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Abstract— In this paper we propose novel algorithms for
noncooperative power and position control in mobile ad hoc
networks. The algorithms are distributed and adaptive, i.e., they
are able to deal with the agents’ lack of knowledge about the
environmental conditions and about the actions, positions and
properties of the other agents, which is the essential challenge
in these networks. The agents’ cost functions consist of a term
proportional to the achievable rate of communication with the
neighbors, explicitly depending on the interference from the
other agents, and a pricing term penalizing excessive power
(for the power control scheme) or deviation from predefined
positions (for the position control scheme). We formulate condi-
tions for the existence and uniqueness of the Nash equilibrium
and prove that the algorithms converge to it almost surely,
based only on local measurements and local signaling between
the neighbors. The position control algorithm can be adopted
to specific motion dynamics of the networked mobile robots.
We illustrate the main properties of the algorithms through
simulations.

I. INTRODUCTION

Wireless ad hoc networks, including robotic sensor net-

works, have recently attracted much attention among re-

searchers and practitioners (see, e.g., [1]–[10]). In general,

the main challenge in these multi-agent networked systems is

how to deal with the lack of infrastructure, or a central/fusion

node, since the information that agents have about the

environment as well as about the actions/properties of the

other agents is limited only to certain local measurements

and local communications.

There has been a large surge of interest in treating these

systems in the game theoretic framework, which is a natural

approach to cooperative control problems (e.g., [6], [11],

[12]), and has been shown to be effective for dealing with

resource allocation problems in networking (e.g., [13], [14]).

Specifically, the effectiveness of game theoretic approach to

power control in wireless networks has been shown in the

existing literature (e.g., [14]–[18] and references therein).

However, none of the existing approaches are able to cope

with the problems specific to ad hoc networks originating

from the lack of detailed/global information.

There are only very few results so far in exploiting pos-

sibility of controlling mobility of the agents in the network

in order to enhance the overall communication capabilities.

In [19] it has been demonstrated how a mobile robot,
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communicating with a base station, can exploit the effects

of multi-path fading by performing small deviations from

its predefined path. In [20] and references therein, some at-

tempts are presented to include possibility of nodes’ mobility

and reconfigurability in order to improve energy efficiency

of MAC protocol. Connectivity control in mobile sensor

networks has been analyzed intensively in the existing liter-

ature from different points of view (e.g., [10] and references

therein). However, the existing approaches treat the peer-to-

peer connectivity in a very simplistic way (proximity based)

without explicitly taking into account limited communication

resources.

In this paper we first propose a novel algorithm for

noncooperative power control in ad hoc networks. The cost

functions of the agents have a similar structure as in, e.g.,

[15], consisting of a pricing function (penalizing excessive

power levels) and a term proportional to the achievable

rate (capacity) of the link. However, in our algorithm the

agents do not need to have a detailed knowledge about the

parameters of the cost functions (for calculating the local

gradients) which makes it applicable to ad hoc networks. We

formulate conditions for the existence and uniqueness of the

Nash equilibrium and prove that the power levels converge

to the equilibrium. The proposed algorithm is based on the

recently proposed scheme for distributed seeking of Nash

equilibria [6], [11].

Based on a similar idea, we then propose a new algo-

rithm for noncooperative position control in robotic (mobile)

sensor networks. Each cost function consists of the achiev-

able rates of communications with the neighbors (explicitly

depending on the positions of all the other agents due

to interference), and a pricing function, now penalizing

deviation from some predefined positions. The agents are

able to locally control their mobility in order to reach

positions minimizing their local costs. The most important

property of the proposed algorithm is that it is based only

on locally available information (measurements of the local

cost functions), which is of essential importance due to the

agents’ lack of knowledge about the structural parameters

of the costs as well as about their absolute or relative

positions. Another important property of the algorithm is that

it can be adopted to specific motion dynamics of the robots.

