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Pierre Sacré and Rodolphe Sepulchre

Abstract— The Phase Response Curve (PRC) has proven a
useful tool for the reduction of complex oscillator models. It
is also an information often experimentally available to the
biologist. This paper introduces a numerical tool based on the
sensitivity analysis of the PRC to adapt initial model parameters
in order to match a particular PRC shape. We illustrate the
approach on a simple biochemical model of circadian oscillator.

I. INTRODUCTION

Rhythmic phenomena are essential to the dynamic be-

havior of biological systems [1]–[3]. They arise in genetic

and metabolic networks as a result of complex interactions

between multiple biological processes, which makes their

design principles not intuitive. Elucidating those underlying

mechanisms is crucial to advances in systems biology.

Quantitative models based firmly on experiments provide

an essential tool for studying those mechanisms. With recent

advances in biology, the number of identified key variables

in a given process increases and the nature of their inter-

actions (feedforward and feedback loops) is better known.

In spatially homogeneous conditions, ordinary differential

equations describe the time evolution of the system; yet cur-

rent models suffer from several limitations. Among others,

parameter values are often determined empirically or based

on the few pieces of experimental information.

In mathematical biology, the Phase Response Curve (PRC)

has proven a useful input-output tool for the reduction

of complex oscillator models [4]–[6]. It indicates how the

timing of inputs affects the timing (steady-state phase-shift)

of oscillators. Not surprisingly, the shape of this curve plays

a critical role in entrainment and synchronization properties

of the system [7], [8]. Moreover, the PRC is well adapted

to description tools developed by biologists. It can often be

experimentally measured for circadian rhythms [9], [10].

We developed a numerical tool to adapt an initial choice of

parameters in order to match an oscillator model to a particu-

lar PRC. We propose a natural distance between equivalence

classes of PRCs and perform a gradient-descent search in the

model parameter space. The gradient computation involves

the sensitivity of the PRC.

The paper is organized as follows. Section II introduces the

notion of PRC in the neighborhood of a stable periodic orbit.

Section III provides the sensitivity analysis of a periodic orbit

and its PRC. Section IV defines a metric between equivalent

PRCs and derives its associated gradient in the parameter

space. Section V applies a gradient-descent algorithm based

on this distance to the Goodwin oscillator model.
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II. DERIVING A PHASE RESPONSE CURVE

IN THE NEIGHBORHOOD OF A STABLE PERIODIC ORBIT

In this section, we introduce basic definitions about pe-

riodic orbits and summarize the phase reduction procedure

leading to the notion of PRC. Details about this standard

procedure can be found in [4]–[6].

A. Closed system and hyperbolic stable periodic orbit

We consider a closed dynamical system defined by a set

of first-order ordinary differential equations

ẋ = f(x, p), x(0) = x0, (1)

in which states x(t) evolve on some subset X ⊆ R
n and

(constant) parameters p take values in some subset P ⊆ R
q .

The vector field f : X × P → R
n supports all the usual

smoothness conditions that are necessary for existence and

uniqueness of solutions. The flow (arising from the vector

field f ) is the map φ that associates to (t, x0, p) ∈ R×X×P
the solution φ(t, x0, p) = x(t) at time t ∈ R. The orbit of

the flow φ through x0 ∈ X for fixed parameters p ∈ P is

the invariant set Γ :=
{

x ∈ X : x = φ(t, x0, p), t ∈ R
}

.

For fixed parameters p, we assume that the system (1)

admits a periodic orbit γ ⊂ X with period T (and cor-

responding angular frequency ω = 2π/T ). The periodic

orbit γ is the invariant set described by a (non-constant)

T -periodic solution φ(t, x0
γ , p) = xγ(t) which is defined for

all times t ∈ R and where x0
γ is a reference position on

the periodic orbit γ. The period T is the smallest positive

number with the property that φ(T, x0
γ , p) = x0

γ .

