 3(a)) and a clustered-sparse signal (Fig. 3(b)). As can
be seen, in a block-sparse signal, the non-zero entries appear
in blocks of the same size while in a clustered-sparse signal,
they can appear in any locations and have any sizes.

In this section, we provide an algorithm that can be used
for recovering clustered-sparse signals. The proposed method
is an iterative greedy algorithm that is based on the well-
known OMP algorithm. Its idea is intuitive and simple and
also easy to implement.

The idea behind COMP is to exploit the knowledge that
the non-zero entries of the signal appear in clusters, although
of an arbitrary size and location. We modify the iterations
of OMP in a way that exploits the clustered-sparsity pattern
of the signal. The steps of the COMP algorithm are listed
in Algorithm 2. The first two steps of COMP are the same
as the first two steps of OMP. The outcome of step 2 at
each iteration is a candidate for the true support. Let λl
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(a) A block-sparse signal. Each block has the same size.
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(b) A clustered-sparse signal. Clusters have different sizes.

Fig. 3. Clustered sparsity compared to block sparsity. Both signals have
same length N = 256 with same cluster/block sparsity level of 5.

denote the support candidate at iteration l of the algorithm.
If λ0 is a valid candidate, i.e., λ0 ∈ T where T is the
true support, then we can use our extra knowledge about
the clustered-sparsity of the signal. In fact, we can use λ0

as an indicator for the location of one of the clusters in
the signal. Therefore, if we consider a window with proper
length centered around λ0, the extended support candidate is
the window Λ1 = λ̂0 = {λ0−w+1, · · · , λ0, · · · , λ0+w−1}
with window size 2w − 1. Because the algorithm does not
know where exactly λ0 is located in the true cluster, the
window length 2w− 1 should be large enough such that the
true cluster which by assumption is at most of size m, will be
contained in the extended support candidate Λ1. Apparently,
the most conservative value for w is m. In the next step, the
algorithm updates the signal estimate on the extended support
candidate Λ1. Having this estimate, the algorithm continues
by updating the residual estimate. In the next iteration of
COMP, the algorithm finds the column that is most correlated
with the current residual (steps 1 and 2). The new support
candidate λ1 will not be one of the already chosen indices
due to orthogonal projection properties, i.e., λ1 /∈ Λ1. Again
the algorithm considers a window of length 2w− 1 centered
around λ1 and combines it with the previous support, i.e.,
Λ2 = Λ1 ∪ {λ1 − w + 1, · · · , λ1, · · · , λ1 + w − 1}. COMP
continues until stopping criteria are met.

Note that Λf (the final support candidate found by COMP)
should contain the true support, i.e., T ⊂ Λf while the
reverse Λf ⊂ T is not a necessity. In addition, the cardinality
of Λf should be smaller than the number of measurements M

Algorithm 2 The COMP – clustered-sparse recovery
Require: matrix A, measurements b, maximum cluster size
m, stopping criteria

Ensure: r0 = b, z0 = 0, Λ0 = ∅, l = 0, w = m
repeat

1. match: hl = ATrl

2. identify support indicator:
λl = arg maxj |hl(j)|

3. extend support:
λ̂l = {λl − w + 1, · · · , λl, · · · , λl + w − 1}

4. update the support: Λl+1 = Λl ∪ λ̂l
5. update signal estimate:

zl+1 = arg mins:supp(s)⊆Λl+1 ‖b−As‖2,
where supp(s) indicates the indices
on which s may be non-zero

6. update residual estimate: rl+1 = b−Azl+1

7. increase index l by 1
until stopping criteria true
output: ẑ = zl = arg mins:supp(s)⊆Λl ‖b−As‖2

in order to have a unique least-squares solution while updat-
ing the signal estimate, i.e., |Λf | < M . The latter condition
depends on the window length w that COMP considers at
each iteration. As mentioned earlier, the most conservative
choice for w is m, where m is the maximum cluster size.
However, adding 2m−1 elements to the support candidate at
each iteration of COMP may make the uniqueness condition
(|Λl| < M for l = 1, · · · , f ) fail before the stopping criteria
are met. Therefore, a simple iteration on the considered
window length is added to the algorithm to improve the
recovery performance of COMP. If the algorithm does not
converge with w = m, the next set of iterations will be
carried out starting with w = m−1. This continues until the
stopping criteria are met.