We formulate conditions on the cost function parameters

under which we prove existence and uniqueness of the Nash

equilibrium. Under the same assumptions we prove that by

using the proposed algorithm the agents converge to the Nash

equilibrium positions almost surely. Simulation results are

given which illustrate the main properties of the schemes.
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II. NONCOOPERATIVE POWER CONTROL ALGORITHM

Consider an ad hoc wireless network which consists of

N links between nodes/agents. Each agent communicates

only with a subset of the other agents, called neighbors,

so that there is no central node or base station which

could communicate to all the agents. We assume that the

physical layer communication is performed using the CDMA

technology, so that for each link we can model the received

signal to noise+interference ratio γi, i ∈ {1, ..., N}, in the

following way [21]

γi(p) =
Lhiipi

σ2 +
∑

j 6=i hjipj
, (1)

where L is the spreading gain, hii is the gain of the link i,
hji is the gain of the link j which is interfering to link i and

σ2 is the noise power level, which for simplicity, we assume

is constant for all links. The objective of each agent is to

online adjust the transmit power level pi ∈ [pimin, p
i
max],

where pimin is the minimal power needed for the link i to be

established and pimax is the maximal power level allowed,

such that the following local cost is minimized:

Ji(p) = Pi(pi)− ui log(1 + γi(p)), (2)

where p = [p1, ..., pN ]T , ui is a positive parameter and

Pi(pi) is a pricing function of link i. Thus, the second

term can be interpreted as being proportional to the capacity

of the wireless channel. As the cost function of each link

depends on the power levels of all the other links we

are dealing with a noncooperative static game, where the

optimality can be characterized by the Nash equilibrium

[22]. We assume that the channel gains hij are slowly

changing in time (compared to the proposed power control

algorithm’s convergence rate) so that we can assume they

are constant. The randomness of these parameters (due to,

e.g., fast fading effects) can be modeled as additive noise

in the cost function measurements as discussed later. The

pricing function Pi(pi) is a nondecreasing function, and it

reflects the cost of transmitting with the power level pi for

the transmitter i. It can be interpreted as the cost of the

battery usage for the link i. We have assumed that the links

have already been established so that each agent have found

the minimal power level pimin needed at least for exchanging

signaling information. Obviously, the local pricing functions

should be designed such that they do not penalize the agents

when they are using minimal power levels.

In general, depending on the parameters of the cost func-

tions and the chosen pricing functions the formulated game

may admit multiple, unique or no Nash equilibria. Therefore,

in order to ensure existence and uniqueness of the inner

Nash equilibrium p∗ = [p∗1, ..., p
∗
N ]T , p∗i ∈ (pimin, p

i
max),

we first need to introduce the following assumptions on the

cost functions. For the existence of the Nash equilibrium the

following is sufficient:

(A.1) The pricing functions Pi(pi) are smooth and convex

in pi, i.e. ∂2Pi

∂p2

i

(pi) ≥ 0, for all pi and for every i = 1, ..., N .

To ensure uniqueness of the Nash equilibrium, we will use

the following assumption, easily satisfied for large enough

spreading gain L:

(A.2) Lhii >
∑

j 6=i hji, for all i ∈ {1, ..., N}.

Finally, we want to ensure that the Nash equilibrium is

inner, i.e., that p∗i ∈ (pimin, p
i
max) for all i, which can

be guaranteed with the following assumption (see also [18]

where a similar assumption is introduced):

(A.3) The parameters of the cost function Ji are chosen

such that ∂Ji

∂pi
(p) < 0 for all such p that pi = pimin, and

∂Ji

∂pi
(p) > 0 for all such p that pi = pimax.

We can now prove the following theorem:

Theorem 1: Let the Assumptions (A.1)–(A.3) be satisfied.

Then the formulated power control game with the cost

functions given in (2) admits a unique inner Nash equilibrium

p∗ = [p∗1, ..., p
∗
N ]T , p∗i ∈ (pimin, p

i
max).

Proof: For partial derivatives of the cost functions (2)

with respect to local actions pi we obtain:

∂Ji
∂pi

(p) =
∂Pi

∂pi
(pi)−

uiLhii
σ2 +

∑

j 6=i hjipj + Lhiipi
, (3)

and for the second derivatives we obtain:

∂2Ji
∂p2i

(p) =
∂2Pi

∂p2i
(pi) +

uiL
2h2ii

(σ2 +
∑

j 6=i hjipj + Lhiipi)2
,

(4)

∂2Ji
∂pi∂pj

(p) =
uiLhiihji

(σ2 +
∑

k 6=i hkipk + Lhiipi)2
. (5)

Because of (A.1) we have that ∂2Ji

∂p2

i

(p) > 0 for all p so that

the cost functions Ji are strictly convex with respect to local

actions pi. Since the overall action space is closed, bounded

and convex (pi ∈ [pimin, p
i
max] for all i) it follows that a

Nash equilibrium p∗ exists (see, e.g., Theorem 4.3 in [22]).