As the reference position x0
γ may be any point on the pe-

riodic orbit γ, there are infinitely many solutions describing

the same periodic orbit γ. A unique isolated solution can be

selected by imposing a phase condition

ϕ(x0
γ , T, p) = 0

where ϕ : γ×R>0×P → R is a smooth map. Examples of

valid phase conditions can be found in [11].

The periodic solution xγ(·) with the period T can be

computed by solving the boundary value problem (BVP) as

ẋγ(t)− f(xγ(t), p) = 0 (2a)

xγ(T )− xγ(0) = 0 (2b)

ϕ(x0
γ , T, p) = 0. (2c)

This periodic BVP is a particular case of a two-point BVP.

In what follows, we assume that the periodic orbit γ
possesses two crucial properties: asymptotic orbital stability

and asymptotic phase property (see [12] for definitions).
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Assuming hyperbolic stability of the periodic orbit provides

those properties as stated by the Andronov-Witt theorem.

Theorem 1 (Andronov-Witt theorem [12]): If 1 is a sim-

ple characteristic multiplier of the variational system of (1)

and the remaining n−1 characteristic multipliers are in mod-

ulus less than one (i.e. if the periodic orbit is hyperbolically

stable), then the periodic solution xγ(t) is asymptotically

orbitally stable, having the asymptotic phase property.

The maximal open set from which the periodic orbit γ
attracts is called the basin (or the oscillator stable set) of γ

B(γ) := {x0 ∈ X : lim
t→+∞

dist(φ(t, x0, p), γ) = 0}

where

dist(x, γ) := inf
y∈γ

‖x− y‖2

is the distance from the point x ∈ X to the set γ ⊂ X based

on the Euclidean norm ‖ · ‖2 in R
n.

B. Phase, asymptotic phase, and isochron

Any point x0 ∈ γ can be characterized by a scalar phase

ϑ0 ∈ S
1 that uniquely determines the position of the point x0

along the periodic orbit γ because a periodic orbit is a one-

dimensional (closed) curve homeomorphic to S
1. For fixed

parameters p, the smooth bijective phase map Θ : γ → S
1

associates to each point x0 on the periodic orbit its phase ϑ0,

such that
∥

∥φ(t, x0, p)− xγ(t+ ϑ0/ω)
∥

∥

2
= 0, for all t ∈ R.

This mapping is constructed such that the image of x0
γ

is equal to 0 and the progression along γ (in absence of

perturbation) produces a constant increase in ϑ0. The phase

variable ϑ : R≥0 → S
1 is defined for each trajectory

φ(t, x0, p) starting from a point x0 on the periodic orbit γ,

as ϑ(t) = Θ(φ(t, x0, p)) = Θ(xγ(t + ϑ0/ω)). The phase

variable ϑ evolves linearly in time

ϑ̇(t) = ω, ϑ(0) = ϑ0,

such that ϑ(t) = ωt+ ϑ0 mod 2π.

For a periodic orbit with the asymptotic phase property,

the notion of phase can be extended to any point x0 in the

basin B(γ) by defining the concept of asymptotic phase.For

fixed parameters p, the asymptotic phase map Θ : B(γ) → S
1

associates to each point x0 in the basin B(γ) its asymptotic

phase θ0, such that

lim
t→+∞

∥

∥φ(t, x0, p)− xγ(t+ θ0/ω)
∥

∥

2
= 0.

Again, the mapping is constructed such that the image

of x0
γ is equal to 0 and the progression along any orbit Γ

(in absence of perturbation) produces a constant increase

in θ0. The asymptotic phase variable θ : R≥0 → S
1 is

defined along each solution φ(t, x0, p) starting in the basin

of attraction of γ, as θ(t) = Θ(φ(t, x0, p)). The asymptotic

phase variable θ follows

θ̇(t) = ω, θ(0) = θ0,

such that θ(t) = ωt+ θ0 mod 2π.

