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Abstract— The application of numerical optimization meth-
ods to the problem of extremum seeking control (ESC) has
the potential to greatly diversify the types and capabilities of
ESC schemes. The first uniform treatment of such sampled-data
ESC schemes was given in [1]. We approach the problem from
the point of view of interconnected systems’ theory, deriving
a different, more structurally concrete set of conditions that
guarantee the closed-loop stability of such schemes. Our main
assumptions concern the interconnection terms arising from the
dynamic coupling between a numerical optimization algorithm
and a continuous-time nonlinear plant. We demonstrate how
these assumptions are satisfied for a special case involving
an approximate gradient descent. Our primary motivation in
deriving these new conditions is their natural suitability for the
development and analysis of decentralized ESC schemes.

I. INTRODUCTION

With the appearance of its first rigorous stability analysis
in [2], extremum seeking control (ESC) has received renewed
interest from the research community within recent years.
The interest in ESC continues to be incited by the prolifer-
ation of its practical applications [3], [4], [5], [6].

ESC is a method of regulating a plant’s output to a value
that corresponds to an optimum of its steady-state reference-
to-output (RO) map. The analytic structure of this RO map
is assumed to be unknown, and therefore the reference input
that produces the optimum output value cannot be computed
offline.

Most of the literature on ESC is focused on the analysis
of continuous-time schemes. The authors in [7] extend the
work in [2] to demonstrate semiglobal practical stability of
the original scheme and several variations thereof. In [8], a
different flavor of ESC is introduced, where the adjustable
parameters are unknown but the structure of the RO map
is partially known. Another approach to ESC is given in
[9], where finite-time regulation is combined with numerical
optimization to minimize an unknown state-to-output map.
An ESC scheme for discrete-time plants with a special
structure is analyzed in [10].

In this paper, we focus on sampled-data ESC of the
sort proposed in [1]. Our interest is partly motivated by
the prospect of interchangeably choosing an optimizer from
amongst a variety of well-developed numerical optimization
methods in the nonlinear optimization literature. In [1], the
authors provide a set of conditions guaranteeing the closed-
loop stability of a very general sampled-data ESC scheme,
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and their work appears to be the first attempt at providing a
unifying treatment of the subject.

As in [1], we aim to derive a set of sufficient (small-
gain type) conditions for the closed-loop stability of generic
sampled-data ESC schemes. However, our approach differs
twofold. First, we view the problem from the perspective
of large-scale, interconnected systems theory (c.f. [11], for
example). Second, we take advantage of Lyapunov stability
arguments that are more specialized to the analysis of opti-
mization algorithms (c.f. [12], for example). This approach
allows us to derive a set of conditions that are more closely
related to the structural features of the subsystems involved,
and are more constructive in that sense. Moreover, our
analysis allows us to explicitly identify how the relevant
problem parameters affect the tradeoffs in the performance
of such schemes.

Instead of treating the optimizer as a difference inclusion
with general Lyapunov properties, we give it a structure in
which the search vector is explicit. Although less general,
this form is common to a large number of optimization
methods. In the literature on Lyapunov analysis of such op-
timization methods, one finds joint conditions on this search
vector and candidate Lyapunov functions. These conditions
appear to be a natural starting point for the analysis of
algorithms with perturbations on their ideal search vectors.

We propose that the plant-optimizer interconnection can
often be modeled as an additive perturbation of each subsys-
tem’s isolated (i.e., open-loop) dynamics. We show how a
scheme involving a gradient descent algorithm that employs
a forward-difference estimate of the gradient can be modeled
in this way. In treating the interconnection as an additive
perturbation, we generalize the result in [1] by removing
all assumptions concerning the measurements made by the
optimizer in forming its search direction.

We anticipate that the set of conditions we derive here will
be valuable in the development and analysis of decentralized
ESC schemes.

This paper is organized as follows. In Section II we
describe our problem setting and state our assumptions on
the open-loop stability properties of the plant and optimizer,
and the structure of their interconnection. Our main result,
Theorem 3.1, is proved in Section III. In Section IV, we study
a special case involving an approximate gradient descent
algorithm, and show how our assumptions apply.

A. Notation

All vector norms ∥ · ∥ are Euclidean. (vk)∞
k=0 denotes

sequence of numbers vk, k ∈ N. Temporal sequences are
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indexed by subscript - i.e., tk denotes the kth time instant and
x(t−k )= limt↑tk x(t). The unit vector along the ith coordinate is
denoted by ei. R+ is the set of positive real numbers. For a
differentiable function f : Rn → Rm, defined by x 7→ f (x),
the (i, j)th component of ∇ f : Rn → Rn×m is defined as
[∇ f (x)]i, j =

∂ f j(x)
∂xi

, so that if f : Rn →R, the i’th component
of f ’s gradient is denoted by ∇ f T ei.

II. PROBLEM SETTING

We consider the class of nonlinear systems described by

Σ :

{
ẋ = f (x,v)

y = h(x),
(1)

where x ∈ Rn, v ∈ Rp and y ∈ R. To ensure the existence of
Σ’s solutions, we assume that f is locally Lipschitz. We also
make the standard assumption that there exists a continuous
equilibrium map l : Rp → Rn such that f (x,v) = 0 if, and
only if x = l(v).