VII. NUMERICAL SIMULATIONS

In this section, we test the proposed algorithm for identi-
fying the topology of a dynamical network based on com-
pressive observations, and with random but known inputs. As
explained earlier, we cast the topology identification problem
as recovery of a clustered-sparse signal whose few non-zero
coefficients appear in clustered locations. The clusters are
of arbitrary sizes. The only knowledge is on the maximum
cluster size m. In order to compare the performance of
the COMP algorithm, we also consider recovery using the
BOMP algorithm. Moreover, in order to make a fair com-
parison between the two algorithms, we consider recovery
using the BOMP algorithm with several block sizes n.

Fig. 4 shows a network of P = 32 nodes. Each edge of the
directed network graph represents an FIR filter with possible
transport delay. Each node is a summer, whose inputs are
the signals from the incoming edges, while the output of the
summer is sent to outgoing edges. Edges of the graph can
be of different unknown orders and delays. Both the graph
topology and the FIR filters and delays that make up the
edges are unknown. The only knowledge is on the maximum
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Fig. 5. Recovery performance corresponding to node 10. (a) Signal z
corresponding to node 10 in the network graph of Fig. 4. The cluster-sparsity
level corresponds to the in-degree of node 10. (b) Recovery performance
comparison between COMP and BOMP with different block sizes n. An
initial value of w = m = 8 is chosen in COMP. The algorithm iterates by
reducing w until stopping criteria are met. For comparison, BOMP is tested
with three different block sizes (n = {2, 4, 8}). Success rate is calculated
over 300 realizations of the network for a given number of measurements.

cluster size m = 8. Therefore, for each node, the signal z
has length N = Pm = 256.

Fig. 5 shows the recovery performance corresponding to
node 10 of the network graph of Fig. 4. The corresponding
signal z to be recovered is shown in Fig. 5(a). As can be seen
the signal has a clustered-sparse structure with 4 clusters of
different sizes. The number of clusters corresponds to the
in-degree of node 10 while the size of each cluster depends
on the order of the FIR filter of incoming edges. Fig. 5(b)
shows the recovery performance comparison between COMP
and BOMP with different block sizes n. An initial value
of w = m = 8 is chosen in COMP. The algorithm
iterates by reducing w until stopping criteria are met. For
comparison, BOMP is tested with three different block sizes
(n = {2, 4, 8}). The success rate is calculated over 300
realizations of the network for a given number of measure-
ments. As can be seen, the COMP algorithm outperforms the
BOMP algorithm. For this signal, the recovery performance
of BOMP does not significantly improve by changing the
block size n.

Fig. 6 shows the recovery rate comparison of nodes 10,
23, and 32 in the network of Fig. 4. The success rate is
calculated over 300 realizations of the network for a given
number of measurements. Node 10 has in-degree 4 and
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Fig. 6. Recovery rate comparison of nodes 10, 23, and 32 in the network
of Fig. 4. An initial value of w = m = 8 is chosen in COMP. Nodes 23 and
32 have in-degree 2 and node 10 has in-degree 4. Success rate is calculated
over 300 realizations of the network for a given number of measurements.

nodes 23 and 32 have in-degree 2. We observe how the
probability of successful recovery changes for different nodes
in the network based on the local sparsity and the type of
interconnection. For example, node 10 which has in-degree
4 requires more measurements compared to nodes 23 and
32 which have in-degree 2. In addition to the local sparsity
of each node, we observe that nodes of same in-degree have
different recovery performance. For example, nodes 23 and
32 both have in-degree 2. However, node 32 is much easier to
recover with the COMP algorithm, i.e., it requires a smaller
number of measurements for perfect recovery as compared
to node 23. This difference may be related to the type of
incoming interconnections to each node. The incoming edges
to node 32 have a tree structure while the incoming edges
to node 23 include a loop.

VIII. CONCLUSIONS

We considered the exact topology identification of an
interconnected dynamical system from measurements of the
individual nodes. We have aimed at doing the topology
identification from the smallest possible number of node
observations when there is limited data available.

