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Abstract— This paper deals with the problem of stability and
stabilization of Takagi-Sugeno (T-S) fuzzy systems with a fixed
delay by linear programming (LP) while imposing positivity in
closed-loop. The stabilization conditions are derived using the
single Lyapunov-Krasovskii Functional (LKF). An example of
a real plant is studied to show the advantages of the design
procedure.
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I. INTRODUCTION

The problem concerns a special class of nonlinear systems
called Takagi-Sugeno models (T-S) [7]. From the history of
the approach, this class can be interpreted as a collection of
linear models interconnected by nonlinear functions, called
membership functions, which are dependent variables. The
most delicate problem is the choice of premise variables that
partition the space [6], [8].
Positive systems have been of great interest to researchers in
recent years [9], [1], [4], [5] and [10]. The class of positive
T-S fuzzy systems was considered for the first time in [2].
The obtained results were presented using LMIs.
In this paper, the conditions of stability and stabilization of
such systems are studied by using linear programming (LP).
An application on the model of a real process is considered.
A comparison of the obtained results with those of [3] is
proposed. The rest of this paper is organized as follows: In
section 2, the description of T-S fuzzy models with fixed
state delay and fuzzy control law based on PDC structure
is given. New delay independent stabilization conditions are
established for positive systems in section 3. In section 4, an
example of a real plant is given to show the need for such
controllers. Some conclusions are given in section 5.

Notation:
• MT denotes the transpose of a real matrix M.
• F is called a positive matrix denoted by F � 0 if all

its elements are positive and there is a strictly positive
element ( fi j ≥ 0,∀(i, j) ,∃(i, j) : fi j � 0).

• A matrix A ∈ ℜn×n is called a Metzler matrix if its
off-diagonal elements are nonnegative. That is, if A =
{

ai j
}n

i, j=1, A is Metzler if ai j ≥ 0 whenever i 6= j.
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II. PROBLEM FORMULATION AND PRELIMINARY RESULTS

Specifically, the Takagi-Sugeno fuzzy system is described
by fuzzy IF-THEN rules, which locally represent linear
input-output relations of a system. The fuzzy system is of
the following form:
Rule i: IF z1(t) is F1

i and · · · and zp(t) is F p
i Then:

ẋ(t) = Ai x(t)+Ai1 x(t − τ)+Bi u(t) (1)
x(t) = Ψ(t)� 0, t ∈ [−τ ,0] (2)

where x(t) ∈ IRn is the state, u(t) ∈ IRm is the control input,
τ is a fixed delay, with i = 1,2, ...,r, r is the number of
IF-THEN rules, z1(t) · · · zp(t) and F j

i are respectively the
premise variable and the fuzzy sets.
The control law is chosen to be a state feedback one given
by:

u(t) = Ki x(t), (3)

Systems (1) will be represented by T-S fuzzy models de-
scribed by:

ẋ(t) =
r

∑
i=1

hi(z(t))(Ai x(t)+Ai1 x(t − τ)+Bi u(t)) (4)

The control used in this work is the so called PDC control:

u(t) =
r

∑
i=1

hi(z(t))Ki x(t), (5)

where hi(z(t)) =
wi(z(t))

r

∑
i=1

wi(z(t))
; wi(t) =

p

∏
j=1

F j
i (z(t)),

with hi(z(t)) ≥ 0; ∀t ≥ 0;
r

∑
i=1

hi(z(t)) = 1,

i = 1,2, ...,r and j = 1,2, ..., p.
By using (5), the closed-loop system (4) is then written as:

ẋ(t) =
r

∑
i=1

r

∑
j=1

hi(z(t))h j(z(t)) [(Ai

+ BiK j ) x(t)+Ai1 x(t − τ)] (6)
x(t) = Ψ(t)� 0, t ∈ [−τ ,0].

The aim of this work is to present new sufficient conditions
of existence of state feedback controllers allowing the state
to be always nonnegative for continuous-time fuzzy systems
with fixed delay.