In ESC literature it is typically assumed that for any fixed
v, the equilibrium l(v) has some kind of stability property.
We make our assumption in terms of the error variable

z(t), x(t)− l(v(t)), (2)

whose dynamics for a fixed v(t)≡ v are ż = f (z+ l(v),v).
A2.1: There exists a radially unbounded C1 function

VΣ : Rn → R+ such that:

(a) VΣ(z)> 0, ∀z ∈ Rn\{0}, and VΣ(0) = 0,
(b) there exists a real number γ > 0 such that

V̇Σ(z(t)) = ∇VΣ(z)T f (z+ l(v),v)≤−γVΣ(z(t)),
∀z ∈ Rn, ∀v ∈ Rp. ♢

Next, we define the reference-to-output (RO) map J :Rp →
R by the composition v 7→ h(l(v)). For the ESC problem to
make sense, we need to assume that J has an extremum,
which, without loss of generality, we take to be a minimum.

A2.2: There exists a v∗ ∈ Rp such that ∀v ∈ Rp, J(v) ≥
J(v∗) ♢

The goal in ESC is to find v∗ by adjusting Σ’s reference
input v and monitoring its output h(x(t)). In this paper we
give conditions under which this task can be accomplished
through the sample-and-hold interaction between Σ and a
numerical optimization algorithm O with the following struc-
ture:

O :
{

vk+1 = vk + s(vk), ∀k ∈ N, (3)

where s(vk) is a search vector at the kth iterate. The generic
form (3) is common to many standard numerical optimization
methods.

In this paper, we make no assumptions on how the search
vector s(vk) is produced. In this sense we generalize the
work in [1], wherein the authors place conditions on the
“dither” functions used to probe the RO map, and on how
the optimizer’s measurements of the RO map enter its update
equation. On the other hand, the authors in [1] study a more
general class of optimizers – those whose update law is
described by difference inclusions.

In the following subsections, we state a collection of
assumptions on the open-loop behaviour of O , and the nature
of the interconnection between Σ and O .

A. The Open-Loop Operation of O

Given a static cost function J(v), we assume that O
produces a sequence (vk)∞

k=1 that asymptotically converges to
v∗ for any initial condition v0. Although there are many ways
to make this assumption precise, our choice is motivated by
Lyapunov arguments from the optimization literature [12].

A2.3: There exists a radially unbounded C1 function
VO : Rp → R+ with the following properties:

(a) VO(v)> 0, ∀v ∈ Rp\{v∗}, and VO(v∗) = 0,
(b) ∇VO(v)T s(v)< 0, for all v ∈ Rp\{v∗}, and

∇VO(v∗)T s(v∗) = 0,
(c) there exists a real number κs > 0 such that

∥s(v)∥2 ≤−κs∇VO(v)T s(v), ∀v ∈ Rp,
(d) the gradient of VO is Lipschitz – i.e., there exists a

real number L∇VO
> 0, such that for all v1,v2 ∈ Rp,

∥∇VO(v1)−∇VO(v2)∥ ≤ L∇VO
∥v1 − v2∥. ♢

The first two properties in A2.3 are analogous to those
demanded of VΣ in A2.1, while properties similar to the
last two appear in Lyapunov-based stability proofs of various
optimization algorithms [12].

Remark 2.1: Property (c) in A2.3 is a joint condition on
∇VO(v) and the search vector s(v). For a given function
VO(v), it is possible that the range of κs for which this
property is satisfied is tunable through the design of s(v).
For example, (as we will see in Section IV), such is the case
when s(v) =−α∇J(v), and α is a tunable step size. ♢

In Lemma 2.2, we show why A2.3 guarantees that O
generates sequences that asymptotically converge to v∗. How-
ever, first we need the technical Lemma 2.1.

Lemma 2.1: Given any differentiable function g : Rm → R
and any a,b ∈ Rm, we can write

g(a+b) = g(a)+∇g(a)T b

+
∫ 1

0
[∇g(a+ τb)−∇g(a)]T b dτ. (4)

Proof: Let u(τ) = a+ τb. Then by the chain rule,
d

dτ g(a+ τb) = ∇ug(u)T ∇τ u(τ) = ∇g(a+ τb)T b.

By Leibniz’s rule,
∫ 1

0
d

dτ g(a+ τb) dτ = g(a+b)−g(a), and
therefore

g(a+b) = g(a)+
∫ 1

0
∇g(a+ τb)T b dτ. (5)

The result then follows by adding and subtracting ∇g(a)T b
to the right-hand side of (5). �

Lemma 2.2: Define ∆V k
O ,VO(vk+s(vk))−VO(vk), and

assume that A2.2 and A2.3 hold. Then, ∆V k
O < 0, provided

that κs <
2

LVO
.