According to (A.3) it has to be inner.

To prove uniqueness, consider the Jacobian matrix of

the vector g(p) = [∂J1

∂p1

(p), ..., ∂JN

∂pN
(p)]T which is given by

G(p) = [ ∂2Ji

∂pi∂pj
]ij , i, j = 1, ..., N . From (4), (5), (A.1) and

(A.3) it clearly follows that G(p) is diagonally dominant

with positive diagonal elements. Therefore, G(p) is positive

definite. According to the definition of the Nash equilibrium

and (A.3), we have that g(p∗) = 0. According to the mean

value theorem for vector functions, for every p, h ∈ RN

we have g(p + h) − g(p) = M(p, h)h, where M(p, h) =
∫ 1

0
G(p + th)dt > 0 (because G(p + th) is positive definite

for all t). By letting p = p∗, we have that for every h 6= 0,

g(p∗ + h) = M(p∗, h)h. Therefore, g(p∗ + h) 6= 0 for all

h 6= 0 which means that there is no point except p∗ for which

g(p) = 0. This proves the theorem.

From (3), it is clear that the assumptions (A.1) and (A.3)

can be guaranteed with the simple quadratic pricing functions

Pi(pi) = bi(pi−p
i
min)

2, with bi large enough, depending on

pimax (see also Example 1 below). Assumption (A.2) imposes

that the spreading gain should be large enough compared to

the number of links in the network (since typically hii ≥
hji, j 6= i), which is typically satisfied in real life ad hoc

networks [21].
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Fig. 1. Noncoopearative power control algorithm

Under the formulated conditions, we want to find an

algorithm which is based only on locally available infor-

mation, that will drive the transmit power levels of all

the agents to the Nash equilibrium. It is reasonable to

assume that each agent has information about its current

achievable rates of transmissions, or current signal to noise

ratios (1) (using low bandwidth signaling feedback from the

receiving node). Therefore, the agents can only obtain the

current values of their local costs (2). Having in mind this

information structure, we are going to apply the recently

proposed algorithm in [6], [11] for distributed seeking of

Nash equilibria. It can be directly applied to our problem as

illustrated in Fig. 1. Each agent implements a local discrete-

time extremum seeking algorithm using sinusoidal pertur-

bations with vanishing amplitudes [5]. The “measurements”

of the cost functions are corrupted with noise ni(k) which

account for the uncertainties in the currently obtained rate

due to, e.g., fast fading effects and other unreliabilities. The

parameters of the scheme should be chosen in the following

way [11]:

(A.4) εi(k) = eik
−mε , αi(k) = aik

−mα where 0.5 <
mε < 1, 0 < mα < 0.5, mε +mα ≤ 1, ei, ai > 0.

(A.5) ωi ∈ (0, π) and ωi 6= ωj for all i, j = 1, ..., N .

(A.6) ϕi +Arg
{

Hi(e
jωi)

}

= 0 for all i = 1, ..., N .

We can now formulate a convergence theorem:

Theorem 2: Consider the noncooperative power con-

trol algorithm shown in Fig. 1. Let the Assumptions

(A.1)–(A.5) be satisfied. Then the power levels p(k) =
[p1(k), . . . , pN (k)]T of all the links converge to the Nash

equilibrium level p∗ almost surely.

Proof: We have already proved the existence and

uniqueness of the Nash equilibrium (Theorem 1). Therefore,

the only condition from Theorem 1 in [11] that is left to

prove is the stability condition (A.12 in [11]), i.e., we need

to show that there exists a Lyapunov function V (p) such

that V (p∗) = 0 and φ(k) = gT (p)KT∇pV (p) > 0, for

all p 6= p∗, where g(p) = [∂J1

∂p1

(p), ..., ∂JN

∂pN
(p)]T , K =

diag{k1, ..., kN}, ki = eiaiHi(1) > 0, and ∇pV (p) denotes

the gradient of V (·) in p.