The system topology under study has the structure of a
directed graph. Each edge of the directed network graph
represents a FIR filter with possible transport delay. Each
node is a summer, whose inputs are the signals from the
incoming edges, while the output of the summer is sent
to outgoing edges. Edges of the graph can be of different
unknown orders and delays. Both the graph topology and the
FIR filters and delays that make up the edges are unknown.
We showed that exact topology identification is indeed
possible form compressive node measurements under the
assumption that the network contains nodes of low maximum
degree. We cast the topology identification problem in the
context of CS and the recovery of a clustered-sparse signal
that encode the network topology. To this end, we proposed
a greedy algorithm called COMP for recovery of such sig-
nals. We supported our proposed algorithm with illustrative
simulations on a complicated network graph including trees,
loops, and self-loops. We observed that the COMP algorithm
outperforms the BOMP algorithm with several block sizes.
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Fig. 4. A network of 32 interconnected nodes including trees, loops and self-loops. Each edge of the directed graph (zj,i) represents an FIR filter.

We also observed that how the probability of successful
recovery changes for different nodes in the network based
on the local sparsity and the type of interconnection. Fu-
ture work includes having a more formal understanding of
COMP performance, dependence of recovery performance
on network coherence [8], etc.
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models in the identification of dynamical networks: links with spar-
sification problems,” Proceedings of the 48th IEEE Conference on
Decision and Control, pp. 4796–4801, 2009.

[7] D. Materassi and G. Innocenti, “Topological identification in networks
of dynamical systems,” IEEE Transactions on Automatic Control,
vol. 55, no. 8, pp. 1860–1871, 2010.

[8] B. M. Sanandaji, T. L. Vincent, and M. B. Wakin, “Exact topology
identification of large-scale interconnected dynamical systems from
compressive observations,” Proceedings of the 2011 American Control
Conference, pp. 649 – 656, 2011.

[9] Y. Eldar and M. Mishali, “Robust recovery of signals from a struc-
tured union of subspaces,” IEEE Transactions on Information Theory,
vol. 55, no. 11, pp. 5302–5316, 2009.

[10] ——, “Block-sparsity and sampling over a union of subspaces,”
Proceedings of the 16th international conference on Digital Signal
Processing, pp. 1–8, 2009.

[11] Y. C. Eldar, P. Kuppinger, and H. Bölcskei, “Block-sparse signals:
uncertainty relations and efficient recovery,” IEEE Transactions on
Signal Processing, vol. 58, no. 6, pp. 3042–3054, 2010.

[12] E. Candès, “Compressive sampling,” Proceedings of the International
Congress of Mathematicians, vol. 3, pp. 1433–1452, 2006.

[13] E. Candès and T. Tao, “Near-optimal signal recovery from random
projections: Universal encoding strategies?” IEEE Transactions on
Information Theory, vol. 52, no. 12, pp. 5406–5425, 2006.

[14] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency infor-
mation,” IEEE Transactions on information theory, vol. 52, no. 2, pp.
489–509, 2006.

[15] D. Donoho, “Compressed sensing,” IEEE Transactions on Information
Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[16] A. Bolstad, B. Van Veen, and R. Nowak, “Causal network inference via
group sparse regularization,” IEEE Trans. Signal Processing, vol. 59,
no. 6, pp. 2628–2641, 2001.

[17] V. Cevher, P. Indyk, C. Hegde, and R. Baraniuk, “Recovery of clus-
tered sparse signals from compressive measurements,” Proceedings of
the International Conference on Sampling Theory and Applications,
2009.

[18] E. Candès and T. Tao, “Decoding via linear programming,” IEEE
Trans. Inform. Theory, vol. 51, no. 12, pp. 4203–4215, 2005.

[19] J. Tropp, “Just relax: Convex programming methods for identifying
sparse signals in noise,” Information Theory, IEEE Transactions on,
vol. 52, no. 3, pp. 1030–1051, 2006.

[20] D. Donoho and X. Huo, “Uncertainty principles and ideal atomic
decomposition,” IEEE Transactions on Information Theory, vol. 47,
no. 7, pp. 2845–2862, 2001.

[21] J. Tropp, “Greed is good: Algorithmic results for sparse approxima-
tion,” IEEE Transactions on Information Theory, vol. 50, no. 10, pp.
2231–2242, 2004.

[22] D. Needell and J. Tropp, “CoSaMP: Iterative signal recovery from
incomplete and inaccurate samples,” Applied and Computational Har-
monic Analysis, vol. 26, no. 3, pp. 301–321, 2009.

[23] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by
basis pursuit,” SIAM Journal on Scientific Computing, vol. 20, no. 1,
pp. 33–61, 1999.

[24] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-based
compressive sensing,” IEEE Transactions on Information Theory,
vol. 56, no. 4, pp. 1982–2001, 2010.

180