Proof: By Lemma 2.1, we may expand VO about vk as

VO(vk + s(vk))≤VO(vk)+∇VO(vk)T s(vk)

+
∫ 1

0

[
∇VO(vk + τs(vk))−∇VO(vk)

]T
s(vk) dτ.
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Since the gradient of VO is Lipschitz and vk + s(vk) = vk+1,
we have that

∆V k
O ≤ ∇VO(vk)T s(vk)+

LVO
2 ∥s(vk)∥2. (6)

From property (c) in A2.3, we obtain

∆V k
O ≤ (1− LVO

2 κs)∇VO(vk)T s(vk), (7)

and the conclusion then follows from A2.3 (b), and the fact
that κs ∈ (0, 2

LVO
). �

Lemma 2.2 indicates that VO decreases along successive
iterates generated by (3), as long as vk ̸= v∗. From the
Lyapunov theory of difference equations, we conclude that
v∗ is asymptotically stable for O (c.f. Theorem 5.9.2 in [13],
or Corollary 4.8.2 in [14], for example).

Remark 2.2: Some optimization algorithms do not neces-
sarily produce a descent sequence on the cost function J.
Therefore, J is not always a natural choice for a Lyapunov
function. ♢

B. The Closed-Loop Operation of O

The optimizer O in (3) is designed to minimize the
RO map J(v). In order to formulate its search vector at
each iteration, O must make measurements of J(v) whose
analytic structure is not known. In closed-loop with Σ,
these measurements are corrupted by the transient error z(t)
defined in (2); O measures h(x(t)) instead of the true RO map
J(v) = h(l(v)). It is therefore reasonable to view the effect
of Σ on O as a perturbation of O’s ideal evolution (3). When
feedback interconnected with Σ through a sample-and-hold,
the optimizer evolves according to

Ô :

{
vk+1 = vk + ŝ(vk,zk), ∀k ∈ N
v(t) = vk, ∀t ∈ [tk−1, tk),

(8)

where ŝ(vk,zk) is the perturbed search vector and zk is defined
as the transient error (2) just before the kth time instant:

zk , x(t−k )− l(vk). (9)

For simplicity, we take the sampling interval to remain
constant across iterations – i.e. tk+1 − tk = T > 0, ∀k ∈ N.

We make two assumptions on the structure of ŝ(vk,zk);
assumption A2.4 states that the perturbation on s(vk) affects
it additively, and A2.5 requires that the nonvanishing compo-
nent of this perturbation is “small” relative to VΣ. We state:

A2.4: There exists a continuous p : Rn →Rp such that for
all v ∈ Rp and z ∈ Rn, ŝ(v,z) = s(v)+ p(z). ♢
Aside from requiring p(z) to enter additively, we make no
further assumptions on its structure; p(z) is free to embody
other errors that are independent of the transient error, and
therefore may not vanish when z is set to 0.

Next, we express the perturbation p(v) in terms of its
vanishing and nonvanishing components

p(zk) =
(

p(zk)− p(0)
)
+ p(0), pv(zk)+ po, (10)

where po , p(0) and pv(0) = 0, and state:

A2.5: There exists a real number κΣ > 0 such that for all
z ∈ Rn, κΣVΣ(z)≥ ∥pv(z)∥2. ♢
In Section IV, we show how these assumptions are satisfied
for the case in which O is the gradient descent algorithm that
employs an Euler approximation of ∇J(v) at each iteration,
and Σ is a linear, stable system.

C. The Closed-Loop Operation of Σ

In order to express the perturbation on Σ arising from its
interconnection to Ô , we make the following assumption,
which is common in ESC literature [1], [2].1

A2.6: The equilibrium map l(v) is Lipschitz on Rp with
constant Ll . ♢

The effect of Ô on Σ can be derived from the properties
of VΣ given in Assumption A2.1. We summarize this effect
in the next Lemma.

Lemma 2.3: Let T be the constant sampling period tk+1−
tk and define ∆V k

Σ , VΣ(zk+1)−VΣ(zk), with zk as in (9).
Under Assumptions A2.1 and A2.6,

∆V k
Σ ≤−(1− e−γT )VΣ(zk)+e−γT∥ŝ(vk,zk)∥2

+ 1
4 e−γT (LVΣLl)

2, (11)

for all ((zk)T ,(vk)T )T ∈ Ωz×ΩO , where Ωz ⊂Rn and ΩO ⊂
Rp are arbitrarily large, compact sets containing the origin
and v∗, respectively.