The set of all points having the same asymptotic phase is

called an isochron. Considering hyperbolic periodic orbit,

isochrons are codimension-1 submanifolds (diffeomorphic

to R
n−1) crossing the periodic orbit transversally [13].

C. Open system and (input) infinitesimal PRC

The dynamical system in (1) is turned into an open system

ẋ = f(x, p) + ǫg(x, p)u(t), x(t0) = x0, (3)

where input values u(t) belong to some subset U ∈ R
m. The

map g : X × P → R
n×m supports all the usual conditions

that are necessary for existence and uniqueness of solutions.

The parameter ǫ is assumed to be small (0 < ǫ ≪ 1)

in order to weakly perturb the closed system. The flow

arising from this open system is the map φu that associates

to (t, t0, x0, u, p) ∈ R × R × X × U × P the solution

φu(t, t
0, x0, u, p) at time t ∈ R.

The phase variable corresponding to a solution of the open

system (3) is defined as θ(t) = Θ(φu(t, t
0, x0, u, p)). Using

the chain rule, we have

dΘ

dt
(φu) = ω + ǫ∇xΘ

T (φu)g(φu, p)u

(where we omitted the argument (t, t0, x0, u, p) for nota-

tional convenience). Evaluating the right side of this equation

at the intersection of the isochron corresponding to φu and

the periodic orbit γ,

xγ(Θ(φu)/ω) = {x ∈ γ : Θ(x) = Θ(φu)} ,

the evolution of the phase variable is approximated by a one-

dimensional nonlinear equation

θ̇ ≈ ω + ǫ∇xΘ
T (xγ(θ/ω))g(xγ(θ/ω), p)u(t)

subject to the initial condition θ(0) = Θ(x0). This equation

is valid (up to the first-order approximation) in a neighbor-

hood of the periodic orbit γ.

The gradient map ∇xΘ : B(γ) → R
n measures the

relative infinitesimal asymptotic phase-shift caused by an

infinitesimal state perturbation. When evaluated along the

periodic orbit, the map ∇xΘ(φ(τ, x0
γ , p)) = q(t) is known

as the (state) infinitesimal Phase Response Curve (iPRC).

The directional derivative LgΘ : B(γ) → R
m is defined

as

Lg
·i
Θ(x) = gT·i (x, p)∇xΘ(x)

in which g·i is the ith column of the matrix g. When eval-

uated along the periodic orbit, the map LgΘ(φ(τ, x0
γ , p)) =

qu(t) is known as the (input) iPRC. It serves as a δ-impulse

response characteristics in the direction of phase-shift.

The iPRC q(·) is the T -periodic solution of the adjoint

variational system (Malkin theorem, see [4] or [6])

−q̇ − f∗
x(xγ(t), p)q = 0 (4a)

q(T )− q(0) = 0 (4b)

〈f(xγ(t), p), q(t)〉 = ω (4c)

where fx denotes the Jacobian matrix of f with respect to x.

This normalization condition (4c) ensures that the asymptotic

phase variable of the closed system evolves linearly in time.
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III. SENSITIVITY ANALYSIS OF

A PERIODIC ORBIT AND ITS PHASE RESPONSE CURVE

In this section, we introduce the sensitivity analysis of a

periodic orbit and its iPRC. Sensitivity analysis of iPRCs

was previously applied in the context of electronics in [14].

A. Classical sensitivity analysis of a (periodic) solution

Classical sensitivity analysis considers the effects at time t
on a state value xi of perturbing (at time 0) a parameter pj

sxij(t) :=
dφi

dpj
(t, x0, p).

From the differential equation

dφ

dt
(t, x0, p) = f(φ(t, x0, p), p),

we have, taking derivatives with respect to p,

d

dt

(

dφ

dp

)

=
d

dp

(

dφ

dt

)

= fx(φ, p)

(

dφ

dp

)

+ fp(φ, p)

(where fp denotes the Jacobian matrix of f with respect to p
and we omitted the argument (t, x0, p) in order to not clutter

the formula). In addition, from the identity φ(0, x0, p) = x0,

we also have that

dφ

dp
(0, x0, p) =

dx0

dp
.