Definition 1: The T-S fuzzy system (4) is said to be
controlled positive if, given any nonnegative initial state and
any input function u(t) ≥ 0, the corresponding trajectory
remains in the positive orthant for all t: x(t) ∈ Rn

+.
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Lemma 1: [4] The autonomous delayed system (4) is
positive if and only if Ai is a Metzler matrix and Ai1 is
a nonnegative matrix for i = 1, ...,r.

Now, the conditions of stability and stabilization of T-S
fuzzy system (4), using LMI method as presented in [3], are
recalled.

Theorem 1: [3] For positive matrices Ai1 and Metzler
matrices Ai, the autonomous system (4) is asymptotically
stable, if there exist a diagonal matrix P = PT � 0 and a
matrix R = RT � 0 satisfying the following LMIs: Mi =
(

AT
i P+PAi+R PAi1

∗ −R

)

≺ 0; i = 1,2, ...,r.

Theorem 2: [3] For positive matrices Ai1, if there exist a
diagonal matrix X = XT � 0, matrices Y j; j = 1,2, ...,r and
Z satisfying the following LMIs:
{

Mi j +M ji ≺ 0
AiX +BiYj is Metzler

;i = 1,2, ...,r; i ≤ j,

where
Mi j=

(

XAT
i +Y T

j BT
i +AiX +BiYj +Z Ai1X

∗ −Z

)

.

Then system (6) with P = X−1; K j = YjX−1 and R =
X−1ZX−1 is asymptotically stable and controlled positive.

To establish these conditions, the following Lyapunov-
Krasovskii functional was used:

V (x(t)) = x(t)T Px(t)+
∫ t

t−τ
x(υ)T Rx(υ)dυ (7)

Note that these results are a particular case of the ones given
by [3].

III. MAIN RESULTS

This section concerns the study of the conditions of
stability and stabilization of the fuzzy system (4) using a
linear program (LP) method.
Remark: Knowing that the dual system (4) is asymptotically
stable, if and only if the system (4) is asymptotically stable,
then we simply demonstrate the stability of the dual system.

Theorem 3: For positive matrices Ai1 and Metzler matri-
ces Ai , the autonomous system (4) is asymptotically stable
for all τ � 0 if there exists a vector λ ∈ Rn; satisfying the
following LPs:
{

(Ai +Ai1)λ ≺ 0 ; i = 1, ...,r,
λ � 0.

Proof 1: The choice of the Lyapunov-Krasovskii func-
tional in this case will be:
V (x(t)) = xT (t)λ +

r

∑
i=1

∫ t

t−τ
xT (s)Ai1λds ; λ � 0.

As noted above, we can deal with the stability of the
autonomous dual system of (4) given by:

ẋ(t) =
r

∑
i=1

hi(z(t))(AT
i x(t)+AT

i1 x(t − τ)). (8)

The time derivative of the Lyapunov-Krasovskii functional
is:

V̇ (x(t)) = ẋT (t)λ + xT (t)
r

∑
i=1

Ai1λ

−xT (t − τ)
r

∑
i=1

Ai1λ . (9)

Replace the ẋT (t) by the expression of the autonomous dual
system (8), then the derivative of the functional will be of
the form:

V̇ (x(t)) =
r

∑
i=1

hi(z(t))
[

xT (t)Ai + xT (t − τ)Ai1
]

λ

+
r

∑
i=1

[

xT (t)Ai1 − xT (t − τ)Ai1
]

λ .

As 0 � hi(z(t))� 1, Ai1 � 0 and x(t −τ)� 0, it follows that:
r

∑
i=1

hi(z(t))
[

xT (t)Ai + xT (t − τ)Ai1
]

λ ≺,

r

∑
i=1

[

hi(z(t))xT (t)Ai + xT (t − τ)Ai1
]

λ . (10)

Thus, V̇ (x(t)) ≤
r

∑
i=1

[

hi(z(t))xT (t)Ai + xT (t − τ)Ai1
]

λ +

r

∑
i=1

[

xT (t)Ai1 − xT (t − τ)Ai1
]

λ

≤
r

∑
i=1

hi(z(t))xT (t) [Ai +Ai1]λ +

r

∑
i=1

(1−hi(z(t)))xT (t)Ai1λ .