Proof: From A2.1 we have that ∀z(0) ∈ Rn,
VΣ(z(t))≤ e−γtVΣ(z(0)). Consider the interconnection of Σ
to Ô , (c.f. (1) and (8)). According to our sample-and-hold
convention in (8), z(t−k ) ̸= z(tk) = z(t+k ) since the transition
from vk to vk+1 occurs at tk. Using (2) and (9), we obtain

VΣ(z(t−k+1))≡VΣ(zk+1)≤ e−γ(tk+1−tk)VΣ(z(tk))

= e−γTVΣ(x(tk)− l(vk+1))

= e−γTVΣ(x(t−k )− l(vk)+ l(vk)− l(vk+1))

= e−γTVΣ(zk +[l(vk)− l(vk+1)]). (12)

By A2.1, VΣ is C1, which means that it is locally Lipschitz
on any compact set. Let LVΣ be its Lipschitz constant on the
compact set

S = {z ∈ Rn : z = ζ + l(v)− l(v+ ŝ(v,ζ )),
ζ ∈ Ωz, v ∈ ΩO}. (13)

Next, add and subtract e−γTVΣ(zk) to the right-hand side of
(12) and use A2.6 to obtain

VΣ(zk+1)≤ e−γTVΣ(zk +[l(vk)− l(vk+1)])

− e−γTVΣ(zk)+ e−γTVΣ(zk)

≤ e−γTVΣ(zk)+ e−γT LVΣLl∥vk+1 − vk∥.

Since ∥vk+1 − vk∥= ∥ŝ(vk,zk)∥ by (8), we write

VΣ(zk+1)≤ e−γTVΣ(zk)+ e−γT LVΣLl∥ŝ(vk,zk)∥. (14)

1In both [1] and [2], the equilibrium map l(v) is required only to be
locally Lipschitz. Although it is possible to carry out our analysis in terms
of the weaker local Lipschitz property, we choose to work with the global
property in order to simplify our presentation.
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From Young’s inequality, we have that for any ε1 > 0,
∥ŝ(vk,zk)∥ ≤ ε1∥ŝ(vk,zk)∥2 + 1

4ε1
. Taking ε1 =

1
LVΣ Ll

we write

VΣ(zk+1)≤ e−γTVΣ(zk)+ e−γT∥ŝ(vk,zk)∥2 + 1
4 e−γT (LVΣLl)

2,

and the required form (11) then follows by subtracting VΣ(zk)
from both sides. �

The conclusion in Lemma 2.3 is only valid when
((zk)T ,(vk)T )T ∈ Ωz × ΩO , where Ωz and ΩO are some
compact sets that are chosen to be arbitrarily large. Once
fixed, these sets determine the size of LVΣ , which ultimately
affects the size of the neighbourhood of (0T ,v∗T ) to which
the closed-loop trajectories converge. In the next section, we
complete our closed-loop analysis, and provide conditions
on the initialization of Σ−O , which ensure that the resulting
trajectories remain inside Ωz ×ΩO .

III. MAIN RESULT
In order to prove our main theorem, we make use of the

following assumption on the relationship between the ideal
search vector s(vk) and VO :

A3.1: There exists a real number κVO
> 0 such that for all

v ∈ Rp, ∇V T
O

(
s(v)+κVO

∇VO(v)
)
≤ 0. ♢

Remark 3.1: Assumption A3.1 expresses that the search
vector s(v)

∥s(v)∥ should be close to the direction −∇VO (v)
∥∇VO (v)∥ . We

note that A3.1 resembles property (c) imposed on VO in
assumption A2.3. In fact, by geometric reasoning we can
show that if the angle between the vectors s(v)

∥s(v)∥ and −∇VO (v)
∥∇VO (v)∥

is bounded by some number θ ∈ (0,π/2) for all v ∈ Rp,
then given A2.3, A3.1 is automatically satisfied for all κVO

≤
κs cos2(θ). ♢

The following theorems give sufficient conditions un-
der which the Σ − Ô feedback interconnection exhibits
semiglobal asymptotic practical stability with respect to
(0,v∗) ∈ Rn ×Rp.

Theorem 3.1: Consider the composite Lyapunov function
V (zk,vk) = VΣ(zk)+VO(vk) and assume that A2.1 to A2.6,
and A3.1 hold, with

κs <
1

L∇VO
+2

. (15)

Then, there exists a neighbourhood Ωo of ((0)T ,(v∗)T ) that
can be made arbitrarily large, and the associated positive,
real numbers κ∗

Σ and T ∗, such that whenever κΣ < κ∗
Σ, T >

T ∗ and ((z0)T ,(v0)T )T ∈ Ωo, V (zk,vk) decreases along the
trajectories of the closed-loop system (1)–(8) according to

∆V k ≤−CΣVΣ(zk)−CO∥∇VO(vk)∥2 +C, (16)

where ∆V k =V (zk+1,vk+1)−V (zk,vk), the real numbers CΣ,
CO and C are positive, and given by

C =
(

2L∇VO
+4e−γT + 1

κ∇VO
(1−κs(L∇VO

+2))

)
∥po∥2

+ 1
4 e−γT (LVΣLl)

2
(17)

CO = κ∇VO

( 1
2 −κs(

1
2 L∇VO

+2e−γT −1)
)

(18)

CΣ = 1− e−γT −κΣ

(
2L∇VO

+4e−γT + 1
κ∇VO

(1−κs(L∇VO
+2))

)
.

(19)

Proof: Let ∆VÔ =VO(vk+ ŝ(vk,zk))−VO(vk), and ∆VΣ =
VΣ(zk+1)−VΣ(zk). By arguments similar to those used in
Lemma 2.2 to obtain (6), we may express ∆VÔ as

∆V k
Ô
≤ ∇VO(vk)T ŝ(vk,zk)+

L∇VO
2 ∥ŝ(vk,zk)∥2.