Therefore the sensitivity of a solution dφ
dp (t, x

0, p) = Sx(t)
is the solution of the matrix equation

Ṡx(t) = fx(φ(t, x
0, p), p)Sx(t) + fp(φ(t, x

0, p), p), (5)

subject to the initial conditions Sx(0) = dx0

dp .

In the analysis of oscillatory systems, we focus on the

T -periodic solution φ(t, x0
γ , p). The general solution of (5)

about a periodic solution takes the form (see [15]–[17])

Sx
γ (t) = tRx

γ(t) + Zx
γ (t).

The first term tRx
γ(t) is unbounded. It contains the influence

of the period sensitivity dT
dp (row vector in R

q) on the

sensitivity of the solution through the T -periodic matrix

Rx
γ(t) = −

1

T
f(φ(t, x0

γ , p), p)
dT

dp
.

The second term Zx
γ (t) is bounded and T -periodic. It repre-

sents the sensitivity of the periodic orbit. From now, we will

drop the index γ to simplify notations.

B. Sensitivity of the periodic orbit

In order to focus on the sensitivity of the periodic orbit,

we introduce the normalized time s = t/T and the corre-

sponding flow φ̃(s, x0, p) := φ(Ts, x0, p). The sensitivity of

the periodic orbit is then defined as

zxij(t) :=
dφ̃i

dpj
(s, x0

γ , p).

From the differential equation (2a) written for the normalized

time
dφ̃

ds
(s, x0

γ , p)− Tf(φ̃(s, x0
γ , p), p) = 0,

we have, taking derivatives with respect to p,

d

ds

dφ̃

dp
− Tfx(φ̃, p)

dφ̃

dp
− Tfp(φ̃, p)− f(φ̃, p)

dT

dp
= 0

(where we omitted the argument (s, x0
γ , p) in order to not

clutter the formula). In addition, from the phase condi-

tion (2c), we have

∂ϕ

∂x0

dx0
γ

dp
+

∂ϕ

∂T

dT

dp
+

∂ϕ

∂p
= 0

(where we omitted the argument (x0
γ , T, p) in order to not

clutter the formula).

The sensitivity of the periodic orbit Zx(t) and the period

sensitivity dT
dp are solutions of the BVP

Żx(t)− fx(xγ(t), p)Z
x(t)−

1

T
ẋγ(t)

dT

dp
= Bx(t) (6a)

Zx(T )− Zx(0) = 0 (6b)

∂ϕ

∂x0
Zx(0) +

∂ϕ

∂T

dT

dp
= −

∂ϕ

∂p
(6c)

with Bx(t) = fp(xγ(t), p).

C. Sensitivity of the infinitesimal phase response curve

Similarly to the sensitivity of the periodic orbit, we define

the sensitivity of the iPRC as

zqij(t) :=
d∇xi

Θ

dpj
(φ̃(s, x0

γ , p)).

From the differential equation (4a) written for the normalized

time

−
d∇xΘ

ds
(φ̃)− Tf∗

x(φ̃, p)∇xΘ(φ̃) = 0

we have, taking derivatives with respect to p,

−
d

ds

d∇xΘ

dp
(φ̃)− Tf∗

x(φ̃, p)
d∇xΘ

dp
(φ̃) = TB̃q(s)

in which elements b̃qij(s) of the matrix B̃q(s) ∈ R
n×p are

given by

n
∑

k=1

(

1

T

∂fk

∂xi

dT

dpj
+

n
∑

l=1

∂2fk

∂xi∂xl

dφ̃l

dpj
+

∂2fk

∂xi∂pj

)

∇xk
Θ

(where we omitted all arguments in order to not clutter the

formula). In addition, from the normalization condition (4c),

we have

fT (φ̃, p)
d∇xΘ

dp
(φ̃) +∇xΘ

T (φ̃)Zf (t) =
dω

dp

with Zf (t) = fx(φ̃, p)Z
x(t) + fp(φ̃, p).