It is then obvious that (Ai+Ai1)λ ≺ 0 , i = 1, ...,r implies
V̇ (x(t)) ≺ 0. This result can be easily extended to design
controllers ensuring asymptotic stability while imposing pos-
itivity in closed-loop. �

Theorem 4: For positive matrices Ai1, system (6) is
asymptotically stable and controlled positive if there exist a
vector λ = [λ1 . . .λn]

T ∈ Rn and vectors y j
1, ....,y

j
n ∈ Rm / j =

1, ...,r; satisfying the following LPs:


















(Ai +Ai1)λ +Bi

n

∑
s=1

y j
s ≺ 0, i, j ∈ {1,2, ...,r} ,

ai
lsλl +bi

ly
j
s � 0, l 6= s = 1, . . . ,n; i, j ∈ {1,2, ...,r} ,

λ � 0,

with K j = [
y j

1
λ1
,

y j
2

λ2
. . . , y j

n
λn
]; j = 1, ...,r; and

Ai = (ai)ls, l,s = 1, . . . ,n;Bi =









bi
1

bi
2

. . .
bi

n









. (11)

Proof 2: Following the same reasoning and replacing the
ẋT (t) in equation (9) by the formula of the dual system of
(6), which is as follows:

ẋ(t) =
r

∑
i=1

r

∑
j=1

hi(z(t))h j(z(t)) [(Ai +

BiK j )
T x(t)+AT

i1 x(t − τ)
]

.
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The expression of the derivative of the functional (9) be-
comes:

V̇ (x(t)) =
r

∑
i=1

r

∑
j=1

hi(z(t))h j(z(t))
[

xT (t)(Ai +BiK j)

+xT (t − τ)Ai1
]

λ +
r

∑
i=1

[

xT (t)Ai1 − xT (t − τ)Ai1
]

λ

≤
r

∑
i=1

r

∑
j=1

[

hi(z(t))h j(z(t))xT (t)(Ai +BiK j)

+xT (t − τ)Ai1
]

λ +
r

∑
i=1

[

xT (t)Ai1 − xT (t − τ)Ai1
]

λ

≤
r

∑
i=1

r

∑
j=1

hi(z(t))h j(z(t))xT (t) [Ai +Ai1+BiK j ]λ +

r

∑
i=1

r

∑
j=1

[1−hi(z(t))h j(z(t))]xT (t)Ai1λ .

Finally,

(Ai +Ai1)λ +BiK jλ ≺ 0 ; i, j ∈ {1, ...,r} (12)

implies V̇ (x(t)) ≺ 0. To ensure that the trajectory remains
in the positive orthant, matrices Ai +BiK j must be Metzler.
By using (11), the off-diagonal elements of matrices in
closed-loop are given by: (Ai +BiK j)ls = ai

ls + bi
l

y j
s

λl
, l 6= s =

1, . . . ,n; i, j ∈ {1,2, ...,r}, which are nonnegative if and only
if ai

lsλl + bi
ly

j
s � 0, l 6= s, λl being positive. Now, by letting

K j = [K j
1 K j

2 . . . K j
n ] where K j

s are vectors in Rm, one has
K jλ = ∑n

s=1 K j
s λs = ∑n

s=1 y j
s , with K j

s λs = y j
s . Consequently,

inequality (12) can be written as

(Ai +Ai1)λ +Bi

n

∑
s=1

y j
s ≺ 0,

and

K j =

[

y j
1

λ1
,

y j
2

λ2
. . . ,

y j
n

λn

]

; j = 1, ...,r.