Consider the following quadratic Lyapunov function can-

didate V (p) = 1

2
(p− p∗)T (p− p∗). Obviously V (p) = 0 if

and only if p = p∗. From the proof of Theorem 1, the Jaco-

bian of g(p) is positive definite and diagonally dominant for

all p, so that the Jacobian of g1(p) = Kg(p) is also positive

definite (since K is diagonal and positive definite). By using
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Fig. 2. Power levels of all 5 links

the mean value theorem for vector functions we have that

for every p 6= p∗ it holds that g1(p) = M1(p
∗, p)(p − p∗)

where M1(p
∗, p) > 0. Therefore, φ(k) = g1(p)

T∇pV (p) =
(p − p∗)TM(p∗, p)(p − p∗) > 0 for every p 6= p∗ which

proves the theorem.

Example 1: We illustrate the above power control algo-

rithm in a simulation of a network of 5 links. Each agent

controls the power for only one link; agents 1 and 2 transmit

to each other, agent 3 to agent 2, agent 4 to agent 5, and

agent 5 to agent 2. The channel gains hij are assumed to be

inversely proportional to the distance between agents i and j,
and we assume that the agents are stationary and positioned

at the following locations: r1 = (−4, 0), r2 = (−3, 1),
r3 = (−3,−1), r4 = (−1, 1) and r5 = (0,−1), where ri
is the position of agent i. For the rest of the parameters

of the cost functions (2) we choose L = 16, σ2 = 1,

Pi(pi) = bi(pi − pimin)
2, bi = 1, pimin = 0.5, ui = 40

for all i = 1, ..., 5. We choose the following parameters of

the proposed algorithm: ϕi = π/8, Hi(z) =
z−1

z+0.07 (washout

filters), εi(k) = 0.1k−0.6 + 0.01, αi(k) = 0.6k−0.25 + 0.01,

for i = 1, ..., 5 (in order to improve convergence rate, we

have set small lower bounds 0.01 for the gains αi(k) and

εi(k)), ω1 = 0.26π, ω2 = 0.36π, ω3 = 0.48π, ω4 =
0.58π, ω5 = 0.7π and the “measurement” noise variance is

var{ni(k)} = 2, for all i and k. It easy to check that all the

assumptions (A.1)-(A.6) are satisfied. We choose the same

initial conditions for all the agents, pi(1) = 1, i = 1, ..., 5.

The power levels for all the agents are shown in Fig. 2, as

functions of the number of iterations k. Since all the agents

have the same pricing function, it can be seen that the agent

5, which has the highest interference, will actually transmit

at the lowest power level at the equilibrium, thus achieving

the worst signal to interference+noise ratio. This is because

the other links have taken more “resources” so that it is too

costly for him to transmit with higher power. However, if

we decrease the slope of its pricing function or increase ui
this agent will transmit at the higher power level, and, hence,

achieve better signal to noise ratio.

III. NONCOOPERATIVE POSITION CONTROL ALGORITHM

We consider a CDMA wireless network as in the previous

section, but now the players/agents are mobile robots that

can control their positions such that their local costs are

noncooperatively optimized. By Ti we denote the subset

2940



of agents to which the agent i is transmitting, and by Ri

the subset of agents from which the agent i is receiving

messages. In this case, the position of an agent influences not

only the quality of the transmitted communications (by that

agent), but also the receiving ones (unlike the power control

scenario). Therefore, we define the local cost functions in

the following way:

Ji(p) = Pi(xi, yi)− Ui(xi, yi, x−i, y−i) =

= Pi(xi, yi)−
∑

j∈Ti

utij log(1 + γij(p))

−
∑

j∈Ri

urij log(1 + γji(p)), (6)

where

γij(p) =
Lhij(xi, yi, xj , yj)pij
σ2 +

∑

k 6=i hkjpk
, (7)

is the signal to interference+noise ratio of ij link, L is the

spreading gain, [xi, yi]
T = ri is the position of agent i,

x−i, y−i are the coordinates of all the other agents, hij is

the link gain from agent i to agent j, i 6= j, pij is the

transmission power from agent i to agent j, pk =
∑

i∈Tk
pik

is the overall transmission power of agent k, and σ2 is

the noise power level. Unlike the power control game, in

this case, the agents’ actions are their positions in the plain

and the action spaces are unbounded and two dimensional.