The sensitivity of the iPRC Zq(·) is the unique T -periodic

solution of the BVP

−Żq(t)− f∗
x(xγ(t), p)Z

q(t) = Bq(t) (7a)

Zq(T )− Zq(0) = 0 (7b)

fT (xγ(t), p)Z
q(t) + qT (t)Zf (t) =

dω

dp
(7c)

with Bq(t) = B̃q(t/T ).
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IV. SHAPE-DISTANCE METRIC AND GRADIENT

We aim at selecting an oscillator model by adapting initial

parameters to better match a given PRC. Discriminating

between points in the parameter space requires to quantify

the similarity between an oscillator PRC and a reference

signal (both possibly depending on parameters p). To our

knowledge, an empirical similarity measure between PRCs

was only used once in the context of oscillator model

reduction [18].

In this section, we construct a shape-distance metric be-

tween equivalent signals and derive the associated gradient

in the parameter space.

A. Shape-distance between equivalent periodic signals

We consider two periodic signals x(·) ∈ L2[0, Tx) and

y(·) ∈ L2[0, Ty) with different periods being the oscillator

PRC (for parameters p) and a reference signal, respectively.

To compare one cycle of x(·) to one cycle of y(·), a time-

scaling transformation is applied to both signals. Time-scaled

signals x̃(t) = x
(

Tx

T t
)

and ỹ(t) =
(

Ty

T t
)

are T -periodic and

belong to the same vector space L2[0, T ). This vector space

is equipped with the scalar product

〈x̃(·), ỹ(·)〉 =

∫ T

0

x̃(t)ỹ(t)dt

where ỹ(t) denotes the complex conjugate of ỹ(t). The scalar

product induces the associated norm

‖x̃(·)‖2 = 〈x̃(·), x̃(·)〉1/2 =

(

∫ T

0

|x̃(t)|2dt

)1/2

.

The distance induced by the norm in this vector space is

d(x̃(·), ỹ(·)) = ‖x̃(·)− ỹ(·)‖2.

We show in the following how to modify this natural

distance to satisfy two equivalence properties, namely time-

shifting and magnitude-scaling equivalence properties. From

now, we will intentionally omit the symbols ∼ in order to

not clutter the notations.

Signals are considered as equivalent up to a time-shifting

and a magnitude-scaling if they are related as follow

x(·) ∼ y(·) ⇔ ∃σ ∈ [0, T ), α ∈ R>0 : y(·) = x(· − σ)/α.

The set of all signals equivalent to x(·) is the equivalence

class [x(·)].
We define the distance between two equivalence classes

as

dc([x(·)], [y(·)]) := min
ξ∈[x],χ∈[y]

d(ξ(·), χ(·))
√

‖ξ(·)‖2‖χ(·)‖2

in which ‖ξ(·)‖2 6= 0 and ‖χ(·)‖2 6= 0 if we consider non-

trivial signals. The normalization is necessary in order to

avoid all distances to tend towards zero.

This minimization problem can be reformulated as

min
σ∈[0,T ),α∈R>0

d(x(·), αy(·+ σ))
√

α‖x(·)‖2‖y(·)‖2

and then, using the definition of the induced distance, as

min
σ∈[0,T )α∈R>0

√

1

α

‖x(·)‖2
‖y(·)‖2

+ α
‖y(·)‖2
‖x(·)‖2

− 2ℜe{ρxy(σ)}

in which ρxy(σ) is a short notation for the normalized

circular cross-correlation

ρ(x(·), y(·), σ) =
〈x(·), y(·+ σ)〉

‖x(·)‖2‖y(·)‖2
=

∫ T

0

x(t)y(t+ σ)

‖x(·)‖2‖y(·)‖2
dt.