�

This result can be extended to positive T-S systems, that is
systems with matrices Ai Metzler and positive matrices Ai1
and Bi. In this case, the control has to be positive, which is
guaranteed by imposing y j

s ≥ 0.
Corollary 1: For positive matrices Ai1 and Bi and matrices

Ai Metzler, system (6) is asymptotically stable and positive
if there exist a vector λ , vectors y j

1, ....,y
j
r ∈ Rm / j = 1, ...,r;

satisfying the following LPs:


















(Ai +Ai1)λ +Bi

n

∑
s=1

y j
s ≺ 0; i, j ∈ {1,2, ...,r}

y j
s � 0,

λ � 0,
with
K j =

[

y j
1

λ1
,

y j
2

λ2
. . . , y j

n
λn

]

; j = 1, ...,r.

It is worth noting that the conditions of stability and stabiliza-
tion of the T-S fuzzy system without delay can be obtained
as a particular case of the studied system with delay (6).

IV. APPLICATION TO A REAL PLANT MODEL

Consider the process composed of two linked tanks of 22
liter capacity each. This system can be described by:

ẋ1(t) = u1(t)−q12(t)−q1(t)

ẋ2(t) = u2(t)−q12(t)−q2(t),

where xi holds for the level in of the tank in liters,
u j represents the flow in liters/mn of pump j, q12 is the
variation of the flow between the two tanks and qi the loss
flow of each tank. Applying the Torricelli law, one obtains:
q1 = γ1σ1

√
2gx1 = R1

√
x1

q2 = γ1σ2
√

2gx2 = R2
√

x2
q12 = γ12σ1

√

2g|x1 − x2|sign(x1 − x2) =
R12

√

|x1 − x2|sign(x1 − x2),

where γi and γi j are physical constants, σi is the tank
section and g the gravity acceleration. The process model
is then as follows:

ẋ1(t) = u1 −R1
√

x1 −R12
√

|x1 − x2|sign(x1 − x2)

ẋ2(t) = u2 −R2
√

x2 −R12
√

|x1 − x2|sign(x1 − x2).

The obtained model is then nonlinear. To obtain a T-S
fuzzy representation for this nonlinear system, the classical
transformation:

√
xi =

xi√
xi
= xizi with zi =

1√
xi

; 1√
|x1−x2

=
z1z2√
|z2

2−z2
1|

is used.

The corresponding model is then given by:
{

ẋ(t) = A(z1,z2)x(t)+Bu(t)
y(t) =Cx(t)

where matrix

A(z1,z2) has the general following form:

A(z1,z2)=





−R1z1 − R12√
|z2

1−z2
2

R12z1z2√
|z2

1−z2
2

R12z1z2√
|z2

1−z2
2

−R2z2 − R12√
|z2

1−z2
2



 B = I2 ;

C = I2.
The delayed model can be written as:










ẋ(t) = (1− ε)A(z1,z2)x(t)+ ε |A(z1,z2)|x(t − τ)
+Bu(t)
y(t) =Cx(t),

with ε ∈ [0,1] and τ : fixed delay.
The objective is that the output y tracks a given reference

yr. The following control is used: u(t) = K(θ )x(t)+L(θ )yr,
where controller gain K(θ ) ensures the asymptotic stability
together with the positivity in closed-loop, while the
controller gain L(θ ) achieves the tracking objective, one
obtains: X(s) = (sI − Â(θ )− Aτ(θ )e−sτ)−1BL(θ )Yr(s); so:
Y (s) = (sI−Â(θ)−Aτ(θ)e−sτ )−1BL(θ)Yr(s)

s . Using the final value
theorem, one can deduce:y(∞)=−C[Â(θ )+Aτ(θ )]−1L(θ )yr
with Â(θ ) = (1− ε)A(θ )+BK(θ );Aτ(θ ) = ε |A(θ )|. If one
chooses Li = −Âi −Ai1 = −(1− ε)Ai − ε |Ai|;i = 1, ..,4, the
tracking objective will be reached with y(∞) = yr. Present
this system as the T-S fuzzy model:
by considering that zi ∈ [ai;bi];i = 1,2, the
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four following rules are taken into account:


