For notational simplicity, we drop all arguments from now
on. Suppose that at some k, ((zk)T ,(vk)T )T ∈ Ωz×ΩO . Then
we may apply Lemma 2.3 to write

∆V k = ∆V k
Σ +∆V k

Ô

≤−(1− e−γT )VΣ +∇V T
O ŝ+

(L∇VO
2 + e−γT )∥ŝ∥2

+ 1
4 e−γT (LVΣLl)

2.

From A2.4 and (10),

∥ŝ(vk,zk)∥2 = ∥s(vk)+ pv(zk)+ po∥2

≤ 2∥s(vk)∥2 +4∥pv(zk)∥2 +4∥po∥2,

where the inequality is obtained by twice applying
∥a+b∥2 ≤ 2∥a∥2 +2∥b∥2. We therefore have

∆V k ≤−(1− e−γT )VΣ +∇V T
O s+∇V T

O pv +∇V T
O po − ∥po∥2

4κpo

+
(
L∇VO

+2e−γT )∥s∥2 +
(
2L∇VO

+4e−γT )∥pv∥2

+
[(

2L∇VO
+4e−γT )∥po∥2 + 1

4 e−γT (LVΣLl)
2 + ∥po∥2

4κpo

]
.

where we have also added and subtracted the term ∥po∥2

4κpo
,

in which κpo is some real number to be specified later. Let
C =

(
2L∇VO

+4e−γT + 1
4κpo

)
∥po∥2 + 1

4 e−γT (LVΣLl)
2. Apply-

ing A2.3 (c) to express ∥s∥2 in terms of ∇V T
O s, we write

∆V k ≤−(1− e−γT )VΣ +(1−κs(L∇VO
+2e−γT ))∇V T

O s+C

+∇V T
O pv +∇V T

O po +
(
2L∇VO

+4e−γT )∥pv∥2 − ∥po∥2

4κpo
.

Next, we focus on the second term in the above
inequality. Noting first that by (15), the quantity
(1−κs(L∇VO

+2e−γT ))> 0 for all T ≥ 0, we apply
A3.1 to express ∇V T

O s in terms of ∥∇VO∥2:

∆V k ≤−(1− e−γT )VΣ +∇V T
O pv +∇V T

O po

−κ∇VO

(
1−κs(L∇VO

+2e−γT )
)
∥∇VO∥2

+
(
2L∇VO

+4e−γT )∥pv∥2 − 1
4κpo

∥po∥2 +C.

Using A2.5, we absorb the
(
2L∇VO

+4e−γT
)
∥pv∥2 term into

VΣ, and introduce the negative term −1
4κpv

∥pv∥2 (with κpv to
be specified later), which allows us to dominate the cross
term ∇V T

O pv. For the same reason, we extract a −(κpv +
κpo)∥∇VO∥2 term from −κ∇VO

(
1−κs(L∇VO

+2κ1)
)
∥∇VO∥2,

and write

∆V k ≤−
(
1− e−γT −κΣ(2L∇VO

+4e−γT + 1
4κpv

)
)
VΣ

−
(
κ∇VO

(
1−κs(L∇VO

+2e−γT )
)
−κpv −κpo

)
∥∇VO∥2

−κpv∥∇VO∥2 −κpo∥∇VO∥2 +∇V T
O pv +∇V T

O po

− 1
4κpv

∥pv∥2 − 1
4κpo

∥po∥2 +C.
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Then, we define

CΣ = 1− e−γT −κΣ(2L∇VO
+4e−γT + 1

4κpv
) and (20)

CO = κ∇VO

(
1−κs(L∇VO

+2e−γT )
)
−κpv −κpo , (21)

and apply completion of squares to obtain

∆V k ≤−CΣVΣ −CO∥∇VO∥2 +C

−κpv

∥∥∥∇VO − 1
2κpv

pv

∥∥∥2
−κpo

∥∥∥∇VO − 1
2κpo

po

∥∥∥2

≤−CΣVΣ −CO∥∇VO∥2 +C,

which is the required form (16).
Next, we show that CΣ and CO are positive for a suffi-

ciently small κΣ, and a sufficiently large T . To ensure that
CO > 0, we pick any κpv > 0 and κpo > 0 so small that
κpv +κpo < κ∇VO

(1−κs(L∇VO
+ 2e−γT )|T=0). One possible

choice, which leads to the expressions (17), (18) and (19),
is to let

κpv = κpo =
1
4 κ∇VO

(1−κs(L∇VO
+2)).