The pricing functions Pi(xi, yi) can be interpreted as the

costs of moving away from some predefined point which

can be related to some primary mission of the network. In

the case of sensor networks, it could penalize the agent if it

moves away from the optimal sensing point (see [2], [5]–

[7] where the problems of optimal positioning of mobile

sensors were treated in details). For robotic ad hoc networks

the pricing function can characterize the cost for the battery

consumption for actuating the robot (for moving away from

initial condition), or it can characterize the approximate

regions that each robot should cover in order to ensure overall

network connectivity (see Example 2 below).

First, let us formulate sufficient conditions for the ex-

istence and uniqueness of the Nash equilibrium for the

formulated game. For clarity of presentation, we assume

that urij = 0 for all (i, j), i.e., that the agents are locally

interested only in improving transmitted communication.

Similar conditions can be obtained for general gains urij .

For the existence of a Nash equilibrium we introduce the

following assumptions:

(B.1)
∂2Pi

∂χ2
i

>

2
∑

j∈Ti

utij
hij(·)

(

∂2hij
∂χ2

i

−
1

(λ + 1)hij(·)
(
∂hij
∂χi

)2
)

(8)

for all r = [rT1 , ..., r
T
N ]T ∈ R2N , where χi is either xi or

yi and λ = 1/γmin is the maximal interference+noise to

signal ratio (γmin is the minimal signal to interference+noise

ratio) in the whole network for all the links. Normally, this

parameter is small, certainly less than 1.

(B.2) The Hessian of Pi(ri) is diagonal.

We assume that the dependence of a link gain hij on the

distance between the nodes i and j is given by the following

form

hij(ri, rj) =
h0ij

((xi − xj)2 + (yi − yj)2)nij/2 + h0ij
, (9)

where nij depends on the environment in which the radio

waves propagate (in open air we have nij = 2), and where

we have normalized the function such that it is equal to 1

for ri = rj . For this function it can be shown that there

is a region in (xi − xj , yi − yj) plane in which the sum

terms on the right hand side of (B.1) can be positive (in this

region hij(ri, rj) is in the medium range). The value of these

terms in this region is obviously larger for smaller γmin (or

larger λ) or larger uij-s. Therefore, besides being strictly

convex, the pricing function Pi(ri) needs to have large

enough second derivative in this region so that the inequality

(B.1) holds. This can easily be satisfied with simple quadratic

function Pi(xi, yi) = bxi (xi − x0i ) + byi (yi − x0y) with large

enough bxi and byi , depending on x0i and y0i .

Due to highly nonlinear dependence given in (9), for

clarity of presentation, we introduce a general condition

ensuring uniqueness of the Nash equilibrium:

(B.3) The Jacobian of the vector

g(r) = [∇1J1(r)
T , ...,∇NJN (r)T ]T , (10)

where ∇i denotes the gradient with respect to ri, is diago-

nally dominant.

It will be evident after the proof of the next theorem

that condition (B.3) can easily be satisfied if the number of

“interfering” agents is not large compared to the spreading

gain L (similarly as in (A.2)).

Theorem 3: Let the Assumptions (B.1)–(B.3) be satisfied.

Then the formulated position control game with the cost

functions given in (6) admits a unique Nash equilibrium

r∗ = [r∗T1 , ..., r∗TN ]T .

Proof: The proof will be based on similar arguments

as in the proof of Theorem 1. For the gradient of a cost

function with respect to local position we obtain

∇iJi(r) = [
∂Ji
∂xi

(r),
∂Ji
∂yi

(r)]T , (11)

where the partial derivatives are given by

∂Ji
∂xi

(r) =
∂Pi

∂xi
(r)

−
∑

j∈Ti

utijLpij

σ2 +
∑

k 6=i hkjpk + Lhijpij

∂hij
∂xi

(r)

and we have a similar form for the partial derivative with

respect to yi. Furthermore, for the diagonal second partial
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derivatives we obtain

∂2Ji
∂x2i

(r) =

∂2Pi

∂x2i
(r) +

∑

j∈Ti

utij [
Lpij

σ2 +
∑

k 6=i hkjpk + Lhijpij

∂2hij
∂x2i

(r)