The circular cross-correlation ρxy(·) is a T -periodic signal

which measures the similarity between two signals as a func-

tion of the time-lag σ applied to one of them. Minimizations

over σ and α can be done separately and optimal solutions

(σ∗, α∗) are given by

σ∗(x(·), y(·)) = arg max
σ∈[0,T )

ℜe{ρ(x(·), y(·), σ)},

α∗(x(·), y(·)) =
‖x(·)‖2
‖y(·)‖2

.

The distance between equivalence classes of periodic

signals is thus eventually given by

dc([x(·)], [y(·)]) =
√

2 (1−ℜe{ρ(x(·), y(·), σ∗)})

with σ∗(x(·), y(·)) = argmaxσ∈[0,T ) ℜe{ρ(x(·), y(·), σ)}.

B. Shape-distance gradient

To explore the parameter space with a gradient-descent

algorithm, we need the gradient ∇pdc(·, ·) defined by the

distance dc(·, ·) between equivalence classes of periodic sig-

nals x(·, p) and y(·, p). Both signals may depend on param-

eters p. The circular cross-correlation ρ(x(·, p), y(·, p), σ∗)
involved in the distance expression depends directly on

signals x(·, p) and y(·, p) but also indirectly through the time-

lag σ∗(x(·, p), y(·, p)).
Using the chain rule, we have

ℜe

{

dρ

dp

}

= ℜe

{

∂ρ

∂x

dx

dp
+

∂ρ

∂y

dy

dp
+

∂ρ

∂σ

dσ∗

dp

}

(where we omitted arguments in order to not clutter the

formula). The last term is equal to zero because we have

ℜe

{

∂ρ

∂σ
(x(·, p), y(·, p), σ∗)

}

= 0

by definition of σ∗. First and second terms are computed

easily by straightforward derivatives.

The shape-distance gradient is thus eventually given by

∇pdc([x(·, p)], [y(·, p)]) = −
ℜe
{

∂ρ
∂x

dx
dp + ∂ρ

∂y
dy
dp

}

√

2 (1−ℜe{ρ(x, y, σ∗)})
.

C. Gradient-descent algorithm

We use a gradient-descent algorithm with Armijo step

sizes for line search. Its descent direction at each iteration is

the opposite of the gradient and the Armijo step size gives

an approximate line minimization [19].

In general, we are dealing with non-convex optimization

problems (non-convex cost functions over non-convex sets).

The gradient-descent algorithm will reach a local minimum

which may not be the global minimum of the problem.
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Fig. 1. Goodwin oscillator. (a) Biological interpretation. (b) Input-output
scheme representing the mathematical model.

V. APPLICATION TO GOODWIN OSCILLATOR

In this section, we apply our gradient-descent algorithm

to a simple biochemical model of circadian oscillator.

A. Goodwin oscillator

The Goodwin oscillator is a cyclic feedback system where

metabolites repress the enzymes which are essential for their

own synthesis by inhibiting the transcription of the molecule

DNA to messenger RNA (mRNA) [20]. The model for such

a mechanism is schematically shown in Fig. 1. It can be

described as the cyclic interconnection of three first-order

subsystems and a monotone static nonlinearity

Hi :

{

τiẋi = Kiui − xi

yi = xi
for i = 1, . . . , 3

H4 :

{

y4 = −
1

1 + (u4/θ)p

where the cyclic interconnection is given by u1 = uext,1−y4,

u2 = y1, u3 = y2, and u4 = uext,2 + y3. Two external

input channels represent two ways to perturb the biological

oscillator. A dimensionless form of this system is equivalent

to impose K2 = K3 = τ1 = θ = 1.

This system possesses a single equilibrium in x1 = x2 =
x3 = x∗, with x∗ being the solution of K1

1+xp − x = 0.

The equilibrium may loose its stability only through a Hopf

bifurcation giving birth to a stable periodic orbit [21], [22].