We rearrange (20) as

CΣ = 1−
(
1+4κΣ

)
e−γT −κΣ

(
2L∇VO

+ 1
4κpv

)
, (22)

pick any ε2 ∈ (0,1) and define

κ∗
Σ , 1− ε2

2L∇VO
+ 1

4κpv

. (23)

If κΣ < κ∗
Σ, then

1−κΣ
(
2L∇VO

+ 1
4κpv

)
> ε2 > 0,

and we see that choosing any T > T ∗, where

T ∗ =
1
γ

ln
(

1+4κΣ

ε2

)
, (24)

renders CΣ > 0.
Finally, given that VΣ is only locally Lipschitz, we need

to specify a set of initial conditions for which our use of
Lemma 2.3 remains valid for all subsequent k > 0. Let us
fix an arbitrarily large, compact set Ωz ×ΩO ∋ ((0)T ,(v∗)T )
and set LVΣ to be the Lipschitz constant associated with VΣ on
the set S discussed in the proof of Lemma 2.3 (c.f. (13)). Let
Ωo ⊂Rn×Rp be the largest sublevel set of V (z,v) contained
inside Ωz×ΩO . By standard arguments, this set is nonempty
and positively invariant with respect to Σ−O . Since VΣ is
assumed to be continuous and radially unbounded, Ωo can
be made arbitrarily large through our choice of Ωz ×ΩO . �

Remark 3.2: Inequality (15) imposes a growth condition
on ∥s∥ relative to ∥VO∥, as is sometimes done in open-
loop stability analyses of optimization algorithms [12]. In
the feedback interconnection with Σ, this condition becomes
more stringent. The inequality κΣ < κ∗

Σ translates into a
condition on the “strength” of Σ’s stability at l(vk) relative to
the strength of the destabilizing effect of the interconnection
terms pv(zk) and po. Finally, the lower-bound (24) on the
sampling period T is analogous to the time-scale separation
requirement in continuous-time ESC schemes. The authors

in [1] refer to T as the waiting time. ♢
Remark 3.3: It is worth noting that C in (17) is comprised

of two components: one that can be made arbitrarily small
by increasing T , and the other which is multiplied by
∥po∥. In Section IV we show that when the optimizer O
is the gradient descent algorithm employing the forward-
Euler approximation of the gradient of J, the non-vanishing
component of the perturbation (i.e. po) is parameterized by
the Euler step size µ , and can be made arbitrarily small by
choosing µ small. ♢

Although CΣ and CO are related to the convergence rate
of the scheme, C dictates the size of the ultimate bound
on the sequence

(
∥((zk)T ,(vk − v∗)T )T∥

)
)∞

k=0. We state this
more precisely in Definition 3.1 and Theorem 3.2, where we
demonstrate the semi-global, practical, asymptotic stability
of (0T ,(v∗)T ) for Σ−O .

Definition 3.1: The point (0T ,(v∗)T ) is said to be
semiglobally practically asymptotically stable for the closed-
loop system Σ−O if:

1) There exist two compact subsets of Rn ×Rp, P and
Ωo, with P ⊂ Ωo, both containing (0T ,(v∗)T ), and
both being positively invariant with respect to Σ−O .
Furthermore, each trajectory of Σ−O initiated inside
Ωo\P must enter P in finitely many iterations.

2) Σ−O is parameterized by a set of tunable variables
that can be adjusted to render Ωo arbitrarily large, and
P arbitrarily small. ♢

The proof of our next theorem may be compared to that
of Theorem 5.14.2 in [13].

Theorem 3.2: Assume that the conditions of Theorem 3.1
are satisfied with κΣ < κ∗

Σ. and T > T ∗. Furthermore, assume
that the nonvanishing perturbation po is parameterized by a
tunable variable µ as po = µ po. Then, the closed-loop system
Σ −O is semiglobally practically asymptotically stable at
(0T ,(v∗)T )T .

Proof: Let w denote the point (zT ,vT )T ∈ Rn ×Rp and
w∗ = (0T ,v∗T ). We define the set

Z , {w ∈ Rn ×Rp : CΣVΣ(z)+CO∥∇VO(v)∥2 ≤C}, (25)

on which V (wk) is no longer guaranteed to decrease with suc-
cessive iterations of Σ−O . By A2.1 and A2.3, the function
F : w 7→CΣVΣ(z)+CO∥∇VO(v)∥2 is continuous and positive
definite2. Consequently, Z is compact for a sufficiently small
C > 0. Moreover, since

C = µ2
(

2L∇VO
+4e−γT + 1

κ∇VO
(1−κs(L∇VO

+2))

)
∥po∥2

+ 1
4 e−γT (LVΣLl)

2,
(26)

can be made arbitrarily small for a sufficiently small µ and
a sufficiently large T , we see that Z itself can be made
arbitrarily small by the continuity of F .