I f z1 is a1 and z2 is a2 Then : A(z1,z2) = A1

I f z1 is a1 and z2 is b2 Then : A(z1,z2) = A2

I f z1 is b1 and z2 is a2 Then : A(z1,z2) = A3

I f z1 is b1 and z2 is b2 Then : A(z1,z2) = A4
The membership functions are given by:

h1(t) = f11(t) f21(t); h2(t) = f11(t) f22(t);
h3(t) = f12(t) f21(t); h4(t) = f12(t) f22(t);
where fi1(t) =

zi(t)−bi
ai−bi

and fi2(t) = 1 − fi1(t) =
ai−zi(t)

ai−bi
;

i = 1,2.
The membership functions are finally as:
h1(t) =

(z1(t)−b1)(z2(t)−b2)
(a1−b1)(a2−b2)

; h2(t) =
(z1(t)−b1)(a2(t)−z2(t))

(a1−b1)(a2−b2)
;

h3(t) =
(a1−z1(t))(z2(t)−b2)
(a1−b1)(a2−b2)

; h4(t) =
(a1−z1(t))(a2−z2(t))
(a1−b1)(a2−b2)

;
The obtained matrices Ai of the subsystems

are: A1=





−R1a1 − R12a1a2√
|a2

1−a2
2|

R12a1a2√
|a2

1−a2
2|

R12a1a2√
|a2

1−a2
2|

−R2a2 − R12a1a2√
|a2

1−a2
2|



;

A2=





−R1a1 − R12a1b2√
|a2

1−b2
2|

R12a1b2√
|a2

1−b2
2|

R12a1b2√
|a2

1−b2
2|

−R2b2 − R12a1b2√
|a2

1−b2
2|



;

A3=





−R1b1 − R12b1a2√
|b2

1−a2
2|

R12b1a2√
|b2

1−a2
2|

R12b1a2√
|b2

1−a2
2|

−R2a2 − R12b1a2√
|b2

1−a2
2|



;

A4=





−R1b1 − R12b1b2√
|b2

1−b2
2|

R12b1b2√
|b2

1−b2
2|

R12b1b2√
|b2

1−b2
2|

−R2b2 − R12b1b2√
|b2

1−b2
2|



;

One can notice that matrix B in this example is common,
which reduces considerably the number of the LMIs to
be solved. The obtained T-S fuzzy model without delay is
given by:



















ẋ(t) =
4

∑
i=1

hi(z(t))(Aix(t)+Bu(t))

y(t) =
4

∑
i=1

hi(z(t))Cix(t)
(13)

The corresponding T-S model with fixed delay can be given
as follows [3]:


















ẋ(t) =
4

∑
i=1

hi(z(t))((1− ε)Aix(t)+ ε |Ai|x(t − τ)+Bu(t))

y(t) =
4

∑
i=1

hi(z(t))Cix(t)

(14)
The objective is to design controllers ensuring stabilization

of systems (14) associated to the real plant model, for which
matrices Ai are Metzler and matrices Ai1 and B are positive,
using the conditions of Theorem 2 and Corollary 1.

A. Simulation results of the system without delay

The use of the LMI method without delay of Theorem 2
leads to the following results:

P=
(

0.1069 −0.0692
−0.0692 0.1053

)

,

K1=
(

−0.0328 0.2235
0.1957 0.0173

)

; K2=
(

−0.1553 0.3709
0.2146 0.0927

)

K3=
(

0.1470 0.1801
0.3458 −0.0991

)

; K4=
(

0.4437 −0.1231
−0.0909 0.3979

)

Matrices in closed-loop are obtained as:

Â1=
(

0.4777−0.4560
−0.42820.4605

)

; Â2=
(

0.5067 −0.5099
−0.3535 0.4340

)

Â3=
(

0.4423−0.3445
−0.51030.5088

)

; Â4=
(

0.5009 −0.3966
−0.4288 0.5096

)

The obtained solutions of the LP method are as follows:
λ=

(

0.1011
0.1063

)

,

K1=
(

0.0655 0.0623
0.0878 0.0834

)

; K2=
(

0.0670 0.0637
0.1364 0.1296

)

K3=
(

0.1389 0.1320
0.0867 0.0824

)