To simplify the analysis (but without loss of generality),

we reduce the parameter space to two dimensions: we impose

equal time-constants in H2 and H3 (τ2 = τ3 = τ ) and fixe

the Hill coefficient p = 20. This high coefficient is justified

by the necessity to get periodic orbits (p > 8) and strong

enough differences between iPRC shapes in the parameter

space. The results for weaker coefficient are similar but less

marked. The parameter space reduces to (K1, τ) ∈ R
2
>0.
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(a) First input channel.
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(b) Second input channel.
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Fig. 2. Distance of iPRC for Goodwin oscillator to a Hopf-bifurcation-
like iPRC. (a)–(b) The shape-distance (color levels) between a sinusoid
and the (input) iPRCs corresponding to the first and second input channel
increases with the distance from the Hopf-bifurcation manifold (black line).
The gradient-descent algorithm follows the path indicated by + and ◦.
(c) The distance along the path followed by the gradient-descent algorithm
decreases with the iteration number.

B. Minimal shape-distance to a Hopf-bifurcation-like iPRC

Approximation of iPRCs have been computed in the

neighborhood of codimension-1 bifurcations [5]. In partic-

ular, it has been shown that iPRCs are sinusoidal near Hopf

bifurcations. However, the shape of those iPRCs may be

modified when the system evolves away from the bifurcation.

Figures 2(a) and 2(b) show the contour levels (in the

reduced parameter space) of the shape-distance between

a sinusoid and (input) iPRCs corresponding, respectively,

to the first and the second input channel. In both cases,

the shape-distance increases (almost concentrically) with the

distance to the Hopf-bifurcation manifold (black line). The

shape-distance for the second input channel takes higher

values indicating a larger deformation from a sinusoid.

To enlighten this observation, we apply our gradient-

descent based on the shape-distance to a sinusoid. Starting

from the center of the parameter space, the gradient-descent

algorithm follows paths in direction of the Hopf-bifurcation

manifold (Fig. 2(a) and 2(b)). The shape-distance along those

paths decreases as the iteration number increases (Fig. 2(c)).

C. Minimal shape-distance to an experimental-like iPRC

Experimental PRCs have been measured for circadian

rhythms of various organisms [9], [10]. We apply our

gradient-descent algorithm to the Goodwin oscillator in order

to match an experimental-like iPRC of circadian rhythms.

Figures 3(a) and 3(b) show the contour levels of the shape-

distance to an experimental-like iPRC and the paths followed
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Fig. 3. Distance of iPRCs for Goodwin oscillator to an experimental-like
iPRC. (a)–(b) The shape-distance (color levels) between an experimental
iPRC and the (input) iPRCs corresponding to the first and second input
channel exhibits a non-convex behavior in the reduced parameter space.
The gradient-descent algorithm follows the path indicated by +, ◦ and ×.
(c) The distance along the path followed by the gradient-descent algorithm
decreases with the iteration number.
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Fig. 4. The shape of the optimal iPRC (dashed-dotted line) is closer to
the reference iPRC (solid line) than the initial iPRC (dashed line).

by the gradient-descent algorithm in the reduced parameter

space. Two paths are shown for iPRCs corresponding to

the second input channel. Starting from close initial points,

paths evolve towards different local minima. The shape-

distance being almost symmetric with respect to a unitary

time-constant τ , both local minima correspond to similar

iPRCs (up to a time-shifting and a magnitude scaling).

Figure 4 compares initial (dashed) and optimal (dashed-

dotted) iPRCs for the second input channel to the ref-

erence one (solid). The optimal iPRC fits very well the

experimental-like one.

VI. CONCLUSION

We have presented a gradient-descent algorithm that al-

lows to adapt initial parameters to reach a particular iPRC

shape. This tool is based on the sensitivity analysis of the

iPRC and on a shape-distance metric between equivalence

classes of periodic signals. The application of this simple tool

on the Goodwin model gives encouraging results. We plan

to apply those tools to more complex models of circadian

rhythms [23].
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