We may now construct the required set P discussed in
Definition 3.1. By the compactness of Z and the continuity
of V , there exists a number β = max{V (w) : w ∈ Z}. Then,

2To see that ∥∇VO (v)∥ is positive definite, suppose that there exists some
ṽ ̸= v∗ for which ∥∇VO (ṽ)∥ = 0. In that case, ∇VO (ṽ)T s(ṽ) = 0 regardless
of s, thus violating A2.3 (b).
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Ωβ = {w ∈Rn ×Rp : V (w)≤ β} is the smallest sublevel set
of V strictly containing Z. We claim that the set

Ωβ+C , {w ∈ Rn ×Rp : V (w)≤ β +C} (27)

is positively invariant with respect to Σ− Ô . To see this,
suppose that at some ko ∈ N, wko is inside Ωβ+C. There
are two possibilities: either wko ∈ Ωβ+C\Z or wko ∈ Z. In
the first case, ∆V ko =V (wko+1)−V (wko)< 0, which means
that V (wko+1) < V (wko) ≤ β +C, and therefore wko+1 is
also inside Ωβ+C. In the second case, ∆V ko ≥ 0 (by the
definition of Z), but it is greater than zero by at most C –
i.e. V (wko+1)−V (wko)≤C. Since wko ∈ Z ⊂ Ωβ , V (wko)≤
β . Therefore V (wko+1)≤V (wko)+C ≤ β +C, which means
again that wko+1 is inside Ωβ+C. Induction then allows us to
conclude the positive invariance of Ωβ+C. Since Ωβ is the
smallest sublevel set of V containing Z, it is clear that Ωβ+C
is the smallest positively invariant set containing Z.

Next, let ε be a positive, (arbitrarily small) real number
and consider the larger sublevel set

P , {w ∈ Rn ×Rp : V (w)≤ β +C+ ε}, (28)

which is compact since both VΣ and VO are positive definite
and radially unbounded. We note that by the construction of
P from Z, and the fact that Z can be made arbitrarily small
via T and µ , P can likewise be made arbitrarily small.

Choose any Ωo according to Theorem 3.1, large enough
to strictly contain P. Such a choice is always possible by
the radial unboundedness of VΣ and VO . In the following,
we show that all trajectories initiated inside Ωo\P enter P in
finitely many iterations. Since Ωo is compact, there exists a
number

a = min{−∆V (w) : w ∈ Ωo\P}. (29)

Suppose that Σ − Ô is initialized at w0 ∈ Ωo\P. Then
V (wk+1) < V (wk)− a and therefore V (wk) < V (w0)− ka,
which implies that wk ∈ P for all k > K(a(ε),w0), where

K =

⌈
V (w0)−β −C− ε

a

⌉
. (30)

Since w0 is arbitrary, it stands that all trajectories initiated in-
side Ωo\P enter P in finitely many iterations, and Definition
3.1 is satisfied. �

IV. SPECIAL CASE
To illustrate the application of our assumptions, in this

section we analyze an ESC scheme involving the plant

ẋ = Ax+g(v)

y = h(x), y ∈ R
(31)

and the optimizer

vk+1 = vk −α∇J(vk), (32)

which is the gradient descent algorithm with a fixed step
size α . If A is strictly Hurwitz, then A2.1 is satisfied with
VΣ(z) = 1

2 zT z, which is locally Lipschitz on any arbitrarily
large compact set Ωz ⊂ Rn. The reference-to-output map to
be minimized is J(v) = h(−A−1g(v)). If J is strictly convex

and bounded from below, then A2.2 is satisfied. If g is
Lipschitz then A2.6 is satisfied. Since for a sufficiently small
step size α , (32) produces a descent sequence on J, it is
appropriate to use VO(v)= J(v)−J(v∗). A2.3 is then satisfied
provided that J is C1, α > 0 and ∇J(v) is Lipschitz with a
constant L∇VO

. The second property in A2.3 is satisfied for
all κs ≥ α , while A3.1 is satisfied for all κVO

≤ α – i.e., this
example jointly satisfies A2.3 and A3.1 with κVO

= κs = α .
The ESC problem makes sense if the analytic structure

of either h or g (or both) is unknown. In that case ∇J(v)
must be estimated through the measurements of J(v). Let
us consider the simplest derivative-free approximation of
the gradient descent algorithm – an optimizer Ô that uses
a fixed-distance, forward-difference (FD) approximation of
∇J. At the kth iteration, Ô must make p+1 measurements
of h(x(t)) – once to collect the approximate value of J(vk),
then p more times to measure the variation of J along
each coordinate axis in Rp. For notational simplicity, we
assume that the time between intra-iteration measurements
remains constant, and equal to the inter-iteration interval T
– i.e., for the kth iteration, the measurements occur at time
instants (tk,0, tk,1, . . . , tk,p), where tk,i = (tk + iT )−, 0 ≤ i ≤ p.
Whereas the ith component of the ideal search vector is
si(vk)=−α∇J(vk)T ei, the ith component of the actual search
vector is

ŝk
i =

−α
µ
(
h(l(vk +µei)+ zk,i)−h(l(vk)+ zk)

)
, (33)

where ŝk
i = ŝi(vk,zk,i,zk) and zk,i , x(t−k,i)− l(vk +µei).

We now show that (33) can be modeled as the ideal
si(vk), additively perturbed by pk

i , which reflects errors due
to both the FD approximation of ∇J(vk)T ei and the transient
dynamics of (31).