; K4=
(

0.1335 0.1269
0.1416 0.1346

)

Matrices in closed-loop are obtained as:

Â1=
(

0.3794 −0.2948
−0.3203 0.3944

)

; Â2=
(

0.2844 −0.2027
−0.2754 0.3971

)

Â3=
(

0.4504 −0.2965
−0.2512 0.3273

)

; Â4=
(

0.8110 −0.6466
−0.6613 0.7729

)

The results of the simulation, with the following data:
initial point x0 = [6,7]T and the trajectory reference yr =
[15,15]T , are obtained as follows:

B. Simulation results of the system with fixed delay

The use of the LMI method with fixed delay of Theorem
2 leads to the following results:

P=
(

0.0161 0
0 0.0160

)

; R=
(

0.0058 −0.0025
−0.0025 0.0060

)

K1=
(

0.0214 0.0213
0.0214 0.0237

)

; K2=
(

0.0322 0.0485
0.0488 0.0745

)

K3=
(

0.0894 0.0543
0.0547 0.0412

)

; K4=
(

0.0272 0.0228
0.0230 0.0249

)

Matrices in closed-loop are obtained as:

Â1=
(

0.3345 −0.2538
−0.2540 0.3586

)

; Â2=
(

0.2490 −0.1875
−0.1878 0.3469

)

Â3=
(

0.3821 −0.2187
−0.2191 0.2866

)

; Â4=
(

0.7285 −0.5425
−0.5427 0.7011

)

The use of the LP method with fixed delay of Theorem 4
leads to the following results:

λ=
(

0.8967
0.9209

)

,

K1=
(

0.0396 0.0386
0.0523 0.0509

)

; K2=
(

0.0444 0.0432
0.0983 0.0957

)

K3=
(

0.1014 0.0988
0.0555 0.0540

)

; K4=
(

0.0745 0.0725
0.0745 0.0725

)

Matrices in closed-loop are obtained as:

Â1=
(

0.3608 −0.2478
−0.2616 0.3791

)

; Â2=
(

0.2719 −0.1683
−0.2233 0.3784

)

Â3=
(

0.4289 −0.2468
−0.2035 0.3147

)

; Â4=
(

0.7756 −0.5403
−0.5422 0.7442

)

The results of simulation with the following data: ε =
0.1; initial points Ψ(t) = [8,7]T , t ∈ [−τ ,0] and the trajectory
reference yr = [15,15]T are obtained as:

C. Comparison between the LMI and LP methods:

In this section, a comparison between the feasibility of the
results of Theorem 2 and the ones of Theorem 4 is presented
based on the real plant model.
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Based on the comparison of the two presented methods,
the LMI and linear programming, we note that the domain
of feasibility of conditions based on linear programming is
much larger than the LMI based ones.

V. CONCLUSION

In this paper, we are concerned with the study of positive
non linear systems. To obtain conditions of stability and
stabilization of nonlinear systems, while imposing positivity
in closed-loop, the T-S fuzzy techniques are used. The study
is performed by using a linear programming method. Finally,
an application to a real model of a process with two tanks was
presented together with a comparison between our results and
the ones of [3] obtained with LMIs.
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Fig. 1. This figure plots the evolution of the states x1 and x2(LMI)
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Fig. 2. This figure plots the evolution of the two pump flows(LMI)
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Fig. 3. This figure plots the evolution of the states x1 and x2(LP)
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Fig. 4. This figure plots the evolution of the two pump flows(LP)
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Fig. 5. This figure plots the evolution of the states x1 and x2(LMI)
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Fig. 6. This figure plots the evolution of the two pump flows(LMI)
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Fig. 7. This figure plots the evolution of the states x1 and x2(LP)

0 20 40 60 80 100
3.3

3.35

3.4

3.45

3.5

3.55

3.6

3.65

3.7

t

u 1,u
2

 

 

Fig. 8. This figure plots the evolution of the two pump flows(LP)
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Fig. 9. Comparing the field feasibility of the LMI and LP
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