−
L2p2ij

(σ2 +
∑

k 6=i hkjpk + Lhijpij)2

(

∂hij
∂xi

(r)

)2

], (12)

with a similar formula for ∂2Ji

∂y2

i

. From (12) and (B.1) it is

evident that ∂2Ji

∂x2

i

(r) > 0 and ∂2Ji

∂y2

i

(r) > 0. By doing similar

calculations, it can be shown that

∣

∣

∣

∂2Ji

∂xi∂yi
(r)

∣

∣

∣
≤

∣

∣

∣

∂2Ji

∂x2

i

(r)
∣

∣

∣
so

that by using (B.1) and (B.2) we conclude that the Jacobian

of the local gradients (11) is positive definite. Therefore,

the cost functions Ji are strictly convex with respect to

the local actions ri. Furthermore, from (B.1), (B.2) and the

logarithmic dependence of Ui in the cost function (6), we

conclude that the cost functions are radially unbounded in

local decisions. Therefore, we can use standard results in

game theory (e.g., Corollary 4.2 in [22]) and conclude that

there exists a Nash equilibrium of the underlying game.

Uniqueness follows from (B.3) using similar arguments as

in the proof of Theorem 1.

To show that Assumption (B.3) is not restrictive, for k /∈
Ti, we have:

∂2Ji
∂xi∂xk

(r) =

∑

j∈Ti

utijLpijpk

(σ2 +
∑

l 6=i hljpl + Lhijpij)2
∂hij
∂xi

∂hkj
∂xk

, (13)

which is small for large L compared to the parameters utij ,

so that (B.3) is easily satisfied if the number of “interfering”

agents is reasonably small compared to the spreading gain

L.

Let us now consider the problem of the agents’ positioning

to the equilibrium point. Similarly as in the power control

game, it is impossible for the agents to know the exact values

of all the parameters in the cost functions as well as the rel-

ative or absolute positions, which would enable them to use

a gradient decent or best response strategies [22]. However,

the agents are able to access the values of their local costs

(6) at their current positions, since they can obtain current

achievable rates, or signal to noise ratios using feedback

from the receiver. Therefore, we again propose to use the

Nash equilibrium seeking scheme developed in [11], adapted

to given particular motion dynamics of the mobile robots.

Assuming single integrator (velocity actuated) dynamics, we

propose the algorithm depicted in Fig. 4 (see [6], [7], [11]

for similar schemes involving double integrator or unicycle

robots’ dynamics). Since now we have two dimensional

action spaces (unlike the power control game) the agents im-

plement orthogonal sinusoidal perturbations with vanishing

gains ŝxi (k) = αi(k) cos(ωik)−αi(k−1) cos(ωi(k−1)) and

ŝyi (k) = αi(k) sin(ωik)−αi(k−1) sin(ωi(k−1)) which are

differentiated since they are moved in front of the integrators
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Fig. 3. Noncoopearative position control algorithm for velocity actuated
vehicles

appearing in the vehicles’ dynamics in this case. Since we are

implementing the algorithm in discrete time and the vehicle

dynamics are in continuous time, we introduced sampling

with the period T (large enough so that the value of the cost

can be obtained) with the zero-order-hold (ZOH) blocks at

the input.The parameters of the scheme should be chosen as

specified in (A.4)–(A.6) [11].

The conditions (B.1)–(B.3) are sufficient, together with

(A.4)–(A.6) for the stability of our algorithm. Note that when

distance between the agents goes to infinity condition (B.1)

is not needed, so that we shouldn’t expect instabilities even

if ∂2Pi

∂χ2

i

(r) is not large enough to ensure (B.1) for all r.

However, if there is a region in which (B.1) is not satisfied,

the Nash equilibrium might not exist, and we may have cyclic

behavior of our algorithm in this region.

Now we can state the main convergence theorem:

Theorem 4: Consider the scheme in Fig. 4 where the

cost functions Ji(ri, r−i) are given in (6). Let Assumptions

(B.1)–(B.3) and (A.4)–(A.6) be satisfied. Then the positions

of the agents converge to the Nash equilibrium positions

almost surely.