First we examine the error due to the FD approximation
alone. If we expand J(vk +µei) using (4) from Lemma 2.1
as

J(vk +µei) = J(vk)+∇J(vk)T (µei)

+
∫ 1

0

[
∇J(vk + τ3µei)−∇J(vk)

]T
(µei) dτ1,

then we see that the FD approximation of ∇J(vk)T ei is
1
µ
(
J(vk +µei)− J(vk)

)
= ∇J(vk)T ei + Ii,1, (34)

where

Ii,1 ,
∫ 1

0

[
∇J(vk + τ1µei)−∇J(vk)

]T ei dτ1. (35)

Next, we focus on the transient errors in (33). Using (5)
from Lemma 2.1 and assuming that h is continuously dif-
ferentiable, we expand h(l(vk +µei)+ zk

i ) about l(vk +µei),
and h(l(vk)+ zk) about l(vk), to obtain

h(l(vk +µei)+ zk,i) = h(l(vk +µei))+ Ii,2 (36)

h(l(vk)+ zk) = h(l(vk))+ Ii,3, (37)

where

Ii,2 ,
∫ 1

0
∇h(l(vk +µei)+ τ2zk,i)T zk,i dτ2, (38)
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and
Ii,3 ,

∫ 1

0
∇h(l(vk)+ τ3zk)T zk dτ3. (39)

First, we recognize that h(l(vk +µei))≡ J(vk +µei) and that
h(l(vk))≡ J(vk). Then, subtracting (37) from (36), dividing
by µ , and recalling (34), we obtain

ŝk
i =−α

[
∇J(vk)T ei + Ii,1 +

1
µ Ii,2 − 1

µ Ii,3
]

= si(vk)+ pk
i ,

(40)

where si(vk) =−α∇J(vk)T ei and

pk
i ≡ pi(vk,zk,i,zk,µ),−α

(
Ii,1 +

1
µ Ii,2 − 1

µ Ii,3
)
. (41)

Hence, we have shown that A2.4 is satisfied for this example.
Similar techniques can be employed to model transient and
other errors on the ideal search direction for other algorithms
as well.

Finally, we must show that A2.5 holds for our choice of
VΣ and the perturbation pk , [pk

1, . . . , pk
p]

T . For simplicity,
we suppose that the gradient of h(x) is bounded (as would
be the case if h(x) = Hx, H ∈ R1×n) – i.e., there exists a
number b∇h > 0, such that for all x ∈ Rn, ∥∇xh(x)∥ ≤ b∇h.
Then, from our definitions of Ii,1, Ii,2 and Ii,3 in (35), (38)
and (39), we obtain

|pk
i | ≤ α |Ii,1|+ α

µ |Ii,2|+ α
µ |Ii,2|

≤
αL∇VO

µ
2 + α

µ b∇h∥zk,i∥+ α
µ b∇h∥zk∥. (42)

We would like to express ∥zk,i∥ in terms of ∥zk∥. Let
γ = max{|ℜ(λ )| : det(λ I −A) = 0}. Then, by solving (31),
we can show that for all 0 ≤ i ≤ p,

zk,i = e−γ iT zk +
i

∑
j=1

e−γ jT [l(vk +µei+1− j)− l(vk +µei+2− j)
]

which, by the fact that l is Lipschitz with constant Ll , implies
that

∥zk,i∥ ≤ e−γ iT∥zk∥+Ll
√

2µ
i

∑
j=1

e−γ jT .

Therefore, (42) becomes

|pk
i | ≤ K1 +K2∥zk∥, (43)

where

K1 =
αL∇VO

µ
2 +αb∇hLl

√
2

i

∑
j=1

e−γ jT , (44)

K2 =
αb∇h

µ
(
e−γiT +1

)
. (45)

With further algebra we can show (from (43) and Young’s
inequality) that ∥pk∥2 = |pk

1|2 + · · ·+ |pk
p|2 can be expressed

as in (10) – in terms of a vanishing component ∥pv(zk)∥2

and a nonvanishing component ∥po∥2. From (43), we notice
that ∥pv(zk)∥2 will have the form K3∥zk∥2, for some K3 > 0.
An important feature of the expressions (44) and (45), is that
at least one tunable parameter appears in each term - namely
one of µ , α and T . This feature implies that K3 can be made
so small that A2.5 can be satisfied. Moreover, it is clear that

po is likewise parameterized by these tunable parameters.
The analysis of this special case suggests that the intercon-

nection assumptions that we propose can be satisfied under
a reasonable set of conditions on the plant and optimizer.

V. CONCLUSIONS

We considered the problem of sampled-data extremum
seeking control (ESC) from the point of view of intercon-
nected systems theory. In contrast to [1], we examined a more
structured class of optimizers, which led to the derivation of
a different set of sufficient conditions for the stability of such
schemes. Our motivation in deriving these new conditions is
their natural applicability to the development and analysis
of distributed extremum seeking schemes. A distinction
between our work and [1] is that we have proposed modeling
the dynamic coupling between the plant and optimizer as
an additive perturbation on the optimizer’s search vector.
This approach enabled us to generalize the result in [1], by
removing the assumptions on the measurements made by the
optimizer.
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