Proof: Similarly as in the proof of Theorem 2, ac-

cording to [11] and having in mind (B.1)–(B.3) and (A.4)–

(A.6), all we need to show is that there exists a Lya-

punov function V (r) such that V (r∗) = 0 and ψ(r) =
gT (r)KT∇rV (r) > 0, for all r 6= r∗, where g(r) =
[∇r1J1(r)

T , ...,∇rNJN (r)T ]T , K = I2 ⊗ diag{k1, ..., kN},

ki = eiaiHi(1) > 0. Because of the diagonal dominance

and positive definiteness of the Jacobian of g(r) (see proof

of Theorem 3) we can choose quadratic Lyapunov function

V (r) = 1

2
(r − r∗)T (r − r∗) and similarly as in Theorem 2

show that ψ(r) > 0, for all r 6= r∗ proving the theorem.

Remark 1: In both the power and the position control

schemes we have adopted cost functions proportional to

the channel capacity and with the additive pricing terms

Pi(·). However, it is possible to introduce pricing effects

in different, nonadditive manners (such as in, e.g., [16] for

power control), which could perhaps lead to simpler stability

conditions, especially for the position control scheme be-

cause of the highly nonlinear functions hij(·).
Example 2: In this example we show simulation results

for the position control algorithm in Fig. 4, for a network of

5 velocity actuated mobile robots having the cost functions
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(6) with hij(·)-s given in (9) with the following parameters:

Pi(xi, yi) = bxi (xi − x0i ) + byi (yi − x0y), b
x
i = byi = 5 for all

i ∈ {1, ..., 5}, r01 = (x01, y
0
1) = (−5, 0), r02 = (−4, 1), r03 =

(−4,−1), r04 = (−3, 0), r05 = (−1, 0), T1 = R1 = {2, 3},

T2 = R2 = {1, 4}, T3 = R3 = {1, 4}, T4 = R4 = {5},

T5 = R5 = {4}, pij = 1, h0ij = 1 for all i, j ∈ {1, ..., 5},

L = 32 and σ2 = 1. Similarly to Example 1, for the

parameters of the algorithm we set: ϕi = π/8, T = 1,

Hi(z) =
z−1

z+0.07 (washout filters), εi(k) = 0.15k−0.6+0.002,

αi(k) = 0.5k−0.25 + 0.03 for i = 1, ..., 5, ω1 = 0.26π,

ω2 = 0.36π, ω3 = 0.58π, ω4 = 0.66π, ω5 = 0.16π and

the “measurement” noise variance is var{ni(k)} = 1, for

all i and k. It easy to check that all the assumptions (B.1)–

(B.3) and (A.4)–(A.6) are satisfied. In the context of robotic

ad hoc networks, these cost functions can be interpreted as

a way of establishing a communication bridge between the

agents 1 and 5 (or between the regions having the centers

in the minima of their pricing functions). In the sensor

network context, pricing functions Pi(ri) may represent

criteria describing the quality of local sensing which is the

best at its minimum.

To illustrate the dependence among the agents through

interference, we have set T4 = R4 = {5}, T5 = R5 =
{4} so that the cost functions of agents 4 and 5 depend

only on their mutual communication rates, and the other

agents can influence their positions only by interfering with

their communication. First we set utij = urij = 3 for all

the neighboring pairs (i, j) so that the importance of the

communication rates in the agents’ costs are not significant.

All the agents are initially at the same point (−2.5, 2). In Fig.

5 trajectories of the vehicles are shown where it can be seen

that, at the Nash equilibrium, the deviations from the goals

characterized by the pricing functions Pi are not significant,

but the agents still tend to get closer to each other. The final

destinations (Nash equilibrium) are marked with the circles.

Next, if we set ur12 = ut12 = ur13 = ur13 = ut24 = ur24 =
ut34 = ur34 = 8 and keep the other parameters the same,

so that the importance of the achievable communication

rates for agents 1,2 and 3 are higher, we obtain that the

agents 1,2 and 3 move much closer to each other and to

agent 4, deviating more from “local goals”. However, the

agents 4 and 5 would move away from each other due to

the higher interference of the other agents in their mutual

communications. Now it is more costly for them to move

closer to each other than in the previous case. This is the

expected effect because of the noncooperative nature of the

algorithm.
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